Skin Electrical Resistance Measurement of Oxygen-Containing Terpenes as Penetration Enhancers: Role of Stratum Corneum Lipids
Abstract
:1. Introduction
2. Results
2.1. Effect of SC and SC Lipids on the Skin Electrical Resistance
2.2. Factors Affecting Skin Electrical Resistance Kinetics
2.2.1. Effect of the Temperature on SER Kinetic Measurement
2.2.2. Effect of the Concentration of PBS on SER Kinetic Measurement
2.2.3. Effect of the Concentration of Terpenes on SER Kinetic Measurement
2.3. Skin Electrical Resistance Kinetics of Oxygen-Containing Terpenes
2.4. Molecular Simulation
2.5. Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR) Studies
2.6. Skin Cell Viability Assay
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Animals
4.3. Skin Preparation
4.4. Effect of SC on the Skin Electrical Resistance
4.5. Effect of SC Lipids on the Skin Electrical Resistance
4.6. Measurement of Skin Electrical Resistance Kinetics
4.7. Molecular Simulation
4.8. Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR) Studies
4.9. Skin Cell Viability Assay
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, X. Current and future technological advances in transdermal gene delivery. Adv. Drug Deliv. Rev. 2018, 127, 85–105. [Google Scholar] [CrossRef] [PubMed]
- Karande, P.; Jain, A.; Mitragotri, S. Relationships between skin’s electrical impedance and permeability in the presence of chemical enhancers. J. Control. Release 2006, 110, 307–313. [Google Scholar] [CrossRef]
- Proksch, E.; Brandner, J.M.; Jensen, J. The skin: An indispensable barrier. Exp. Dermatol. 2008, 17, 1063–1072. [Google Scholar] [CrossRef] [PubMed]
- Lane, M.E. Skin penetration enhancers. Int. J. Pharm. 2013, 447, 12–21. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, Q.D.; Chai, Y.P.; Zhang, H.; Peng, P.; Yang, X.X. Natural terpenes as penetration enhancers for transdermal drug delivery. Molecules 2016, 21, 1709. [Google Scholar] [CrossRef] [PubMed]
- Sapra, B.; Jain, S.; Tiwary, A.K. Percutaneous permeation enhancement by terpenes: Mechanism view. AAPS J. 2008, 10, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Van Smeden, J.; Janssens, M.; Gooris, G.S.; Bouwstra, J.A. The important role of stratum corneum lipids for the cutaneous barrier function. Biochim. Biophys. Acta. 2014, 1841, 295–313. [Google Scholar] [CrossRef] [PubMed]
- Davies, D.J.; Heylings, J.R.; McCarthy, T.J.; Correa, C.M. Development of an in vitro model for studying the penetration of chemicals through compromised skin. Toxicol. Vitro 2015, 29, 176–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karande, P.; Jain, A.; Mitragotri, S. Discovery of transdermal penetration enhancers by high-throughput screening. Nat. Biotechnol. 2004, 22, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Kopečná, M.; Macháček, M.; Prchalová, E.; Štěpánek, P.; Drašar, P.; Kotora, M.; Vávrová, K. Dodecyl amino glucoside enhances transdermal and topical drug delivery via reversible interaction with skin barrier lipids. Pharm. Res. 2017, 34, 640–653. [Google Scholar] [CrossRef]
