Ultrasound and Microwave Assisted Extraction of Opuntia Fruit Peels Biocompounds: Optimization and Comparison Using RSM-CCD
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phytochemical Identification
2.2. Model Fitting and Applied Technologies
2.3. Effects of Independent Variables on Betacyanins
2.3.1. Maximizing the Betacyanin Content Using UAE
2.3.2. Maximizing the Betacyanin Content Using MAE
2.4. Effects of Independent Variables on Phenolic Acids and Flavonoids
2.4.1. Maximizing the Content in Phenolic Acids and Flavonoids Using UAE
2.4.2. Maximizing the Content in Phenolic Acids and Flavonoids Using MAE
2.5. Effects of Independent Variables on Yield by Applying UAE and MAE
2.6. Effects of Independent Variables on Antioxidant Activity by Applying UAE and MAE
2.7. Differences Among Employed Technologies: UAE and MAE
3. Material and Methods
3.1. Samples Preparation
3.2. Experimental Design
3.3. Extraction Procedure
3.3.1. Ultrasound-Assisted Extraction (UAE)
3.3.2. Microwave-Assisted Extraction (MAE)
3.4. Responses Analyzed
3.4.1. LC-DAD-ESI/MS Characterization of Extracts
3.4.2. Colorimetric Determination
3.4.3. Extractable Solid (Yield)
3.4.4. Antioxidant Activity Evaluation
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- GVR Natural Antioxidants Market Analysis By Product (Vitamin C, Vitamin E, Polyphenols, Carotenoids) And Segment Forecasts To 2022. Available online: https://www.grandviewresearch.com/industry-analysis/natural-antioxidants-market (accessed on 1 September 2019).
- Gebhardt, D. The Economics of Natural Color Pigments. Available online: https://sensientfoodcolors.com/en-us/research-development/economics-natural-color-pigments/ (accessed on 1 September 2019).
- do Prado, D.Z.; Capoville, B.L.; Delgado, C.H.O.; Heliodoro, J.C.A.; Pivetta, M.R.; Pereira, M.S.; Zanutto, M.R.; Novelli, P.K.; Francisco, V.C.B.; Fleuri, L.F. Nutraceutical food: Composition, biosynthesis, therapeutic properties, and applications. Altern. Replace. Foods 2018, 95–140. [Google Scholar]
- IFIC. FDA Overview of Food Ingredients, Additives and Colors. Available online: https://www.fda.gov/food/ingredientspackaginglabeling/foodadditivesingredients/ucm094211.htm (accessed on 1 September 2019).
- Aruwa, C.E.; Amoo, S.O.; Kudanga, T. Opuntia (Cactaceae) plant compounds, biological activities and prospects—A comprehensive review. Food Res. Int. 2018, 112, 328–344. [Google Scholar] [CrossRef] [PubMed]
- Cardoso-Ugarte, G.A.; Sosa-Morales, M.E.; Ballard, T.; Liceaga, A.; San Martín-González, M.F. Microwave-assisted extraction of betalains from red beet (Beta vulgaris). LWT-Food Sci. Technol. 2014, 59, 276–282. [Google Scholar] [CrossRef]
