Flavanol Glycoside Content of Grape Seeds and Skins of Vitis vinifera Varieties Grown in Castilla-La Mancha, Spain
Abstract
:1. Introduction
2. Results and Discussion
2.1. Monomeric Flavanol Monoglycosides (MMG) in Grape Skins and Seeds
2.1.1. MMG Identification
2.1.2. MMG Quantification
2.2. Monomeric Flavanol Diglycosides (MDG) in Grape Skins and Seeds
2.2.1. MDG Identification
2.2.2. MDG Quantification
2.3. Dimeric Flavanol Monoglycosides (DMG) in Grape Skin and Seed Extracts
2.3.1. DMG Identification
2.3.2. DMG Quantification
3. Materials and Methods
3.1. Chemicals
3.2. Grape Samples
3.3. Extraction of Phenolic Compounds
3.4. UHPLC-ESI-QQQ-MS/MS Analysis of Flavanol Glycosides
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Adams, D.O. Phenolics and ripening in grape berries. Am. J. Enol. Vitic. 2006, 57, 249–256. [Google Scholar]
- Terrier, N.; Ollé, D.; Verriès, C.; Cheynier, V. Biochemical & molecular aspects of flavan-3-ol synthesis during berry development. In Grapevine Molecular Physiology and Biotechnology; Roubelakis-Angelakis, K.A., Ed.; Springer: Dordrecht, The Netherlands, 2009; pp. 365–388. [Google Scholar] [CrossRef]
- Kennedy, J.A.; Matthews, M.A.; Waterhouse, A.L. Changes in grape seed polyphenols during fruit ripening. Phytochemistry 2000, 55, 77–85. [Google Scholar] [CrossRef]
- Monagas, M.; Gómez-Cordovés, C.; Bartolomé, B.; Laureano, O.; Ricardo Da Silva, J.M. Monomeric, oligomeric, and polymeric flavan-3-ol composition of wines and grapes from Vitis vinifera L. Cv. Graciano, Tempranillo, and Cabernet Sauvignon. J. Agric. Food Chem. 2003, 51, 6475–6481. [Google Scholar] [CrossRef] [PubMed]
- Popov, M.; Hejtmankova, A.; Kotikova, Z.; Stralkova, R.; Lachman, J. Content of flavan-3-ol monomers and gallic acid in grape seeds by variety and year. Vitis - J. Grapevine Res. 2017, 56, 45–48. [Google Scholar] [CrossRef]
- Mattivi, F.; Vrhovsek, U.; Masuero, D.; Trainotti, D. Differences in the amount and structure of extractable skin and seed tannins amongst red grape varieties. Aust. J. Grape Wine Res. 2009, 15, 27–35. [Google Scholar] [CrossRef]
- Downey, M.O.; Dokoozlian, N.K.; Krstic, M.P. Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: A review of recent research. Am. J. Enol. Vitic. 2006, 57, 257–268. [Google Scholar]
- Jackson, D.I.; Lombard, P.B. Environmental and management practices affecting grape composition and wine quality—A review. Am. J. Enol. Vitic. 1993, 44, 409–430. [Google Scholar]
- Khanbabaee, K.; van Ree, T. Tannins: Classification and definition. Nat. Prod. Rep. 2001, 18, 641–649. [Google Scholar] [CrossRef]
- Boulton, R. The copigmentation of anthocyanins and its role in the color of red wine: A critical review. Am. J. Enol. Vitic. 2001, 52, 67–87. [Google Scholar]
