Analysis of Nitraria Tangutourum Bobr-Derived Fatty Acids with HPLC-FLD-Coupled Online Mass Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of Derivatization Conditions
2.1.1. Effect of Co-Solvents on Derivatization
2.1.2. Effect of Basic Catalysts on Derivatization
2.1.3. Effect of NMP Concentration on Derivatization
2.1.4. Effect of Temperature and Time on Derivatization
2.2. Chromatographic Separation and Mass Spectrometry Identification
2.2.1. HPLC Separation
2.2.2. MS Identification
2.3. Method Validation
2.4. Analysis and Evaluation of FAs in NTB from Different Geographical Origins
3. Materials and Methods
3.1. Instruments
3.2. Reagents and Chemicals
3.3. Plant Material
3.4. Preparation of Solutions
3.5. Preparation of Samples
3.6. Derivatization Procedure
3.7. HPLC Separation and MS Condition
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pan, X.; Shen, G.; Chen, P.A. Preliminary research on taxonomy and systematics of genus Nitraria. Acta Bot. Yun. 1998, 21, 287–295. [Google Scholar]
- Liu, Y.X. Desert Flora in China; Science Press: Beijing, China, 1988. [Google Scholar]
- Zhao, K.; Song, J.; Feng, G.; Zhao, M.; Liu, J. Species, types, distribution, and economic potential of halophytes in China. Plant Soil 2011, 342, 495–509. [Google Scholar] [CrossRef]
- Hu, N.; Zheng, J.; Li, W.; Suo, Y. Isolation, stability, and antioxidant activity of anthocyanins from Lycium ruthenicum Murray and Nitraria tangutorum Bobr of Qinghai-Tibetan plateau. Sep. Sci. Technol. 2014, 49, 2897–2906. [Google Scholar] [CrossRef]
- Suo, Y.R. Research and Development of Nitraria tangutorum in Qaidam Basin; Science Press: Beijing, China, 2010. [Google Scholar]
- Duan, J.A.; Williams, I.D.; Che, C.T.; Zhou, R.H.; Zhao, S.X. Tangutorine: A novel β-carboline alkaloid from Nitraria tangutorum. Tetrahedron Lett. 1999, 40, 2593–2596. [Google Scholar] [CrossRef]
- Liu, B.P.L.; Chong, E.Y.Y.; Cheung, F.W.K.; Duan, J.A.; Che, C.T.; Liu, W.K. Tangutorine induces p21 expression and abnormal mitosis in human colon cancer HT-29 cells. Biochem. Pharmacol. 2005, 70, 287–299. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, H.; Tang, X.; Liu, Z.; Yang, S.; Ni, J. Nitraria resources in China and their utilization. World For. Res. 2013, 26, 64–68. [Google Scholar]
- Wang, H.; Suo, Y.; Wang, X.; Li, Y.; You, J.; Zhao, X. Extraction of Nitraria tangutorum seed oil by supercritical carbon dioxide and determination of free fatty acids by HPLC/APCI/MS with fluorescence detection. Sep. Purif. Technol. 2007, 56, 371–377. [Google Scholar] [CrossRef]
- Tan, C.H.; Ghazali, H.M.; Kuntom, A.; Tan, C.P.; Ariffin, A.A. Extraction and physicochemical properties of low free fatty acid crude palm oil. Food Chem. 2009, 113, 645–650. [Google Scholar] [CrossRef]
- Kanya, T.S.; Rao, L.J.; Sastry, M.S. Characterization of wax esters, free fatty alcohols and free fatty acids of crude wax from sunflower seed oil refineries. Food Chem. 2007, 101, 1552–1557. [Google Scholar] [CrossRef]