- Rachakonda, V.K.; Yerramsetty, K.M.; Madihally, S.V.; Robinson, R.L.; Gasem, K.A.M. Screening of chemical penetration enhancers for transdermal drug delivery using electrical resistance of skin. Pharm. Res. 2008, 25, 2697–2704. [Google Scholar] [CrossRef]
- Yerramsetty, K.M.; Rachakonda, V.K.; Neely, B.J.; Madihally, S.V.; Gasem, K.A.M. Effect of different enhancers on the transdermal permeation of insulin analog. Int. J. Pharm. 2010, 398, 83–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wato, K.; Hara, T.; Yamana, K.; Nakao, H.; Inagi, T.; Terada, K. An insight into the role of barrier related skin proteins. Int. J. Pharm. 2012, 427, 293–298. [Google Scholar] [CrossRef]
- Southwell, I.A.; Russell, M.; Smith, R.L.; Brophy, J.J.; Day, J. Melaleuca teretifolia chemovars: New Australian sources of citral and 1,8-cineole. J. Essent. Oil Res. 2003, 15, 339–341. [Google Scholar] [CrossRef]
- Heard, C.A.; Kung, D.; Thomas, C.P. Skin penetration enhancement of mefenamic acid by ethanol and 1,8-cineole can be explained by the ‘pull’ effect. Int. J. Pharm. 2006, 321, 167–170. [Google Scholar] [CrossRef] [PubMed]
- Mutalik, S.; Parekh, H.S.; Davies, N.M.; Udupa, N. A combined approach of chemical enhancers and sonophoresis for the transdermal delivery of tizanidine hydrochloride. Drug Deliv. 2009, 16, 82–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Dong, C.; Song, Z.; Zhang, W.; He, X.; Zhang, R.; Guo, C.; Zhang, C.; Li, F.; Wang, C.; et al. Monocyclic monoterpenes as penetration enhancers of ligustrazine hydrochloride for dermal delivery. Pharm. Dev. Technol. 2016, 22, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Imura, T.; Sakai, H.; Yamauchi, H.; Kaise, C.; Kozawa, K.; Yokoyama, S.; Abe, M. Preparation of liposomes containing Ceramide 3 and their membrane characteristics. Colloids Surf. B Biointerfaces. 2001, 20, 1–8. [Google Scholar] [CrossRef]
- Rerek, M.E.; van Wyck, D.; Mendelsohn, R.; Moore, D.J. FTIR spectroscopic studies of lipid dynamics in phytosphingosine ceramide models of the stratum corneum lipid matrix. Chem. Phys. Lipids 2005, 134, 51–58. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, J.; Cun, D.; Wang, M.; Jiang, J.; Xi, H.; Cui, H.; Xu, Y.; Cheng, M.; Fang, L. Effect of unsaturated menthol analogues on the in vitro penetration of 5-fluorouracil through rat skin. Int. J. Pharm. 2013, 443, 120–127. [Google Scholar] [CrossRef]
- Liu, X.; Peng, Q.; Li, S.; Liu, C.; Zhao, Y.; Zhao, Y.; Fang, L. Time dependence of the enhancement effect of chemical enhancers: Molecular mechanisms of enhancing kinetics. J. Control. Release 2017, 248, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Laugel, C.; Yagoubi, N.; Baillet, A. ATR-FTIR spectroscopy: A chemometric approach for studying the lipid organization of the stratum corneum. Chem. Phys. Lipids 2005, 135, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Monti, D.; Tampucci, S.; Zucchetti, E.; Granchi, C.; Minutolo, F.; Piras, A.M. Effect of Tumor Relevant Acidic Environment in the Interaction of a N-hydroxyindole-2-Carboxylic Derivative with the Phospholipid Bilayer. Pharm. Res. 2018, 35, 175. [Google Scholar] [CrossRef] [PubMed]
