Antimicrobial Carvacrol Incorporated in Flaxseed Gum-Sodium Alginate Active Films to Improve the Quality Attributes of Chinese Sea bass (Lateolabrax maculatus) during Cold Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Evaluation of Antimicrobial Activity
2.1.1. Determination of MIC and MBC of Carvacrol
2.1.2. The Effects of Carvacrol on the Bacterial Cell Membrane
2.1.3. Effects of Carvacrol on Bacterial Cell Wall
2.1.4. Fourier Transform Infrared (FTIR)
2.1.5. Scanning Electron Microscopes
2.2. Properties of Active Films
2.2.1. Preparation of the Active Films
2.2.2. Mechanical Properties
2.2.3. Antimicrobial Activity
2.2.4. Antioxidant Activity
2.2.5. Differential Scanning Calorimetry (DSC) Determination
2.3. Fish Storage Trial
2.3.1. Preparation of Sea Bass Samples
2.3.2. Microbial Analysis
2.3.3. TVB-N Analysis
2.3.4. K Value Analysis
2.3.5. Organoleptic Properties
2.4. Statistical Analysis
3. Results and Discussion
3.1. Evaluation of Antimicrobial Activity
3.1.1. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
3.1.2. Integrity of Cell Membrane
3.1.3. Results of Alkaline Phosphatase (AKP) Concentrations
3.1.4. FTIR Spectroscopy
3.1.5. Morphological Changes
3.2. Edible Films Properties
3.2.1. Mechanical Properties
3.2.2. Antimicrobial Activities of Films
3.2.3. Antioxidant Activities of Films
3.2.4. DSC Analysis
3.3. Fish Storage Trial
3.3.1. Microbiological Analyses
3.3.2. Total Volatile Base Nitrogen (TVB-N)
3.3.3. K Value
3.3.4. Organoleptic Evaluation Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhou, Q.; Li, P.; Fang, S.; Liu, W.; Mei, J.; Xie, J. Preservative effects of gelatin active coating enriched with eugenol emulsion on Chinese seabass (Lateolabrax maculatus) during superchilling (−0.9 °C) storage. Coatings 2019, 9, 489. [Google Scholar] [CrossRef]
- Parlapani, F.F.; Haroutounian, S.A.; Nychas, G.-J.E.; Boziaris, I.S. Microbiological spoilage and volatiles production of gutted European sea bass stored under air and commercial modified atmosphere package at 2 °C. Food Microbiol. 2015, 50, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Volpe, M.G.; Coccia, E.; Siano, F.; Di Stasio, M.; Paolucci, M. Rapid Evaluation Methods for Quality of Trout (Oncorhynchus mykiss) Fresh Fillet Preserved in an Active Edible Coating. Foods 2019, 8, 113. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.; Ren, X.; Li, Y.; Mao, L. The beneficial effects of grape seed, sage and oregano extracts on the quality and volatile flavor component of hairtail fish balls during cold storage at 4 °C. LWT Food Sci. Technol. 2019, 101, 25–31. [Google Scholar] [CrossRef]
- Álvarez, A.; Fontanillas, R.; García-García, B.; Hernández, M.D. Impact of Dietary Oil Source on the Shelf-Life of Gilthead Seabream (Sparus aurata). J. Aquat. Food Prod. Technol. 2018, 27, 680–697. [Google Scholar] [CrossRef]
- Dou, L.; Li, B.; Zhang, K.; Chu, X.; Hou, H. Physical Properties and Antioxidant Activity of Gelatin-Sodium Alginate Edible Films with Tea Polyphenol. Int. J. Biol. Macromol. 2018, 118, 1377–1383. [Google Scholar] [CrossRef]