- González-Manzano, S.; Dueñas, M.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T.; Santos-Buelga, C. Studies on the copigmentation between anthocyanins and flavan-3-ols and their influence in the colour expression of red wine. Food Chem. 2009, 114, 649–656. [Google Scholar] [CrossRef] [Green Version]
- Hayasaka, Y.; Kennedy, J.A. Mass spectrometric evidence for the formation of pigmented polymers in red wine. Aust. J. Grape Wine Res. 2003, 9, 210–220. [Google Scholar] [CrossRef]
- Escribano-Bailón, T.; Álvarez-García, M.; Rivas-Gonzalo, J.G.; Heredia, F.J.; Santos-Buelga, C. Color and stability of pigments derived from the acetaldehyde-mediated condensation between malvidin 3-O-glucoside and (+)-catechin. J. Agric. Food Chem. 2001, 49, 1213–1217. [Google Scholar] [CrossRef]
- Laurie, V.F.; Waterhouse, A.L. Glyceraldehyde bridging between flavanols and malvidin-3-glucoside in model solutions. J. Agric. Food Chem. 2006, 54, 9105–9111. [Google Scholar] [CrossRef] [PubMed]
- Mateus, N.; de Pascual-Teresa, S.; Rivas-Gonzalo, J.C.; Santos-Buelga, C.; De Freitas, V. Structural diversity of anthocyanin-derived pigments in port wines. Food Chem. 2002, 76, 335–342. [Google Scholar] [CrossRef]
- Mateus, N.; Silva, A.M.S.; Rivas-Gonzalo, J.C.; Santos-Buelga, C.; De Freitas, V. A new class of blue anthocyanin-derived pigments isolated from red wines. J. Agric. Food Chem. 2003, 51, 1919–1923. [Google Scholar] [CrossRef] [PubMed]
- Zerbib, M.; Mazauric, J.P.; Meudec, E.; Le Guernevé, C.; Lepak, A.; Nidetzky, B.; Cheynier, V.; Terrier, N.; Saucier, C. New flavanol O-glycosides in grape and wine. Food Chem. 2018, 266, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Zerbib, M.; Cazals, G.; Ducasse, M.A.; Enjalbal, C.; Saucier, C. Evolution of flavanol glycosides during red grape fermentation. Molecules 2018, 23, 2745. [Google Scholar] [CrossRef] [PubMed]
- Zerbib, M.; Cazals, G.; Enjalbal, C.; Saucier, C. Identification and quantification of flavanol glycosides in Vitis vinifera grape seeds and skins during ripening. Molecules 2018, 23, 3300. [Google Scholar] [CrossRef]
- Pang, Y.; Peel, G.J.; Sharma, S.B.; Tang, Y.; Dixon, R.A. A transcript profiling approach reveals an epicatechin-specific glucosyltransferase expressed in the seed coat of Medicago truncatula. Proc. Natl. Acad. Sci. USA 2008, 105, 14210–14215. [Google Scholar] [CrossRef]
- Pang, Y.; Cheng, X.; Huhman, D.V.; Ma, J.; Peel, G.J.; Yonekura-Sakakibara, K.; Saito, K.; Shen, G.; Sumner, L.W.; Tang, Y.; et al. Medicago glucosyltransferase UGT72L1: Potential roles in proanthocyanidin biosynthesis. Planta 2013, 238, 139–154. [Google Scholar] [CrossRef]