- Colussi, G.; Catena, C.; Novello, M.; Bertin, N.; Sechi, L.A. Impact of omega-3 polyunsaturated fatty acids on vascular function and blood pressure: Relevance for cardiovascular outcomes. Nutr. Metab. Cardiovas. 2017, 27, 191–200. [Google Scholar] [CrossRef]
- Currie, E.; Schulze, A.; Zechner, R.; Walther, T.C.; Farese Jr, R.V. Cellular fatty acid metabolism and cancer. Cell Metab. 2013, 18, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Remely, M.; Aumueller, E.; Merold, C.; Dworzak, S.; Hippe, B.; Zanner, J.; Pointner, A.; Brath, H.; Haslberger, A.G. Effects of short chain fatty acid producing bacteria on epigenetic regulation of FFAR3 in type 2 diabetes and obesity. Gene 2014, 537, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Freigang, S.; Ampenberger, F.; Weiss, A.; Kanneganti, T.D.; Iwakura, Y.; Hersberger, M.; Kopf, M. Fatty acid-induced mitochondrial uncoupling elicits inflammasome-independent IL-1 [alpha] and sterile vascular inflammation in atherosclerosis. Nat. Immunol. 2013, 14, 1045–1053. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Lee, A.; Shim, S.C.; Lee, J.H.; Choe, J.Y.; Ahn, H.; Choi, C.B.; Sung, Y.K.; Bae, S.C. Effect of n-3 polyunsaturated fatty acid supplementation in patients with rheumatoid arthritis: A 16-week randomized, double-blind, placebo-controlled, parallel-design multicenter study in Korea. J. Nutr. Biochem. 2013, 24, 1367–1372. [Google Scholar] [CrossRef] [PubMed]
- Nestel, P.; Clifton, P.; Colquhoun, D.; Noakes, M.; Mori, T.A.; Sullivan, D.; Thomas, B. Indications for omega-3 long chain polyunsaturated fatty acid in the prevention and treatment of cardiovascular disease. Heart Lung Circ. 2015, 24, 769–779. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; McKenzie, C.; Potamitis, M.; Thorburn, A.N.; Mackay, C.R.; Macia, L. The role of short-chain fatty acids in health and disease. Adv. Immunol. 2014, 121, 119. [Google Scholar]
- Pusvaskiene, E.; Januskevic, B.; Prichodko, A.; Vickackaite, V. Simultaneous Derivatization and dispersive liquid–liquid microextraction for fatty acid GC determination in water. Chromatographia 2009, 69, 271–276. [Google Scholar] [CrossRef]
- Kim, N.S.; Lee, J.H.; Han, K.M.; Kim, J.W.; Cho, S.; Kim, J. Discrimination of commercial cheeses from fatty acid profiles and phytosterol contents obtained by GC and PCA. Food Chem. 2014, 143, 40–47. [Google Scholar] [CrossRef]
- Gamazo-Vázquez, J.; Garcıa-Falcón, M.S.; Simal-Gándara, J. Control of contamination of olive oil by sunflower seed oil in bottling plants by GC-MS of fatty acid methyl esters. Food Control 2003, 14, 463–467. [Google Scholar] [CrossRef]
- Zelinkova, Z.; Giri, A.; Wenzl, T. Assessment of critical steps of a GC/MS based indirect analytical method for the determination of fatty acid esters of monochloropropanediols (MCPDEs) and of glycidol (GEs). Food Control 2017, 77, 65–75. [Google Scholar] [CrossRef]