- Shahbazi, Y.; Shavisi, N. Effects of Sodium Alginate Coating Containing Mentha Spicata Essential Oil and Cellulose Nanoparticles on Extending the Shelf Life of Raw Silver Carp (Hypophthalmichthys molitrix) fillets. Food Sci. Biotechnol. 2019, 28, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Nie, X.; Wang, L.; Wang, Q.; Lei, J.; Hong, W.; Huang, B.; Zhang, C. Effect of a Sodium Alginate Coating Infused with Tea Polyphenols on the Quality of Fresh Japanese Sea Bass (Lateolabrax japonicas) Fillets. J. Food Sci. 2018, 83, 1695–1700. [Google Scholar] [CrossRef] [PubMed]
- Vital, A.C.P.; Guerrero, A.; Ornaghi, M.G.; Kempinski, E.M.B.C.; Sary, C.; Monteschio, J.d.O.; Matumoto-Pintro, P.T.; Ribeiro, R.P.; do Prado, I.N. Quality and Sensory Acceptability of Fish Fillet (Oreochromis niloticus) with Alginate-Based Coating Containing Essential Oils. J. Food Sci. Technol. 2018, 55, 4945–4955. [Google Scholar] [CrossRef]
- Cheng, M.; Wang, J.; Zhang, R.; Kong, R.; Lu, W.; Wang, X. Characterization and application of the microencapsulated carvacrol/sodium alginate films as food packaging materials. Int. J. Biol. Macromol. 2019. [CrossRef]
- Zhang, S.; Wei, F.; Han, X. An edible film of sodium alginate/pullulan incorporated with capsaicin. New J. Chem. 2018, 42, 17756–17761. [Google Scholar] [CrossRef]
- Pires, A.M.T.; Shirai, M.A.; Grossmann, M.V.E.; Yamashita, F. Active biodegradable packaging for fresh pasta. LWT Food Sci. Technol. 2013, 54, 25–29. [Google Scholar] [Green Version]
- Neira, L.M.; Agustinelli, S.P.; Ruseckaite, R.A.; Martucci, J.F. Shelf Life Extension of Refrigerated Breaded Hake Medallions Packed into Active Edible Fish Gelatin Films. Packag. Technol. Sci. 2019, 32, 471–480. [Google Scholar] [CrossRef]
- Alves, V.L.C.D.; Rico, B.P.M.; Cruz, R.M.S.; Vicente, A.A.; Khmelinskii, I.; Vieira, M.C. Preparation and Characterization of a Chitosan Film with Grape Seed Extract-Carvacrol Microcapsules and its Effect on the Shelf-Life of Refrigerated Salmon (Salmo salar). LWT Food Sci. Technol. 2018, 89, 525–534. [Google Scholar] [CrossRef]
- Chaparrohernández, S.; Ruízcruz, S.; Márquezríos, E.; Ocañohiguera, V.M.; Valenzuelalópez, C.C.; Ornelaspaz, J.D.J.; Deltorosánchez, C.L.; Chaparrohernández, S.; Ruízcruz, S.; Márquezríos, E. Effect of Chitosan-Carvacrol Edible Coatings on the Quality and Shelf Life of Tilapia (Oreochromis niloticus) Fillets Stored in Ice. Food Sci. Technol. 2015, 35, 734–741. [Google Scholar] [CrossRef]
- Marchese, A.; Arciola, C.R.; Coppo, E.; Barbieri, R.; Barreca, D.; Chebaibi, S.; Sobarzo-Sánchez, E.; Nabavi, S.F.; Nabavi, S.M.; Daglia, M. The Natural Plant Compound Carvacrol as an Antimicrobial and Anti-biofilm Agent: Mechanisms, Synergies and Bio-inspired Anti-infective Materials. Biofouling 2018, 34, 630–656. [Google Scholar] [CrossRef]
- Nash, J.J.; Erk, K.A. Stability and Interfacial Viscoelasticity of Oil-water Nanoemulsions Stabilized by Soy Lecithin and Tween 20 for the Encapsulation of Bioactive Carvacrol. Colloid. Surf. A. 2017, 517, 1–11. [Google Scholar] [CrossRef]
- Kamdem, D.P.; Shen, Z.; Nabinejad, O. Development of Biodegradable Composite Chitosan-based Films Incorporated with Xylan and Carvacrol for Food Packaging Application. Food Packag. Shelf 2019, 21, 10344. [Google Scholar] [CrossRef]
- Kurkov, S.V.; Loftsson, T. Cyclodextrins. Int. J. Pharm. 2013, 453, 167–180. [Google Scholar] [CrossRef]
- Szente, L.; Fenyvesi, É. Cyclodextrin-lipid Complexes: Cavity Size Matters. Struct. Chem. 2017, 28, 479–492. [Google Scholar] [CrossRef]