- Garcia-Castello, E.M.; Rodriguez-Lopez, A.D.; Mayor, L.; Ballesteros, R.; Conidi, C.; Cassano, A. Optimization of conventional and ultrasound assisted extraction of flavonoids from grapefruit (Citrus paradisi L.) solid wastes. LWT-Food Sci. Technol. 2015, 64, 1114–1122. [Google Scholar] [CrossRef]
- Laqui-Vilca, C.; Aguilar-Tuesta, S.; Mamani-Navarro, W.; Montaño-Bustamante, J.; Condezo-Hoyos, L. Ultrasound-assisted optimal extraction and thermal stability of betalains from colored quinoa (Chenopodium quinoa Willd) hulls. Ind. Crops Prod. 2018, 111, 606–614. [Google Scholar] [CrossRef]
- Thirugnanasambandham, K.; Sivakumar, V. Microwave assisted extraction process of betalain from dragon fruit and its antioxidant activities. J. Saudi Soc. Agric. Sci. 2017, 16, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green extraction of natural products: Concept and principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [PubMed]
- Barba, F.J.; Puértolas, E.; Brnčić, M.; Panchev, I.N.; Dimitrov, D.A.; Athès-Dutour, V.; Moussa, M.; Souchon, I. Chapter 11—Emerging extraction. Food Waste Recover. 2015, 249–272. [Google Scholar]
- Mandal, S.C.; Mandal, V.; Das, A.K. Classification of Extraction Methods. In Essentials of Botanical Extraction; Academic Press: Cambridge, MA, USA, 2015; pp. 83–136. ISBN 9780128023259. [Google Scholar]
- Leardi, R. Experimental Design, 1st ed.; Copyright © 2013 Elsevier B.V. All rights reserved; Elsevier: Cambridge, MA, USA, 2013; Vol. 28, ISBN 9780444595287. [Google Scholar]
- Melgar, B.; Dias, M.I.; Ciric, A.; Sokovic, M.; Garcia-Castello, E.M.; Rodriguez-Lopez, A.D.; Barros, L.; Ferreira, I. By-product recovery of Opuntia spp. peels: Betalainic and phenolic profiles and bioactive properties. Ind. Crops Prod. 2017, 107, 353–359. [Google Scholar] [CrossRef] [Green Version]
- Chougui, N.; Djerroud, N.; Naraoui, F.; Hadjal, S.; Aliane, K.; Zeroual, B.; Larbat, R. Physicochemical properties and storage stability of margarine containing Opuntia ficus-indica peel extract as antioxidant. Food Chem. 2015, 173, 382–390. [Google Scholar] [CrossRef]
- Mena, P.; Tassotti, M.; Andreu, L.; Nuncio-Jáuregui, N.; Legua, P.; Del Rio, D.; Hernández, F. Phytochemical characterization of different prickly pear (Opuntia ficus-indica (L.) Mill.) cultivars and botanical parts: UHPLC-ESI-MSnmetabolomics profiles and their chemometric analysis. Food Res. Int. 2018, 108, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Yeddes, N.; Chérif, J.; Guyot, S.; Sotin, H.; Ayadi, M. Comparative Study of Antioxidant Power, Polyphenols, Flavonoids and Betacyanins of the Peel and Pulp of Three Tunisian Opuntia Forms. Antioxidants 2013, 2, 37–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allai, L.; Druart, X.; Öztürk, M.; BenMoula, A.; Nasser, B.; El