- Amorello, D.; Orecchio, S.; Pace, A.; Barreca, S. Discrimination of almonds (Prunus dulcis) geographical origin by minerals and fatty acids profiling. Nat. Prod. Res. 2016, 30, 2107–2110. [Google Scholar] [CrossRef] [PubMed]
- Bauza, T.; Blaise, A.; Daumas, F.; Cabanis, J.C. Determination of biogenic amines and their precursor amino acids in wines of the Vallée du Rhône by high-performance liquid chromatography with precolumn derivatization and fluorimetric detection. J. Chromatogr. A 1995, 707, 373–379. [Google Scholar] [CrossRef]
- Brondz, I. Development of fatty acid analysis by high-performance liquid chromatography, gas chromatography, and related techniques. Anal. Chim. Acta 2002, 465, 1–37. [Google Scholar] [CrossRef]
- Grob, K.; Biedermann, M. The two options for sample evaporation in hot GC injectors: Thermospray and band formation. Optimization of conditions and injector design. Anal. Chem. 2002, 74, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Gutnikov, G. Fatty acid profiles of lipid samples. J. Chromatogr B Biomed. Sci. Appl. 1995, 671, 71–89. [Google Scholar] [CrossRef]
- Püttmann, M.; Krug, H.; von Ochsenstein, E.; Kattermann, R. Fast HPLC determination of serum free fatty acids in the picomole range. Clin. Chem. 1993, 39, 825–832. [Google Scholar]
- Shukla, V.K. Recent advances in the high performance liquid chromatography of lipids. Prog. Lipid. Res. 1988, 27, 5–38. [Google Scholar] [CrossRef]
- Wang, A.; Li, G.; You, J.; Ji, Z. A new fluorescent derivatization reagent and its application to free fatty acid analysis in pomegranate samples using HPLC with fluorescence detection. J. Sep. Sci. 2013, 36, 3853–3859. [Google Scholar] [CrossRef]
- Zhang, S.; You, J.; Zhou, G.; Li, C.; Suo, Y. Analysis of free fatty acids in Notopterygium forbesii Boiss by a novel HPLC method with fluorescence detection. Talanta 2012, 98, 95–100. [Google Scholar] [CrossRef]
- You, J.; Zhao, X.; Suo, Y.; Li, Y.; Wang, H.; Chen, G. Determination of long-chain fatty acids in bryophyte plants extracts by HPLC with fluorescence detection and identification with MS. J. Chromatogr. B 2007, 848, 283–291. [Google Scholar] [CrossRef]
- Wang, Y.; Luan, G.; Zhou, W.; You, J.; Hu, N.; Suo, Y. 2-(4-Amino)-Phenyl-1-Hydrogen-Phenanthrene [9–d] Imidazole as a Novel Fluorescent Labeling Reagent for Determination of Fatty Acids in Raspberry. Food Anal. Method 2018, 11, 1–15. [Google Scholar] [CrossRef]
- Zeng, Z.; Ji, Z.; Hu, N.; Bai, B.; Wang, H.; Suo, Y. A sensitive pre-column derivatization method for the analysis of free fatty acids by RP-HPLC with fluorescence detector and its application to Caragana species. J. Chromatogr. B 2017, 1064, 151–159. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the Nitraria tangutorum Bobr. are available from the authors. |