- Kfoury, M.; Auezova, L.; Greige-Gerges, H.; Fourmentin, S. Promising Applications of Cyclodextrins in Food: Improvement of Essential Oils Retention, Controlled Release and Antiradical Activity. Carbohyd. Polym. 2015, 131, 264–272. [Google Scholar] [CrossRef] [PubMed]
- López-Nicolás, J.M.; García-Carmona, F. Rapid, Simple and Sensitive Determination of the Apparent Formation Constants of Trans-resveratrol Complexes with Natural Cyclodextrins in Aqueous Medium Using HPLC. Food Chem. 2008, 109, 868–875. [Google Scholar]
- Cui, H.; Zhang, C.; Li, C.; Lin, L. Antimicrobial Mechanism of Clove Oil on Listeria monocytogenes. Food Control 2018, 94, 140–146. [Google Scholar] [CrossRef]
- Xu, J.-G.; Liu, T.; Hu, Q.-P.; Cao, X.-M. Chemical Composition, Antibacterial Properties and Mechanism of Action of Essential Oil from Clove Buds against Staphylococcus aureus. Molecules 2016, 21, 1194. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Fu, H.; Gao, L.; Zheng, Y. Antibacterial Activity and Mechanism of Lactobionic Acid Against Staphylococcus aureus. Folia Microbiol. (Praha) 2019, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Ge, D.; Li, S.; Huang, K.; Liu, J.; Li, F. Chemical Composition and Antimicrobial Activities of Artemisia argyi Lévl. et Vant Essential Oils Extracted by Simultaneous Distillation-Extraction, Subcritical Extraction and Hydrodistillation. Molecules 2019, 24, 483. [Google Scholar] [CrossRef] [PubMed]
- Xinyu, S.; Xiaoban, G.; Mingyu, J.; Jiulin, W.; Wenjin, Z.; Jianhua, W.; Cui, C.; Li, C.; Qiqing, Z. Preservative Effects of Fish Gelatin Coating Enriched with CUR/βCD Emulsion on Grass Carp (Ctenopharyngodon idellus) Fillets during Storage at 4 °C. Food Chem. 2019, 272, 643–652. [Google Scholar]
- Shao, Y.; Wu, C.; Wu, T.; Li, Y.; Chen, S.; Yuan, C.; Hu, Y. Eugenol-chitosan Nanoemulsions by Ultrasound-mediated Emulsification: Formulation, Characterization and Antimicrobial Activity. Carbohyd. Polym. 2018, 193, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Biao, Y.; Yuxuan, C.; Qi, T.; Ziqi, Y.; Yourong, Z.; McClements, D.J.; Chongjiang, C. Enhanced Performance and Functionality of Active Edible Films by Incorporating Tea Polyphenols into Thin Calcium Alginate Hydrogels. Food Hydrocolloid. 2019, 97, 105197. [Google Scholar] [CrossRef]
- Aguilar-Sánchez, R.; Munguía-Pérez, R.; Reyes-Jurado, F.; Navarro-Cruz, A.R.; Cid-Pérez, T.S.; Hernández-Carranza, P.; Beristain-Bauza, S.d.C.; Ochoa-Velasco, C.E.; Avila-Sosa, R. Structural, Physical, and Antifungal Characterization of Starch Edible Films Added with Nanocomposites and Mexican Oregano (Lippia berlandieri Schauer) Essential Oil. Molecules 2019, 24, 2340. [Google Scholar] [CrossRef]
- Kaya, M.; Ravikumar, P.; Ilk, S.; Mujtaba, M.; Akyuz, L.; Labidi, J.; Salaberria, A.M.; Cakmak, Y.S.; Erkul, S.K. Production and Characterization of Chitosan Based Edible Films from Berberis crataegina’s Fruit Extract and Seed Oil. Innov. Food Sci. Emerg. Technol. 2018, 45, 287–297. [Google Scholar] [CrossRef]
- Govindaswamy, R.; Robinson, J.S.; Geevaretnam, J.; Pandurengan, P. Physico-functional and Anti-oxidative Properties of Carp Swim Bladder Gelatin and Brown Seaweed Fucoidan Based Edible Films. J. Packag. Technol. Res. 2018, 2, 77–89. [Google Scholar] [CrossRef]