- Mena, A.; Martínez, J.; Fernández-González, M. Recovery, identification and relationships by microsatellite analysis of ancient grapevine cultivars from Castilla-La Mancha: The largest wine growing region in the world. Genet. Resour. Crop Evol. 2014, 61, 625–637. [Google Scholar] [CrossRef]
- Delcambre, A.; Saucier, C. Identification of new flavan-3-ol monoglycosides by UHPLC-ESI-Q-TOF in grapes and wine. J. Mass Spectrom. 2012, 47, 727–736. [Google Scholar] [CrossRef] [PubMed]
- Raab, T.; Barron, D.; Arce Vera, F.; Crespy, V.; Oliveira, M.; Williamson, G. Catechin glucosides: Occurrence, synthesis, and stability. J. Agric. Food Chem. 2010, 58, 2138–2149. [Google Scholar] [CrossRef] [PubMed]
- Mazzuca, P.; Ferranti, P.; Picariello, G.; Chianese, L.; Addeo, F. Mass spectrometry in the study of anthocyanins and their derivatives: Differentiation of Vitis vinifera and hybrid grapes by liquid chromatography/electrospray ionization mass spectrometry and tandem mass spectrometry. J. Mass Spectrom. 2005, 40, 83–90. [Google Scholar] [CrossRef]
- Li, Y.; Ma, R.; Xu, Z.; Wang, J.; Chen, T.; Chen, F.; Wang, Z. Identification and quantification of anthocyanins in Kyoho grape juice-making pomace, Cabernet Sauvignon grape winemaking pomace and their fresh skin. J. Sci. Food Agric. 2013, 93, 1404–1411. [Google Scholar] [CrossRef]
- Lago-Vanzela, E.S.; Da-Silva, R.; Gomes, E.; García-Romero, E.; Hermosín-Gutiérrez, I. Phenolic composition of the edible parts (flesh and skin) of Bordô grape (Vitis labrusca) using HPLC–DAD–ESI-MS/MS. J. Agric. Food Chem. 2011, 59, 13136–13146. [Google Scholar] [CrossRef]
- Rebello, L.P.G.; Lago-Vanzela, E.S.; Barcia, M.T.; Ramos, A.M.; Stringheta, P.C.; Da-Silva, R.; Castillo-Muñoz, N.; Gómez-Alonso, S.; Hermosín-Gutiérrez, I. Phenolic composition of the berry parts of hybrid grape cultivar BRS Violeta (BRS Rubea×IAC 1398-21) using HPLC-DAD-ESI-MS/MS. Food Res. Int. 2013, 54, 354–366. [Google Scholar] [CrossRef]
- Barcia, M.T.; Pertuzatti, P.B.; Gómez-Alonso, S.; Godoy, H.T.; Hermosín-Gutiérrez, I. Phenolic composition of grape and winemaking by-products of Brazilian hybrid cultivars BRS Violeta and BRS Lorena. Food Chem. 2014, 159, 95–105. [Google Scholar] [CrossRef]
- Xing, R.R.; Li, S.Y.; He, F.; Yang, Z.; Duan, C.Q.; Li, Z.; Wang, J.; Pan, Q.H. Mass spectrometric and enzymatic evidence confirm the existence of anthocyanidin 3,5-O-diglucosides in Cabernet Sauvignon (Vitis vinifera L.) grape berries. J. Agric. Food Chem. 2015, 63, 3251–3260. [Google Scholar] [CrossRef]
- Castillo-Muñoz, N.; Winterhalter, P.; Weber, F.; Gómez, M.V.; Gómez-Alonso, S.; García-Romero, E.; Hermosín-Gutiérrez, I. Structure elucidation of peonidin 3,7-O-β-diglucoside isolated from Garnacha Tintorera (Vitis vinifera L.) grapes. J. Agric. Food Chem. 2010, 58, 11105–11111. [Google Scholar] [CrossRef]