Amiri, B. Protective effects of Opuntia ficus-indica extract on ram sperm quality, lipid peroxidation and DNA fragmentation during liquid storage. Anim. Reprod. Sci. 2016, 175, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ammar, I.; Ben Salem, M.; Harrabi, B.; Mzid, M.; Bardaa, S.; Sahnoun, Z.; Attia, H.; Ennouri, M. Anti-inflammatory activity and phenolic composition of prickly pear (Opuntia ficus-indica) flowers. Ind. Crops Prod. 2018, 112, 313–319. [Google Scholar] [CrossRef]
- Esquivel, P. Handbook on Natural Pigments in Food and Beverages Industrial Applications for Improving Food Colorl; Carle, R., Schweiggert, R.M., Eds.; Woodhead Publishing: San Pedro, Costa Rica, 2016; pp. 81–99. ISBN 9780081003718. [Google Scholar]
- Szot, D.; Skopińska, A.; Wybraniec, S. Decomposition of 17-decarboxy-betanin in selected aqueous-organic solutions induced by Cu (II) cations. PhD Interdiscip. J. Politech. Gdansk Univ. 2015, 1, 217–223. [Google Scholar]
- Betancourt, C.; Cejudo-Bastante, M.J.; Heredia, F.J.; Hurtado, N. Pigment composition and antioxidant capacity of betacyanins and betaxanthins fractions of Opuntia dillenii (Ker Gawl) Haw cactus fruit. Food Res. Int. 2017, 101, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Mata, A.; Ferreira, J.P.; Semedo, C.; Serra, T.; Duarte, C.M.M.; Bronze, M.R. Contribution to the characterization of Opuntia spp. juices by LC–DAD–ESI-MS/MS. Food Chem. 2016, 210, 558–565. [Google Scholar] [CrossRef]
- Melgar, B.; Pereira, E.; Oliveira, M.B.P.P.; Garcia-Castello, E.M.; Rodriguez-Lopez, A.D.; Sokovic, M.; Barros, L.; Ferreira, I.C.F.R. Extensive profiling of three varieties of Opuntia spp. fruit for innovative food ingredients. Food Res. Int. 2017, 101, 259–265. [Google Scholar] [CrossRef] [Green Version]
- Fathordoobady, F.; Mirhosseini, H.; Selamat, J.; Manap, M.Y.A. Effect of solvent type and ratio on betacyanins and antioxidant activity of extracts from Hylocereus polyrhizus flesh and peel by supercritical fluid extraction and solvent extraction. Food Chem. 2016, 202, 70–80. [Google Scholar] [CrossRef]
- García-Cruz, L.; Dueñas, M.; Santos-Buelgas, C.; Valle-Guadarrama, S.; Salinas-Moreno, Y. Betalains and phenolic compounds profiling and antioxidant capacity of pitaya (Stenocereus spp.) fruit from two species (S. Pruinosus and S. stellatus). Food Chem. 2017, 234, 111–118. [Google Scholar] [CrossRef]
- Herbach, K.M.; Stintzing, F.C.; Carle, R. Identification of heat-induced degradation products from purified betanin, phyllocactin and hylocerenin by high-performance liquid chromatography/ electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2005, 19, 2603–2616. [Google Scholar] [CrossRef] [PubMed]