- Polumackanycz, M.; Sledzinski, T.; Goyke, E.; Wesolowski, M.; Viapiana, A. A Comparative Study on the Phenolic Composition and Biological Activities of Morus alba L. Commercial Samples. Molecules 2019, 24, 3082. [Google Scholar] [CrossRef] [PubMed]
- Rollini, M.; Nielsen, T.; Musatti, A.; Limbo, S.; Piergiovanni, L.; Hernandez Munoz, P.; Gavara, R. Antimicrobial Performance of Two Different Packaging Materials on the Microbiological Quality of Fresh Salmon. Coatings 2016, 6, 6. [Google Scholar] [CrossRef]
- Shibata, M.; ElMasry, G.; Moriya, K.; Rahman, M.M.; Miyamoto, Y.; Ito, K.; Nakazawa, N.; Nakauchi, S.; Okazaki, E. Smart Technique for Accurate Monitoring of ATP Content in Frozen Fish Fillets using Fluorescence Fingerprint. LWT Food Sci. Technol. 2018, 92, 258–264. [Google Scholar] [CrossRef]
- Miranda, J.M.; Carrera, M.; Barros-Velázquez, J.; Aubourg, S.P. Impact of Previous Active Dipping in Fucus spiralis Extract on the Quality Enhancement of Chilled Lean Fish. Food Control 2018, 90, 407–414. [Google Scholar] [CrossRef]
- Zhang, S.; Xiong, J.; Lou, W.; Ning, Z.; Zhang, D.; Yang, J. Antimicrobial Activity and Action Mechanism of Triglycerol Monolaurate on Common Foodborne Pathogens. Food Control 2019, 98, 113–119. [Google Scholar] [CrossRef]
- Rivas, L.; Mcdonnell, M.J.; Burgess, C.M.; O’Brien, M.; Navarro-Villa, A.; Fanning, S.; Duffy, G. Inhibition of Verocytotoxigenic Escherichia coli in Model Broth and Rumen Systems by Carvacrol and Thymol. Int. J. Food Microbiol. 2010, 139, 70–78. [Google Scholar] [CrossRef]
- Ultee, A.; Bennik, M.H.J.; Moezelaar, R. The Phenolic Hydroxyl Group of Carvacrol is Essential for Action Against the Food-borne Pathogen Bacillus cereus. Appl. Environ. Microbiol. 2002, 68, 1561–1568. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Wang, Y.; Jiang, P.; Quek, S.Y. Antibacterial Activity and Mechanism of Cinnamon Essential Oil Against Escherichia coli and Staphylococcus aureus. Food Control 2016, 59, 282–289. [Google Scholar] [CrossRef]
- Sung, S.Y.; Sin, L.T.; Tee, T.T.; Bee, S.T.; Rahmat, A.R.; Rahman, W.A.W.A.; Tan, A.C.; Vikhraman, M. Antimicrobial Agents for Food Packaging Applications. Trends Food Sci. Technol. 2013, 33, 110–123. [Google Scholar] [CrossRef]
- Fernández-Pan, I.; Maté, J.I.; Gardrat, C.; Coma, V. Effect of Chitosan Molecular Weight on the Antimicrobial Activity and Release Rate of Carvacrol-enriched Films. Food Hydrocoll. 2015, 51, 60–68. [Google Scholar] [CrossRef]
- Nostro, A.; Papalia, T. Antimicrobial Activity of Carvacrol: Current Progress and Future Prospectives. Recent Pat. Anti-Infe. Drug Discov. 2012, 7, 28–35. [Google Scholar] [CrossRef]
- Guarda, A.; Rubilar, J.F.; Miltz, J.; Galotto, M.J. The Antimicrobial Activity of Microencapsulated Thymol and Carvacrol. Int. J. Food Microbiol. 2011, 146, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Chen, W.; Dou, Z.-M.; Chen, R.; Hu, Y.; Chen, W.; Chen, H. Antimicrobial Effect of Black Pepper Petroleum Ether Extract for the Morphology of Listeria monocytogenes and Salmonella typhimurium. J. Food Sci. Technol. 2017, 54, 2067–2076. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Yuan, F.; Liu, F.; Wang, Y.; Gao, Y. Structure and Antimicrobial Mechanism of ɛ-Polylysine-Chitosan Conjugates through Maillard Reaction. Int. J. Biol. Macromol. 2014, 70, 427–434. [Google Scholar] [CrossRef]