- Furuishi, T.; Kato, Y.; Fukami, T.; Suzuki, T.; Endo, T.; Nagase, H.; Ueda, H.; Tomon, K. Effect of terpenes on the skin permeation of lomerizine dihydrochloride. J. Pharm. Pharm. Sci. 2013, 16, 551–563. [Google Scholar] [CrossRef] [PubMed]
- Welss, T.; Basketter, D.A.; Schröder, K.R. In vitro skin irritation: Facts and future. State of the art view of mechanisms and models. Toxicol. Vitro 2004, 18, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Karande, P.; Mitragotri, S. High throughput screening of transdermal formulations. Pharm. Res. 2002, 19, 655–660. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.A.; Li, S.K. Chemical enhancer solubility in human stratum corneum lipids and enhancer mechanism of action and stratum corneum lipid domain. Int. J. Pharm. 2010, 383, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Chantasart, D.; Pongjanyakul, T.; Higuchi, W.I.; Li, S.K. Effects of oxygen-containing terpenes as skin permeation enhancers on the lipoidal pathways of human epidermal membrane. J. Pharm. Sci. 2009, 98, 3617–3632. [Google Scholar] [CrossRef]
- Zhou, W.; He, S.; Yang, Y.; Jian, D.; Chen, X.; Ding, J. Formulation, characterization and clinical evaluation of propranolol hydrochloride gel for transdermal treatment of superficial infantile hemangioma. Drug Dev. Ind. Pharm. 2015, 41, 1109–1119. [Google Scholar] [CrossRef]
- Ameen, D.; Michniak-Kohn, B. Transdermal delivery of dimethyl fumarate for Alzheimer’s disease: Effect of penetration enhancers. Int. J. Pharm. 2017, 529, 465–473. [Google Scholar] [CrossRef]
- Jiang, Q.; Wu, Y.; Zhang, H.; Liu, P.; Yao, J.; Yao, P.; Chen, J.; Duan, J. Development of essential oils as skin permeation enhancers: Penetration enhancement effect and mechanism of action. Pharm. Biol. 2017, 55, 1592–1600. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of all the tested oxygen-containing terpenes are available from the authors. |
Terpene | Chemical Formula | MW | logP | Boiling Point (°C) | Chemical Structure |
---|---|---|---|---|---|
1,8-Cineole | C10H18O | 154.249 | 2.82 | 174 | |
Citral | C10H16O | 152.233 | 3.17 | 229.0 | |
Geraniol | C10H18O | 154.249 | 3.28 | 229.5 | |
Linalool | C10H18O | 154.249 | 3.28 | 198.5 | |
Menthol | C10H20O | 156.265 | 3.2 | 215.4 | |
Terpinen-4-ol | C10H18O | 154.249 | 2.99 | 209 | |
α-Terpineol | C10H18O | 154.249 | 2.79 | 217.5 |
Penetration Enhancer (PE) | The Interval of the Linear Part of the Curve (min) | Slope of Resistance Reduction Factor (RF) Versus Time Curve (min−1) | ER = Slopeterpene/Slopevehicle |
---|---|---|---|
Vehicle | 0–30 | 0.0054 ± 0.0032 | 1.00 |
1,8-Cineole | 0–10 | 0.9649 ± 0.2547 *** | 175.35 |
Terpinen-4-ol | 0–10 | 0.7571 ± 0.3113 *** | 140.20 |
Menthol | 0–20 | 0.5338 ± 0.1542 *** | 98.85 |
α-Terpineol | 0–30 | 0.2830 ± 0.0801 *** | 52.41 |
Linalool | 0–30 | 0.2018 ± 0.1106 ** | 37.37 |
Geraniol | 0–25 | 0.1266 ± 0.0538 ** | 23.44 |
Citral | 0–30 | 0.0976 ± 0.0441 *** | 18.07 |
Azone | - | - | - |
PE | The Interval of the Linear Part of the Curve (min) | Slope of RF Versus Time Curve (min−1) | ER = Slopeterpene/Slopevehicle |
---|---|---|---|
Vehicle | 0–30 | 0.0096 ± 0.0010 | 1.00 |