- Spórna-Kucab, A.; Ignatova, S.; Garrard, I.; Wybraniec, S. Versatile solvent systems for the separation of betalains from processed Beta vulgaris L. juice using counter-current chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2013, 941, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Wybraniec, S.; Starzak, K.; Szneler, E.; Pietrzkowski, Z. Separation of chlorinated diastereomers of decarboxy-betacyanins in myeloperoxidase catalyzed chlorinated Beta vulgaris L. extract. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1036–1037, 20–32. [Google Scholar] [CrossRef] [PubMed]
- Vinatoru, M. An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason. Sonochem. 2001, 8, 303–313. [Google Scholar] [CrossRef]
- Strack, D.; Vogt, T.; Schliemann, W. Recent advances in betalain research. Phytochemistry 2003, 62, 247–269. [Google Scholar] [CrossRef]
- Sawicki, T.; Wiczkowski, W. The effects of boiling and fermentation on betalain profiles and antioxidant capacities of red beetroot products. Food Chem. 2018, 259, 292–303. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, K.; Saw, N.M.M.T.; Mohdaly, A.A.A.; Gabr, A.M.M.; Kastell, A.; Riedel, H.; Cai, Z.; Knorr, D.; Smetanska, I. Impact of processing of red beet on betalain content and antioxidant activity. Food Res. Int. 2013, 50, 670–675. [Google Scholar] [CrossRef]
- Paciulli, M.; Medina-Meza, I.G.; Chiavaro, E.; Barbosa-Cánovas, G.V. Impact of thermal and high pressure processing on quality parameters of beetroot (Beta vulgaris L.). LWT-Food Sci. Technol. 2016, 68, 98–104. [Google Scholar] [CrossRef]
- Guldiken, B.; Toydemir, G.; Nur Memis, K.; Okur, S.; Boyacioglu, D.; Capanoglu, E. Home-processed red beetroot (Beta vulgaris L.) products: Changes in antioxidant properties and bioaccessibility. Int. J. Mol. Sci. 2016, 17, 858. [Google Scholar] [CrossRef]
- Ferreres, F.; Grosso, C.; Gil-Izquierdo, A.; Valentão, P.; Mota, A.T.; Andrade, P.B. Optimization of the recovery of high-value compounds from pitaya fruit by-products using microwave-assisted extraction. Food Chem. 2017, 230, 463–474. [Google Scholar] [CrossRef]
- Belščak-Cvitanović, A.; Durgo, K.; Huđek, A.; Bačun-Družina, V.; Komes, D. Metabolism and Health Effects of Polyphenols. In Polyphenols: Properties, Recovery, and Applications; Galanakis, C.M., Ed.; Woodhead Publishing: Cambridge, MA, USA, 2018; pp. 1–44. [Google Scholar]