- Liu, M.; Liu, Y.; Cao, M.-J.; Liu, G.-M.; Chen, Q.; Sun, L.; Chen, H. Antibacterial Activity and Mechanisms of Depolymerized Fucoidans Isolated from Laminaria japonica. Carbohyd. Polym. 2017, 172, 294–305. [Google Scholar] [CrossRef]
- Chen, M.; Zhao, Z.; Meng, H.; Yu, S. The Antibiotic Activity and Mechanisms of Sugar Beet (Beta vulgaris) Molasses Polyphenols Against Selected Food-borne Pathogens. LWT Food Sci. Technol. 2017, 82, 354–360. [Google Scholar] [CrossRef]
- Zavareze, E.D.R.; Vania Zanella, P.; Bruna, K.; El Halal, S.L.M.; Moacir Cardoso, E.; Carlos, P.H.; Dias, A.R.G. Development of Oxidised and Heat-moisture Treated Potato Starch Film. Food Chem. 2012, 132, 344–350. [Google Scholar] [CrossRef]
- Gaofeng, Y.; Hua, L.; Bingjie, Y.; Xiaoe, C.; Haiyan, S. Physical Properties, Antioxidant and Antimicrobial Activity of Chitosan Films Containing Carvacrol and Pomegranate Peel Extract. Molecules 2015, 20, 11034–11045. [Google Scholar] [Green Version]
- Rubilar, J.F.; Rui, M.S.C.; Silva, H.D.; Vicente, A.A.; Khmelinskii, I.; Vieira, M.C. Physico-mechanical Properties of Chitosan Films with Carvacrol and Grape Seed Extract. J. Food Eng. 2013, 115, 466–474. [Google Scholar] [CrossRef]
- Otoni, C.G.; Avena-Bustillos, R.J.; Olsen, C.W.; Bilbao-Sáinz, C.; McHugh, T.H. Mechanical and Water Barrier Properties of Isolated Soy Protein Composite Edible Films as Affected by Carvacrol and Cinnamaldehyde Micro and Nanoemulsions. Food Hydrocolloid. 2016, 57, 72–79. [Google Scholar] [CrossRef]
- Moradi, M.; Tajik, H.; Rohani, S.M.R.; Mahmoudian, A. Antioxidant and Antimicrobial Effects of Zein Edible Film Impregnated with Zataria multiflora Boiss. Essential Oil and Monolaurin. LWT Food Sci. Technol. 2016, 72, 37–43. [Google Scholar] [CrossRef]
- Neira, L.M.; Martucci, J.F.; Stejskal, N.; Ruseckaite, R.A. Time-dependent Evolution of Properties of Fish Gelatin Edible Films Enriched with Carvacrol during Storage. Food Hydrocolloid. 2019, 94, 304–310. [Google Scholar] [CrossRef]
- Hosseini, S.F.; Rezaei, M.; Zandi, M.; Farahmandghavi, F. Preparation and Characterization of Chitosan Nanoparticles-Loaded Fish Gelatin-Based Edible Films. J.Food Process Eng. 2016, 39, 521–529. [Google Scholar] [CrossRef]
- Park, S.Y.; Kim, J.Y.; Youn, H.J.; Choi, J.W. Fractionation of Lignin Macromolecules by Sequential Organic Solvents Systems and their Characterization for Further Valuable Applications. Int. J. Biol. Macromol. 2017, 106, 793–802. [Google Scholar] [CrossRef]
- Muriel-Galet, V.; Cran, M.J.; Bigger, S.W.; Hernández-Muñoz, P.; Gavara, R. Antioxidant and Antimicrobial Properties of Ethylene Vinyl Alcohol Copolymer Films Based on the Release of Oregano Essential Oil and Green Tea Extract Components. J. Food Eng. 2015, 149, 9–16. [Google Scholar] [CrossRef]
- Yahyaoui, M.; Gordobil, O.; Herrera Díaz, R.; Abderrabba, M.; Labidi, J. Development of Novel Antimicrobial Films Based on Poly(lactic acid) and Essential Oils. React. Funct. Polym. 2016, 109, 1–8. [Google Scholar] [CrossRef]
- Singh, S.; Lee, M.; Gaikwad, K.K.; Lee, Y.S. Antibacterial and Amine Scavenging Properties of Silver–silica Composite for Post-harvest Storage of Fresh Fish. Food Bioprod. Process. 2018, 107, 61–69. [Google Scholar] [CrossRef]