Fatty Acid | MS [M + H]+ | Linearity | Correlation Coefficient | LOD (ng/mL) | LOQ (ng/mL) | Recovery (%) | RSD (%) |
---|---|---|---|---|---|---|---|
C6 | 326.5 | y = 5.86x + 8.21 | 0.9996 | 0.42 | 0.93 | 99.8 | 1.44 |
C7 | 340.5 | y = 9.25x − 12.43 | 0.9998 | 0.54 | 1.24 | 96.5 | 2.56 |
C8 | 354.5 | y = 6.21x + 1.45 | 0.9996 | 0.49 | 1.45 | 99.1 | 2.68 |
C9 | 368.5 | y = 6.44x − 5.26 | 0.9997 | 0.57 | 1.57 | 97.5 | 3.14 |
C10 | 382.5 | y = 4.86x − 8.24 | 0.9999 | 0.49 | 1.24 | 102.6 | 2.25 |
C11 | 396.5 | y = 3.24x + 2.49 | 0.9996 | 0.62 | 1.65 | 98.3 | 0.98 |
C12 | 410.5 | y = 6.72x + 0.24 | 0.9998 | 0.69 | 1.98 | 92.4 | 2.67 |
C13 | 424.5 | y = 4.38x + 2.21 | 0.9997 | 0.78 | 2.14 | 99.5 | 3.21 |
C18:3 | 488.5 | y = 7.25x + 4.46 | 1 | 0.86 | 2.35 | 98.9 | 3.65 |
C14 | 438.5 | y = 6.24x + 7.98 | 0.9999 | 1.04 | 2.97 | 94.5 | 1.98 |
C16:1 | 464.5 | y = 6.74x − 2.38 | 0.9998 | 1.15 | 3.01 | 91.8 | 2.56 |
C18:2 | 490.5 | y = 8.99x - 5.66 | 0.9999 | 1.31 | 3.25 | 103.2 | 2.87 |
C16 | 466.5 | y = 9.27x − 10.29 | 0.9996 | 1.42 | 3.96 | 97.6 | 1.99 |
C18:1 | 492.5 | y = 8.02x + 6.08 | 0.9997 | 1.63 | 4.42 | 98.3 | 3.25 |
C17 | 480.5 | y = 12.54 + 0.72 | 0.9997 | 1.71 | 4.54 | 95.5 | 2.76 |
C18 | 494.5 | y = 4.36x + 2.58 | 0.9999 | 1.59 | 4.36 | 99.6 | 3.24 |
C20:1 | 520.5 | y = 10.22x − 8.75 | 0.9996 | 1.87 | 5.23 | 92.7 | 2.96 |
C19 | 508.5 | y = 12.45x + 14.57 | 0.9996 | 1.79 | 5.49 | 98.4 | 3.75 |
C20 | 522.5 | y = 3.89x − 1.24 | 0.9998 | 2.03 | 5.64 | 99.5 | 3.29 |
Fatty Acid | Region | ||||||
---|---|---|---|---|---|---|---|
Dagele | Zongjia | Nuomuhong | Delingha | Hedong | Dulan | Gahai | |
C6 | 1.01 ± 0.03 | 1.15 ± 0.04 | 0.98 ± 0.03 | 0.87 ± 0.02 | 1.11 ± 0.04 | 0.94 ± 0.03 | 1.22 ± 0.05 |
C7 | nd | nd | nd | nd | nd | nd | nd |
C8 | nd | nd | nd | nd | nd | nd | nd |
C9 | 2.41 ± 0.08 | 3.07 ± 0.12 | 3.11 ± 0.11 | 2.09 ± 0.08 | 1.97 ± 0.07 | 2.06 ± 0.08 | 3.21 ± 1.21 |
C10 | nd | nd | nd | nd | nd | nd | nd |
C11 | nd | nd | nd | nd | nd | nd | nd |
C12 | 1.19 ± 0.05 | 1.43 ± 0.06 | 1.25 ± 0.05 | 1.07 ± 0.04 | 1.32 ± 0.04 | 1.65 ± 0.06 | 1.47 ± 0.05 |
C13 | nd | nd | nd | nd | nd | nd | nd |
C18:3 | 123.43 ± 4.94 | 90.21 ± 3.58 | 145.23 ± 5.81 | 89.21 ± 3.23 | 96.05 ± 3.62 | 112.11 ± 4.48 | 137.10 ± 5.41 |
C14 | 10.33 ± 0.43 | 12.02 ± 0.51 | 10.38 ± 0.40 | 10.40 ± 0.38 | 10.29 ± 0.42 | 15.41 ± 0.62 | 12.53 ± 0.53 |
C16:1 | 3.51 ± 0.15 | 13.98 ± 0.52 | 7.42 ± 0.27 | 3.68 ± 0.14 | 2.28 ± 0.06 | 3.06 ± 0.13 | 6.68 ± 0.18 |
C18:2 | 125.16 ± 5.00 | 155.62 ± 6.22 | 92.33 ± 3.63 | 84.47 ± 2.52 | 75.71 ± 3.02 | 177.61 ± 6.88 | 72.43 ± 2.44 |
C16 | 53.75 ± 2.15 | 57.65 ± 1.98 | 52.14 ± 2.02 | 45.04 ± 1.87 | 49.45 ± 2.00 | 59.38 ± 2.56 | 55.16 ± 2.46 |
C18:1 | 179.19 ± 7.12 | 139.98 ± 5.54 | 145.32 ± 5.60 | 181.82 ± 7.18 | 116.33 ± 4.65 | 135.45 ± 4.89 | 183.04 ± 6.78 |
C17 | nd | nd | nd | nd | nd | nd | nd |