- Al-Farsi, M.A.; Lee, C.Y. Optimization of phenolics and dietary fibre extraction from date seeds. Food Chem. 2008, 108, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Primorac, T.; Požar, M.; Sokolić, F.; Zoranić, L.; Urbic, T. A simple two dimensional model of methanol. J. Mol. Liq. 2018, 262, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Bessada, S.M.F.; Barreira, J.C.M.; Barros, L.; Ferreira, I.C.F.R.; Oliveira, M.B.P.P. Phenolic profile and antioxidant activity of Coleostephus myconis (L.) Rchb.f.: An underexploited and highly disseminated species. Ind. Crops Prod. 2016, 89, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Roriz, C.L.; Barros, L.; Prieto, M.A.; Morales, P.; Ferreira, I.C.F.R. Floral parts of Gomphrena globosa L. as a novel alternative source of betacyanins: Optimization of the extraction using response surface methodology. Food Chem. 2017, 229, 223–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample Availability: Samples of Opuntia fruit peels are available from the authors. |
Peak | Rt (min) | λmax (nm) | [M − H]− (m/z) | MS2 (m/z) | Tentative Identification |
---|---|---|---|---|---|
Betalains | |||||
Bc1 | 22.2 | 534 | 551 | 389(100),345(50),150(28) | Betanin 1 |
Bc2 | 23.7 | 534 | 511 | 389(100), 345(73),150(46) | Isobetanin 1 |
Bc3 | 23.8 | 535 | 551 | 507(3), 389(38), 345(100), 301(21) | Gomphrenin I 1 |
Bc4 | 25.2 | 509 | 637 | 551(20),389(54),345(100),150(62) | (Iso)phyllocactin 1 |
Bc5 | 25.4 | 505 | 507 | 345(100),301(63) | 17-Decarboxy-betanin 1 |
Bc6 | 26.1 | 523 | 389 | 343(97),150(91) | Betanidin 1 |
Bc7 | 28.0 | 534 | 389 | 389 (100),345(73),150(46) | Isobetanidin 1 |
Phenolic acids | |||||
Ph1 | 4.2 | 278 | 255 | 193(32),179(7),165(100),149(5) | Piscidic acid 2 |
Ph2 | 6.5 | 321 | 367 | 193(100),191(12),173(13),149(23) | 3-O-Feruloylquinic acid 3 |
Ph3 | 7.7 | 285 | 179 | 161(100),143(79),119(32) | cis Caffeic acid 4 |
Ph4 | 8.8 | 283 | 355 | 193(100) | Ferulic acid hexoside 3 |
Flavonoids | |||||
Fv1 | 10.5 | 331 | 931 | 769(31),315(100) | Isorhamnetin-O-hexoside-O-(di-deoxyhexosyl-hexoside) 5 |
Fv2 | 12.3 | 338 | 785 | 315(100) | Isorhamnetin-O-hexoside-(deoxyhexosyl-hexoside) 5 |
Fv3 | 16.2 | 345 | 431 | 269(100) | Apigenin-O-hexoside 6 |
Fv4 | 16.6 | 346 | 931 | 769(43),315(100) | Isorhamnetin-dirutinoside 5 |
Fv5 | 16.9 | 332 | 931 | 769(27),315(100) | Isorhamnetin-dirutinoside 5 |
Fv6 | 17.3 | 331 | 769 | 315(100) | Isorhamnetin-O-(di-deoxyhexosyl-hexoside) 5 |
Fv7 | 18.2 | 325 | 785 | 315(100) | Isorhamnetin-O-hexoside-(deoxyhexosyl-hexoside) 5 |
Fv8 | 19.0 | 337 | 623 | 315(100) | Isorhamentin-O-(deoxyhexosyl-hexoside) 5 |
Run | X1 | X2 | X3 | X4 | Res1 | Res2 | Res3 | Res4 | Res5 | Res6 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UAE | MAE | UAE/MAE | UAE/MAE | UAE | MAE | UAE | MAE | UAE | MAE | UAE | MAE | UAE | MAE | UAE | MAE | UAE | MAE | |
1 | 1 | 5 | 15 | 25 | 12.5 | 45.0 | 182 | 112 | 8.9 | 6.4 | 1.13 | 0.94 | 62 | 66 | 3.1 | 4.0 | 83.2 | 75.0 |