1,8-Cineole | 0–20 | 0.7825 ± 0.3946 *** | 81.51 |
Terpinen-4-ol | 0–25 | 0.6343 ± 0.2758 *** | 66.07 |
Menthol | 0–30 | 0.4189 ± 0.1607 *** | 43.64 |
α-Terpineol | 0–30 | 0.3117 ± 0.1077 *** | 32.47 |
Linalool | 0–30 | 0.1541 ± 0.0557 *** | 16.05 |
Geraniol | 0–30 | 0.1610 ± 0.0931 *** | 16.77 |
Citral | 0–30 | 0.1081 ± 0.0263 *** | 11.26 |
Azone | 0–30 | 0.2030 ± 0.0363 *** | 21.15 |
Interaction Energy (kcal/mol) | Azone | Cyclic Terpenes | Linear Terpenes | |||||
---|---|---|---|---|---|---|---|---|
1,8-Cineole | Menthol | Terpinen-4-ol | α-Terpineol | Citral | Geraniol | Linalool | ||
Terpenes and ceramide a | −22.16 | −29.27 | −18.50 | −20.63 | −19.18 | −16.58 | −15.24 | −18.20 |
Terpenes and keratin | −22.43 | −24.39 | −15.33 | −12.66 | −14.80 | −16.12 | −20.39 | −12.50 |
Terpenes | Vas CH2 | Vs CH2 | Amide I | Amide II |
---|---|---|---|---|
Blank | 2918.19 ± 0.00 | 2849.92 ± 0.20 | 1649.87 ± 0.12 | 1547.73 ± 0.15 |
Vehicle | 2918.20 ± 0.34 | 2850.50 ± 0.21 | 1650.04 ± 0.67 | 1547.82 ± 0.48 |
1,8-Cineole | 2919.65 ± 0.21 * | 2851.17 ± 0.21 * | 1649.08 ± 0.24 * | 1546.85 ± 0.69 |
Citral | 2917.88 ± 0.28 | 2850.52 ± 0.04 | 1651.01 ± 0.76 | 1547.13 ± 0.35 |
Geraniol | 2918.04 ± 0.07 | 2850.20 ± 0.13 | 1649.08 ± 0.40 | 1547.02 ± 0.17 * |
Linalool | 2918.84 ± 0.46 | 2851.28 ± 0.13 * | 1648.11 ± 0.71 * | 1547.66 ± 0.60 |
Menthol | 2920.13 ± 0.24 * | 2850.85 ± 0.22 | 1650.04 ± 0.58 | 1547.87 ± 0.43 |
Terpinen-4-ol | 2918.92 ± 0.21 * | 2850.93 ± 0.25 * | 1649.08 ± 0.68 | 1548.78 ± 0.57 |
α-Terpineol | 2919.81 ± 0.56 * | 2850.77 ± 0.30 | 1649.18 ± 0.67 | 1548.17 ± 0.32 |
Azone | 2922.06 ± 0.68 * | 2851.49 ± 0.41 * | 1648.11 ± 0.32 * | 1547.41 ± 0.67 |
Azone | Cyclic Terpenes | Linear Terpenes | |||||
---|---|---|---|---|---|---|---|
1,8-Cineole | Menthol | Terpinen-4-ol | α-Terpineol | Citral | Geraniol | Linalool | |
7.55 ± 0.09 | 1701.97 ± 13.21 | 405.93 ± 3.47 | 732.60 ± 13.22 | 424.53 ± 4. 86 | 42.63 ± 2.10 | 172.01 ± 3.40 | 860.94 ± 4.08 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.-m.; Li, Y.; Xu, F.; Gu, W.; Yan, G.-j.; Dong, J.; Chen, J. Skin Electrical Resistance Measurement of Oxygen-Containing Terpenes as Penetration Enhancers: Role of Stratum Corneum Lipids. Molecules 2019, 24, 523. https://doi.org/10.3390/molecules24030523
Zhu X-m, Li Y, Xu F, Gu W, Yan G-j, Dong J, Chen J. Skin Electrical Resistance Measurement of Oxygen-Containing Terpenes as Penetration Enhancers: Role of Stratum Corneum Lipids. Molecules. 2019; 24(3):523. https://doi.org/10.3390/molecules24030523
Chicago/Turabian StyleZhu, Xue-min, Yu Li, Fei Xu, Wei Gu, Guo-jun Yan, Jie Dong, and Jun Chen. 2019. "Skin Electrical Resistance Measurement of Oxygen-Containing Terpenes as Penetration Enhancers: Role of Stratum Corneum Lipids" Molecules 24, no. 3: 523. https://doi.org/10.3390/molecules24030523
APA StyleZhu, X. -m., Li, Y., Xu, F., Gu, W., Yan, G. -j., Dong, J., & Chen, J. (2019). Skin Electrical Resistance Measurement of Oxygen-Containing Terpenes as Penetration Enhancers: Role of Stratum Corneum Lipids. Molecules, 24(3), 523. https://doi.org/10.3390/molecules24030523