C18 | 36.90 ± 1.34 | 39.43 ± 1.46 | 42.28 ± 1.50 | 42.04 ± 1.88 | 23.01 ± 0.94 | 56.51 ± 2.14 | 41.06 ± 1.78 |
C20:1 | 10.39 ± 0.42 | 13.21 ± 0.48 | 11.45 ± 0.44 | 9.54 ± 0.38 | 11.02 ± 0.44 | 12.31 ± 0.45 | 9.98 ± 0.36 |
C19 | nd | nd | nd | nd | nd | nd | nd |
C20 | 37.64 ± 1.45 | 50.22 ± 2.08 | 40.56 ± 1.64 | 41.41 ± 1.59 | 46.63 ± 1.82 | 63.48 ± 2.43 | 46.95 ± 2.25 |
Total Unsaturated Fatty Acids | 441.68 | 413 | 401.75 | 368.72 | 301.39 | 440.54 | 409.23 |
Total Fatty Acids | 646.77 | 651.17 | 634.45 | 592.19 | 523.56 | 716.08 | 627.56 |
Percentage of Unsaturated Fatty Acids | 68.30% | 63.42% | 63.32% | 62.26% | 57.57% | 61.52% | 65.21% |
Fatty Acid | Region | ||||||
---|---|---|---|---|---|---|---|
Dagele | Zongjia | Nuomuhong | Delingha | Hedong | Dulan | Gahai | |
C6 | 0.67 ± 0.02 | 0.74 ± 0.02 | 0.53 ± 0.01 | 0.62 ± 0.02 | 0.98 ± 0.03 | 0.54 ± 0.01 | 0.76 ± 0.02 |
C7 | nd | nd | nd | nd | nd | nd | nd |
C8 | nd | nd | nd | nd | nd | nd | nd |
C9 | 1.12 ± 0.04 | 1.31 ± 0.05 | 0.98 ± 0.04 | 1.21 ± 0.05 | 0.87 ± 0.03 | 1.15 ± 0.04 | 1.22 ± 0.05 |
C10 | nd | nd | nd | nd | nd | nd | nd |
C11 | nd | nd | nd | nd | nd | nd | nd |
C12 | 2.10 ± 0.07 | 2.42 ± 0.08 | 2.51 ± 0.09 | 3.20 ± 0.11 | 2.15 ± 0.09 | 2.33 ± 0.08 | 1.85 ± 0.07 |
C13 | nd | nd | nd | nd | nd | nd | nd |
C18:3 | 24.43 ± 0.92 | 28.75 ± 0.98 | 39.26 ± 1.34 | 52.38 ± 2.08 | 51.73 ± 1.99 | 57.92 ± 2.28 | 46.31 ± 1.86 |
C14 | 5.23 ± 0.21 | 6.56 ± 0.25 | 6.31 ± 0.24 | 9.34 ± 0.33 | 8.48 ± 0.30 | 11.36 ± 0.42 | 10.78 ± 0.38 |
C16:1 | 3.22 ± 0.13 | 4.51 ± 1.13 | 4.38 ± 0.14 | 3.56 ± 0.15 | 5.76 ± 0.18 | 4.02 ± 0.15 | 6.13 ± 0.22 |
C18:2 | 219.33 ± 8.56 | 487.22 ± 14.23 | 234.65 ± 7.88 | 215.18 ± 7.14 | 154.12 ± 5.89 | 232.15 ± 6.84 | 256.38 ± 7.23 |
C16 | 67.66 ± 2.32 | 80.92 ± 2.98 | 78.45 ± 3.09 | 59.57 ± 2.10 | 58.63 ± 2.56 | 76.00 ± 2.68 | 63.43 ± 2.51 |
C18:1 | 128.98 ± 5.14 | 208.23 ± 7.88 | 130.57 ± 4.08 | 125.34 ± 3.96 | 123.89 ± 4.02 | 127.62 ± 3.80 | 138.90 ± 5.02 |
C17 | nd | nd | nd | nd | nd | nd | nd |
C18 | 31.67 ± 1.16 | 87.85 ± 3.04 | 74.65 ± 3.11 | 88.90 ± 2.98 | 42.02 ± 1.43 | 72.33 ± 2.56 | 69.42 ± 2.32 |
C20:1 | nd | nd | nd | nd | nd | nd | nd |
C19 | nd | nd | nd | nd | nd | nd | nd |
C20 | 23.22 ± 0.68 | 36.54 ± 1.28 | 28.90 ± 0.60 | 34.86 ± 1.11 | 41.09 ± 1.23 | 29.82 ± 0.98 | 38.75 ± 1.34 |
Total Unsaturated Fatty Acid | 375.96 | 728.71 | 408.86 | 468.72 | 335.5 | 421.71 | 447.72 |
Total Fatty Acids | 525.48 | 964.47 | 617.90 | 614.37 | 480.42 | 642.27 | 656.18 |
Percentage of Unsaturated Fatty Acids | 71.55% | 75.56% | 66.17% | 76.30% | 69.83% | 65.66% | 68.23% |
Fatty Acid | Region | ||||||
---|---|---|---|---|---|---|---|
Dagele | Zongjia | Nuomuhong | Delingha | Hedong | Dulan | Gahai | |
C6 | 1.23 ± 0.02 | 0.98 ± 0.01 | 1.52 ± 0.05 | 0.96 ± 0.03 | 1.44 ± 0.03 | 0.58 ± 0.01 | 1.76 ± 0.06 |
C7 | nd | nd | nd | nd | nd | nd | nd |
C8 | nd | nd | nd | nd | nd | nd | nd |
C9 | nd | nd | nd | nd | nd | nd | nd |