2 | 2 | 10 | 15 | 25 | 12.5 | 45.0 | 149 | 140 | 7.3 | 7.0 | 0.95 | 1.16 | 64 | 67 | 3.4 | 3.8 | 83.6 | 74.4 |
3 | 1 | 5 | 35 | 25 | 12.5 | 45.0 | 134 | 112 | 6.4 | 5.7 | 0.77 | 0.80 | 60 | 62 | 3.4 | 4.2 | 83.3 | 74.3 |
4 | 2 | 10 | 35 | 25 | 12.5 | 45.0 | 153 | 129 | 7.3 | 6.6 | 0.88 | 0.76 | 61 | 51 | 3.4 | 3.4 | 83.4 | 77.8 |
5 | 1 | 5 | 15 | 75 | 12.5 | 45.0 | 109 | 108 | 6.7 | 5.8 | 0.73 | 0.72 | 66 | 73 | 3.6 | 4.5 | 83.1 | 72.3 |
6 | 2 | 10 | 15 | 75 | 12.5 | 45.0 | 113 | 113 | 6.4 | 6.2 | 0.96 | 1.09 | 66 | 71 | 3.6 | 3.7 | 85.8 | 72.6 |
7 | 1 | 5 | 35 | 75 | 12.5 | 45.0 | 124 | 141 | 7.0 | 7.5 | 0.96 | 1.13 | 66 | 40 | 3.1 | 3.3 | 86.6 | 78.0 |
8 | 2 | 10 | 35 | 75 | 12.5 | 45.0 | 128 | 120 | 7.0 | 6.4 | 0.88 | 0.89 | 64 | 65 | 3.7 | 3.5 | 86.3 | 77.3 |
9 | 1 | 5 | 15 | 25 | 27.5 | 85.0 | 170 | 83 | 8.6 | 5.6 | 1.14 | 0.90 | 63 | 67 | 3.1 | 3.6 | 83.1 | 73.8 |
10 | 2 | 10 | 15 | 25 | 27.5 | 85.0 | 190 | 81 | 13 | 5.6 | 2.06 | 0.88 | 63 | 89 | 3.0 | 4.1 | 83.0 | 73.5 |
11 | 1 | 5 | 35 | 25 | 27.5 | 85.0 | 133 | 116 | 6.6 | 6.2 | 0.79 | 1.02 | 44 | 65 | 3.4 | 3.6 | 83.8 | 75.2 |
12 | 2 | 10 | 35 | 25 | 27.5 | 85.0 | 139 | 108 | 6.8 | 6.7 | 0.89 | 0.86 | 57 | 55 | 3.4 | 3.7 | 83.3 | 76.3 |
13 | 1 | 5 | 15 | 75 | 27.5 | 85.0 | 143 | 54 | 7.7 | 7.2 | 1.13 | 1.03 | 65 | 70 | 3.4 | 2.6 | 85.7 | 59.3 |
14 | 2 | 10 | 15 | 75 | 27.5 | 85.0 | 125 | 25 | 7.0 | 4.0 | 0.96 | 0.47 | 66 | 66 | 3.9 | 3.9 | 85.4 | 74.9 |
15 | 1 | 5 | 35 | 75 | 27.5 | 85.0 | 116 | 66 | 6.5 | 6.3 | 0.83 | 0.93 | 64 | 67 | 3.6 | 3.4 | 85.3 | 76.4 |
16 | 2.5 | 10 | 35 | 75 | 27.5 | 85.0 | 119 | 60 | 6.8 | 6.7 | 0.95 | 0.91 | 63 | 65 | 3.7 | 3.9 | 86.4 | 79.0 |
17 | 0.5 | 2.5 | 25 | 50 | 20 | 65.0 | 159 | 107 | 8.4 | 6.2 | 0.96 | 0.87 | 64 | 56 | 3.4 | 3.6 | 85.2 | 74.0 |
18 | 2.5 | 12.5 | 25 | 50 | 20 | 65.0 | 174 | 77 | 8.4 | 6.2 | 1.21 | 0.94 | 65 | 68 | 3.1 | 3.7 | 84.7 | 75.5 |
19 | 1.5 | 7.5 | 5 | 50 | 20 | 65.0 | 198 | 97 | 9.6 | 6.0 | 1.28 | 0.99 | 68 | 72 | 3.5 | 4.1 | 84.8 | 72.9 |
20 | 1.5 | 7.5 | 45 | 50 | 20 | 65.0 | 160 | 80 | 7.8 | 6.6 | 1.02 | 0.99 | 63 | 53 | 3.0 | 3.6 | 84.8 | 75.3 |
21 | 1.5 | 7.5 | 25 | 0 | 20 | 65.0 | 175 | 155 | 8.2 | 6.4 | 1.03 | 0.86 | 62 | 59 | 3.1 | 3.3 | 83.2 | 76.1 |
22 | 1.5 | 7.5 | 25 | 100 | 20 | 65.0 | 72 | 53 | 6.5 | 6.1 | 0.64 | 0.76 | 62 | 65 | 4.0 | 3.8 | 76.3 | 74.0 |
23 | 1.5 | 7.5 | 25 | 50 | 5 | 25.0 | 134 | 135 | 6.7 | 6.8 | 0.81 | 0.78 | 65 | 69 | 3.0 | 3.1 | 84.9 | 77.7 |
24 | 1.5 | 7.5 | 25 | 50 | 35 | 105 | 179 | 49 | 8.3 | 6.6 | 1.15 | 0.93 | 65 | 56 | 3.2 | 5.7 | 84.7 | 73.1 |
25 | 1.5 | 7.5 | 25 | 50 | 20 | 65.0 | 143 | 185 | 7.4 | 6.7 | 0.99 | 1.04 | 63 | 59 | 3.5 | 3.5 | 84.5 | 76.7 |
26 | 1.5 | 7.5 | 25 | 50 | 20 | 65.0 | 184 | 115 | 9.2 | 6.0 | 1.21 | 0.87 | 64 | 69 | 3.4 | 3.7 | 84.5 | 73.5 |