- Pérez-Navarro, J.; Izquierdo-Cañas, P.M.; Mena-Morales, A.; Martínez-Gascueña, J.; Chacón-Vozmediano, J.L.; García-Romero, E.; Hermosín-Gutiérrez, I.; Gómez-Alonso, S. Phenolic compounds profile of different berry parts from novel Vitis vinifera L. red grape genotypes and Tempranillo using HPLC-DAD-ESI-MS/MS: A varietal differentiation tool. Food Chem. 2019, 295, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Picariello, G.; Ferranti, P.; Chianese, L.; Addeo, F. Differentiation of Vitis vinifera L. and hybrid red grapes by matrix-assisted laser desorption/ionization mass spectrometry analysis of berry skin anthocyanins. J. Agric. Food Chem. 2012, 60, 4559–4566. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Not available. |
Tempranillo | Moribel | Tinto Fragoso | Airén | Albillo Dorado | Montonera del Casar | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 |
Seeds | |||||||||||
225.94 ± 59.84 bc | 238.80 ± 32.72 bc | 244.27 ± 18.74 bc | 267.58 ± 28.81 bc | 416.59 ± 30.40 d | 312.47 ± 9.82 c | 132.93 ± 9.85 a | 90.46 ± 25.98 a | 288.58 ± 33.20 c | 179.37 ± 26.87 ab | 132.97 ± 8.87 a | 101.83 ± 36.18 a |
Skins | |||||||||||
174.64 ± 19.29 cd | 166.71 ± 15.09 bcd | 157.66 ± 31.75 abcd | 182.71 ± 49.14 de | 366.88 ± 60.11 f | 330.04 ± 98.39 ef | 64.88 ± 13.74 abcd | 44.18 ± 7.31 abcd | 23.65 ± 2.06 ab | 17.65 ± 2.60 a | 36.30 ± 2.79 abcd | 28.14 ± 9.49 abc |
Tempranillo | Moribel | Tinto Fragoso | Airén | Albillo Dorado | Montonera del Casar | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MDG | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 |
Peak | Seeds | |||||||||||
21 | 196.32 ± 31.45 def | 36.01 ± 11.21 a | 243.07 ± 26.19 ef | 48.95 ± 2.99 ab | 257.23 ± 26.19 f | 42.84 ± 3.56 a | 127.56 ± 20.58 bcd | 48.87 ± 12.15 ab | 147.02 ± 25.81 cd | 107.71 ± 34.10 abc | 91.80 ± 8.22 abc | 166.48 ± 56.83 cde |
22 | 142.75 ± 43.65 cd | 16.36 ± 2.88 a | 206.96 ± 37.56 d | 16.51 ± 3.33 a | 126.79 ± 19.78 bc | 13.01 ± 4.17 a | 68.83 ± 6.40 ab | 28.26 ± 18.57 a | 138.97 ± 26.93 cd | 123.97 ± 31.37 bc | 48.68 ± 8.68 a | 60.66 ± 15.01 ab |
23 | 32.45 ± 9.91 d | 2.81 ± 1.11 a | 27.57 ± 1.31 cd | 3.24 ± 0.76 a | 56.68 ± 13.34 e | 6.53 ± 1.71 ab | 22.11 ± 6.72 bcd | 3.92 ± 2.20 a | 16.97 ± 7.57 abcd | 10.09 ± 2.42 ab | 11.56 ± 1.35 abc | 21.37 ± 4.11 bcd |
24 | 19.10 ± 4.98 b | 1.29 ± 0.17 a | 16.01 ± 3.59 b | 2.93 ± 0.71 a | 18.09 ± 3.32 b | 3.24 ± 1.03 a | 3.64 ± 0.95 a | 1.81 ± 0.56 a | 3.04 ± 1.21 a | 12.65 ± 2.55 b | 1.00 ± 0.49 a | 4.05 ± 1.90 a |
Total | 390.63 ± 87.37 def | 56.47 ± 13.37a | 493.61 ± 61.72 f | 71.64 ± 1.55 ab | 458.80 ± 70.41 ef | 65.62 ± 9.79 ab | 222.15 ± 33.15 bc | 82.85 ± 30.92 ab | 306.01 ± 57.40 cde | 254.34 ± 54.25 cd | 153.05 ± 16.67 abc | 252.57 ± 67.43 cd |