- Vatavali, K.; Karakosta, L.; Nathanailides, C.; Georgantelis, D.; Kontominas, M.G. Combined Effect of Chitosan and Oregano Essential Oil Dip on the Microbiological, Chemical, and Sensory Attributes of Red Porgy (Pagrus pagrus) Stored in Ice. Food Bioprocess Technol. 2013, 6, 3510–3521. [Google Scholar] [CrossRef]
- Cheng, J.H.; Sun, D.W.; Wei, Q. Enhancing Visible and Near-Infrared Hyperspectral Imaging Prediction of TVB-N Level for Fish Fillet Freshness Evaluation by Filtering Optimal Variables. Food Anal. Method. 2017, 10, 1888–1898. [Google Scholar] [CrossRef]
- Volpe, M.G.; Siano, F.; Paolucci, M.; Sacco, A.; Sorrentino, A.; Malinconico, M.; Varricchio, E. Active Edible Coating Effectiveness in Shelf-life Enhancement of Trout (Oncorhynchusmykiss) Fillets. LWT Food Sci. Technol. 2015, 60, 615–622. [Google Scholar] [CrossRef]
- Cheng, J.-H.; Sun, D.-W.; Qu, J.-H.; Pu, H.-B.; Zhang, X.-C.; Song, Z.; Chen, X.; Zhang, H. Developing a Multispectral Imaging for Simultaneous Prediction of Freshness Indicators during Chemical Spoilage of Grass Carp Fish Fillet. J. Food Eng. 2016, 182, 9–17. [Google Scholar] [CrossRef]
- Lan, W.; Che, X.; Xu, Q.; Wang, T.; Du, R.; Xie, J.; Hou, M.; Lei, H. Sensory and Chemical Assessment of Silver Pomfret (Pampus argenteus) Treated with Ginkgo biloba Leaf Extract Treatment during Storage in Ice. Aquac. Fish. 2018, 3, 30–37. [Google Scholar] [CrossRef]
- Silbande, A.; Adenet, S.; Chopin, C.; Cornet, J.; Smith-Ravin, J.; Rochefort, K.; Leroi, F. Effect of Vacuum and Modified Atmosphere Packaging on the Microbiological, Chemical and Sensory Properties of Tropical Red Drum (Sciaenops ocellatus) Fillets Stored at 4 °C. Int. J. Food Microbiol. 2018, 266, 31–41. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds carvacrol are available from the authors. |
Film Sample | Tensile Strength (MPa) | Elongation at Break (%) |
---|---|---|
FSG-SA | 58.70 ± 0.53 a | 4.90 ± 0.13 a |
FSG-SA-0.5C | 41.34 ± 0.27 c | 4.41 ± 0.10 ab |
FSG-SA-1.0C | 44.95 ± 0.63 b | 4.05 ± 0.08 ab |
FSG-SA-2.0C | 40.52 ± 0.37 c | 3.83 ± 0.16 b |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, S.; Zhou, Q.; Hu, Y.; Liu, F.; Mei, J.; Xie, J. Antimicrobial Carvacrol Incorporated in Flaxseed Gum-Sodium Alginate Active Films to Improve the Quality Attributes of Chinese Sea bass (Lateolabrax maculatus) during Cold Storage. Molecules 2019, 24, 3292. https://doi.org/10.3390/molecules24183292
Fang S, Zhou Q, Hu Y, Liu F, Mei J, Xie J. Antimicrobial Carvacrol Incorporated in Flaxseed Gum-Sodium Alginate Active Films to Improve the Quality Attributes of Chinese Sea bass (Lateolabrax maculatus) during Cold Storage. Molecules. 2019; 24(18):3292. https://doi.org/10.3390/molecules24183292
Chicago/Turabian StyleFang, Shiyuan, Qianqian Zhou, Yan Hu, Feng Liu, Jun Mei, and Jing Xie. 2019. "Antimicrobial Carvacrol Incorporated in Flaxseed Gum-Sodium Alginate Active Films to Improve the Quality Attributes of Chinese Sea bass (Lateolabrax maculatus) during Cold Storage" Molecules 24, no. 18: 3292. https://doi.org/10.3390/molecules24183292
APA StyleFang, S., Zhou, Q., Hu, Y., Liu, F., Mei, J., & Xie, J. (2019). Antimicrobial Carvacrol Incorporated in Flaxseed Gum-Sodium Alginate Active Films to Improve the Quality Attributes of Chinese Sea bass (Lateolabrax maculatus) during Cold Storage. Molecules, 24(18), 3292. https://doi.org/10.3390/molecules24183292