27 | 1.5 | 7.5 | 25 | 50 | 20 | 65.0 | 135 | 112 | 6.6 | 5.9 | 0.96 | 0.93 | 64 | 68 | 3.5 | 3.6 | 86.5 | 73.5 |
28 | 1.5 | 7.5 | 25 | 50 | 20 | 65.0 | 187 | 127 | 9.0 | 6.2 | 1.20 | 0.86 | 64 | 68 | 3.4 | 3.5 | 85 | 74.1 |
29 | 1.5 | 7.5 | 25 | 50 | 20 | 65.0 | 161 | 126 | 7.7 | 6.2 | 0.98 | 0.90 | 64 | 67 | 3.3 | 3.5 | 85.2 | 74.0 |
30 | 1.5 | 7.5 | 25 | 50 | 20 | 65.0 | 169 | 115 | 8.6 | 6.8 | 0.95 | 1.09 | 64 | 65 | 2.9 | 3.3 | 84.8 | 73.3 |
31 | 1.5 | 7.5 | 25 | 50 | 20 | 65.0 | 165 | 112 | 8.0 | 7.0 | 1.03 | 1.08 | 65 | 64 | 3.4 | 3.3 | 84.6 | 74.1 |
UAE Extraction | MAE Extraction | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Res1U | Res2U | Res3U | Res4U | Res5U | Res6U | Res1M | Res2M | Res3M | Res4M | Res5M | Res6M | ||
Intercept | b0 | 138.65 | 6.26 | 0.43 | 67.40 | 3.15 | 45.16 | −37.68 | 5.74 | 0.03 | 61.48 | 9.38 | 65.60 |
Linear | b1 | 8.21 | −0.23 | 0.12 | 2.21 | −0.04 | 0.02 | 23.64 | 0.50 | 0.16 | 2.66 | −0.42 | * −2.814 |
b2 | * −2.278 | * −0.085 | * −0.009 | * −0.304 | <0.01 | −0.04 | 1.98 | −0.11 | −0.02 | * −0.720 | −0.05 | 0.21 | |
b3 | * 0.501 | * 0.017 | * 0.006 | * 0.067 | * −0.008 | * −0.069 | * 1.514 | 0.03 | 0.01 | −0.01 | −0.01 | * −0.542 | |
b4 | 5.60 | 0.32 | * 0.049 | −0.19 | 0.01 | 0.06 | * 1.739 | −0.02 | 0.01 | 0.19 | −0.11 | * −0.515 | |
Quadratic | b11 | −8.47 | 0.01 | 0.03 | −0.76 | <0.001 | −0.27 | −0.88 | −0.01 | <0.001 | −0.07 | <0.001 | 0.08 |
b22 | 0.01 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | * −0.064 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
b33 | * −0.021 | <0.001 | <0.001 | <0.001 | <0.001 | *0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | * 0.003 | |
b44 | −0.08 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | −0.01 | <0.001 | <0.001 | <0.001 | * 0.001 | * 0.003 | |
Interaction | b12 | 0.76 | <0.001 | −0.01 | 0.09 | <0.001 | 0.02 | −0.06 | 0.01 | <0.001 | −0.03 | <0.001 | −0.01 |
b13 | −0.09 | −0.02 | <0.001 | −0.08 | <0.001 | <0.001 | −0.08 | * −0.005 | <0.001 | 0.02 | <0.001 | 0.02 | |
b14 | 0.27 | 0.08 | 0.01 | 0.16 | −0.01 | <0.001 | −0.09 | <0.001 | <0.001 | −0.01 | 0.01 | 0.02 | |
b23 | 0.03 | * 0.003 | * <0.001 | 0.01 | <0.001 | <0.001 | 0.01 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
b24 | −0.09 | −0.01 | * −0.001 | −0.02 | <0.001 | <0.001 | 0.02 | <0.001 | <0.001 | 0.01 | <0.001 | <0.001 | |
b34 | 0.01 | <0.001 | <0.01 | 0.01 | <0.001 | <0.001 | * −0.021 | <0.001 | <0.001 | <0.001 | <0.001 | * 0.003 | |
Statistical information of the fitting analysis | |||||||||||||
Observations | 31 | 31 | 31 | 31 | 31 | 31 | 31 | 31 | 31 | 31 | 31 | 31 | |
R2 | 77.76 | 70.70 | 75.51 | 71.03 | 60.11 | 93.41 | 89.13 | 53.65 | 54.06 | 59.93 | 65.68 | 80.34 | |