Peak | Skins | |||||||||||
21 | 7.16 ± 1.65 bcd | 9.38 ± 1.76 d | 7.30 ± 1.55 cd | 9.29 ± 1.41 d | 7.21 ± 1.77 cd | 15.07 ± 5.12 e | 1.70 ± 0.28 ab | 2.99 ± 0.76 abc | 2.81 ± 1.02 abc | 2.08 ± 0.48 abc | 1.36 ± 0.52 a | 1.97 ± 0.11 abc |
Total | 7.16 ± 1.65 bcd | 9.38 ± 1.76 d | 7.30 ± 1.55 cd | 9.29 ± 1.41 d | 7.21 ± 1.77 cd | 15.07 ± 5.12 e | 1.70 ± 0.28 ab | 2.99 ± 0.76 abc | 2.81 ± 1.02 abc | 2.08 ± 0.48 abc | 1.36 ± 0.52 a | 1.97 ± 0.11 abc |
Tempranillo | Moribel | Tinto Fragoso | Airén | Albillo Dorado | Montonera del Casar | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DMG Peak | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 |
25 | 3.05 ± 0.81 a | 3.06 ± 1.24 a | 3.56 ± 0.93 a | 3.89 ± 0.50 a | 5.35 ± 1.12 ab | 6.96 ± 2.16 b | ND | ND | ND | ND | ND | ND |
26 | 12.92 ± 1.47 e | 8.44 ± 1.14 abc | 18.62 ± 5.37 cde | 17.39 ± 3.49 cde | 25.41 ± 6.01 e | 22.18 ± 8.12 de | 6.09 ± 1.97 ab | 5.45 ± 0.24 ab | 2.45 ± 0.66 ab | 2.01 ± 2.60 a | 3.75 ± 0.62 ab | 2.86 ± 0.73 ab |
27 | 18.41 ± 1.83 abc | 22.21 ± 3.66 bcd | 29.89 ± 9.90 cd | 29.85 ± 7.08 cd | 37.86 ± 4.86 de | 47.43 ± 13.49 e | 8.15 ± 1.61 ab | 7.15 ± 1.37 ab | 4.45 ± 1.54 a | 2.71 ± 1.10 a | 7.51 ± 1.30 ab | 5.51 ± 2.39 ab |
Total | 34.38 ± 4.11 bc | 33.72 ± 5.92 bc | 52.09 ± 15.92 cd | 51.14 ± 10.84 cd | 68.62 ± 11.41 d | 76.57 ± 23.69 d | 14.24 ± 3.55 ab | 12.59 ± 1.48 ab | 6.89 ± 2.19 ab | 4.71 ± 1.61 a | 11.26 ± 1.82 ab | 8.38 ± 3.06 ab |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Navarro, J.; Cazals, G.; Enjalbal, C.; Izquierdo-Cañas, P.M.; Gómez-Alonso, S.; Saucier, C. Flavanol Glycoside Content of Grape Seeds and Skins of Vitis vinifera Varieties Grown in Castilla-La Mancha, Spain. Molecules 2019, 24, 4001. https://doi.org/10.3390/molecules24214001
Pérez-Navarro J, Cazals G, Enjalbal C, Izquierdo-Cañas PM, Gómez-Alonso S, Saucier C. Flavanol Glycoside Content of Grape Seeds and Skins of Vitis vinifera Varieties Grown in Castilla-La Mancha, Spain. Molecules. 2019; 24(21):4001. https://doi.org/10.3390/molecules24214001
Chicago/Turabian StylePérez-Navarro, José, Guillaume Cazals, Christine Enjalbal, Pedro Miguel Izquierdo-Cañas, Sergio Gómez-Alonso, and Cédric Saucier. 2019. "Flavanol Glycoside Content of Grape Seeds and Skins of Vitis vinifera Varieties Grown in Castilla-La Mancha, Spain" Molecules 24, no. 21: 4001. https://doi.org/10.3390/molecules24214001
APA StylePérez-Navarro, J., Cazals, G., Enjalbal, C., Izquierdo-Cañas, P. M., Gómez-Alonso, S., & Saucier, C. (2019). Flavanol Glycoside Content of Grape Seeds and Skins of Vitis vinifera Varieties Grown in Castilla-La Mancha, Spain. Molecules, 24(21), 4001. https://doi.org/10.3390/molecules24214001