C10 | nd | nd | nd | nd | nd | nd | nd |
C11 | nd | nd | nd | nd | nd | nd | nd |
C12 | 4.03 ± 0.14 | 4.53 ± 0.13 | 5.12 ± 0.21 | 3.02 ± 0.11 | 2.77 ± 0.09 | 3.24 ± 0.12 | 3.34 ± 0.08 |
C13 | nd | nd | nd | nd | nd | nd | nd |
C18:3 | 870.96 ± 30.4 | 566.24 ± 21.2 | 657.43 ± 23.6 | 1297.51 ± 48.4 | 910.2 ± 32.8 | 726.51 ± 28.0 | 802.41 ± 32.6 |
C14 | 24.20 ± 0.76 | 25.57 ± 0.78 | 22.51 ± 0.65 | 22.51 ± 0.72 | 19.95 ± 0.69 | 19.65 ± 0.74 | 21.38 ± 0.83 |
C16:1 | 20.30 ± 0.76 | 16.78 ± 0.58 | 13.45 ± 0.42 | 9.29 ± 0.81 | 17.56 ± 0.64 | 12.57 ± 0.43 | 21.21 ± 0.65 |
C18:2 | 208.12 ± 8.02 | 184.32 ± 6.78 | 211.23 ± 7.11 | 595.44 ± 16.89 | 186.71 ± 7.02 | 364.46 ± 10.65 | 324.88 ± 11.63 |
C16 | 232.42 ± 8.88 | 187.38 ± 7.04 | 244.45 ± 9.02 | 427.82 ± 12.87 | 210.80 ± 7.69 | 304.17 ± 11.28 | 268.04 ± 8.06 |
C18:1 | 123.24 ± 3.87 | 129.51 ± 4.04 | 133.86 ± 3.98 | 57.31 ± 2.02 | 39.56 ± 1.56 | 163.29 ± 5.60 | 102.53 ± 3.66 |
C17 | nd | nd | nd | nd | nd | nd | nd |
C18 | 57.82 ± 2.10 | 53.86 ± 2.02 | 48.92 ± 1.98 | 68.68 ± 2.37 | 48.24 ± 1.96 | 89.05 ± 3.19 | 52.42 ± 2.01 |
C20:1 | nd | nd | nd | nd | nd | nd | nd |
C19 | nd | nd | nd | nd | nd | nd | nd |
C20 | 53.71 ± 2.12 | 47.07 ± 1.67 | 45.65 ± 1.56 | 80.25 ± 2.98 | 71.38 ± 2.78 | 81.86 ± 3.10 | 69.55 ± 2.52 |
Total Unsaturated Fatty Acid | 1260.7 | 932.32 | 1041.95 | 1990.42 | 1195.86 | 1305.91 | 1285.55 |
Total Fatty Acids | 1669.43 | 1265.94 | 1434.86 | 2688.12 | 1587.85 | 1875.41 | 1757.83 |
Percentage of Unsaturated Fatty Acids | 75.52% | 73.65% | 72.62% | 74.05% | 75.31% | 69.63% | 73.13% |
Origin | Elevation (m) | Longitude | Latitude |
---|---|---|---|
Dagele | 2679 | 95°45.202′ | 36°27.216′ |
Zongjia | 2778 | 96°56.850′ | 36°15.959′ |
Nuomuhong | 2703 | 96°28.233′ | 36°32.338′ |
Keluke Lake | 2816 | 96°54.180′ | 37°19.024′ |
Hedong Farm | 2783 | 96°07.799′ | 36°25.657′ |
Dulan | 3198 | 97°59.375′ | 36°01.921′ |
Gahai | 2854 | 97°35.766′ | 37°07.535′ |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, N.; Ouyang, J.; Dong, Q.; Wang, H. Analysis of Nitraria Tangutourum Bobr-Derived Fatty Acids with HPLC-FLD-Coupled Online Mass Spectrometry. Molecules 2019, 24, 3836. https://doi.org/10.3390/molecules24213836
Hu N, Ouyang J, Dong Q, Wang H. Analysis of Nitraria Tangutourum Bobr-Derived Fatty Acids with HPLC-FLD-Coupled Online Mass Spectrometry. Molecules. 2019; 24(21):3836. https://doi.org/10.3390/molecules24213836
Chicago/Turabian StyleHu, Na, Jian Ouyang, Qi Dong, and Honglun Wang. 2019. "Analysis of Nitraria Tangutourum Bobr-Derived Fatty Acids with HPLC-FLD-Coupled Online Mass Spectrometry" Molecules 24, no. 21: 3836. https://doi.org/10.3390/molecules24213836
APA StyleHu, N., Ouyang, J., Dong, Q., & Wang, H. (2019). Analysis of Nitraria Tangutourum Bobr-Derived Fatty Acids with HPLC-FLD-Coupled Online Mass Spectrometry. Molecules, 24(21), 3836. https://doi.org/10.3390/molecules24213836