R2adj | 58.31 | 45.07 | 54.08 | 45.68 | 25.21 | 87.64 | 79.61 | 13.09 | 13.86 | 24.87 | 35.66 | 63.15 | |
MSE | 18.65 | 0.99 | 0.16 | 2.99 | 0.23 | 0.85 | 13.99 | 0.58 | 0.13 | 8.54 | 0.52 | 2.65 | |
RMSE | 4.32 | 0.99 | 0.40 | 1.73 | 0.48 | 0.92 | 3.74 | 0.76 | 0.36 | 2.92 | 0.72 | 1.63 | |
MAPE | 10.42 | 0.55 | 0.09 | 1.45 | 0.13 | 0.46 | 8.29 | 0.34 | 0.08 | 4.72 | 0.27 | 1.43 | |
DW | 2.19 | 1.76 | 1.78 | * 1.01 | 1.48 | 1.62 | 1.94 | 1.70 | 1.53 | 2.05 | 2.19 | 1.68 | |
Factorial Optimization Response | |||||||||||||
max | max | max | max | min | max | max | max | max | max | min | max | ||
Optimum value | 227.6 | 17.8 | 3.1 | 73.1 | 2.3 | 87.1 | 144.6 | 8.6 | 1.5 | 84.0 | 1.8 | 73.7 | |
x1 | 1.2 | 2.5 | 2.5 | 2.5 | 2.2 | 2.1 | 8.8 | 2.5 | 12.5 | 11.9 | 12.5 | 12.4 | |
x2 | 5.0 | 5.0 | 5.0 | 5.3 | 5.0 | 44.3 | 20.3 | 34.0 | 5.0 | 5.0 | 44.3 | 16.2 | |
x3 | 17.7 | 0.1 | 0.0 | 30.2 | 0.0 | 56.3 | 54.8 | 100.0 | 25.1 | 46.8 | 0.0 | 100.0 | |
x4 | 33.9 | 34.1 | 33.8 | 34.7 | 35.0 | 5.0 | 25.0 | 103.6 | 25.0 | 25.0 | 25.0 | 105.0 | |
General Optimization | |||||||||||||
max | max | max | max | min | max | max | max | max | max | min | max | ||
Optimum response | 201.6 | 13.9 | 2.4 | 71.8 | 2.9 | 85.7 | 132.9 | 8.0 | 1.5 | 79.1 | 3.6 | 78.7 | |
Deseability | 0.985 | 0.871 | |||||||||||
Optimum value | x1 = 2.5 | x2 = 5 | x3 = 34.6 | x4 = 30.0 | x1 = 12.4 | x2 = 5.0 | x3 = 0.0 | x4 = 36.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melgar, B.; Dias, M.I.; Barros, L.; Ferreira, I.C.F.R.; Rodriguez-Lopez, A.D.; Garcia-Castello, E.M. Ultrasound and Microwave Assisted Extraction of Opuntia Fruit Peels Biocompounds: Optimization and Comparison Using RSM-CCD. Molecules 2019, 24, 3618. https://doi.org/10.3390/molecules24193618
Melgar B, Dias MI, Barros L, Ferreira ICFR, Rodriguez-Lopez AD, Garcia-Castello EM. Ultrasound and Microwave Assisted Extraction of Opuntia Fruit Peels Biocompounds: Optimization and Comparison Using RSM-CCD. Molecules. 2019; 24(19):3618. https://doi.org/10.3390/molecules24193618
Chicago/Turabian StyleMelgar, Bruno, Maria Inês Dias, Lillian Barros, Isabel C.F.R. Ferreira, Antonio D. Rodriguez-Lopez, and Esperanza M. Garcia-Castello. 2019. "Ultrasound and Microwave Assisted Extraction of Opuntia Fruit Peels Biocompounds: Optimization and Comparison Using RSM-CCD" Molecules 24, no. 19: 3618. https://doi.org/10.3390/molecules24193618
APA StyleMelgar, B., Dias, M. I., Barros, L., Ferreira, I. C. F. R., Rodriguez-Lopez, A. D., & Garcia-Castello, E. M. (2019). Ultrasound and Microwave Assisted Extraction of Opuntia Fruit Peels Biocompounds: Optimization and Comparison Using RSM-CCD. Molecules, 24(19), 3618. https://doi.org/10.3390/molecules24193618