Evaluation of WBSF, Color, Cooking Loss of Longissimus Lumborum Muscle with Fiber Optic Near-Infrared Spectroscopy (FT-NIR), Depending on Aging Time
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Raw Material—Beef LL
2.2. Reference Data
2.3. Chemometric Data Analysis
2.4. Prediction of Instrumental WBSF, Color, and CL
3. Materials and Methods
3.1. Raw Material and Preparation
3.2. NIR Spectroscopy Technology
3.3. Spectrometric Quantification of Basic Meat Composition
3.4. pH Value Evaluation
3.5. Instrumental Color Measurement in CIE L* a* b* System
3.6. Warner–Bratzler Shear Force Determination
3.7. Cooking Loss
3.8. Statistical Analysis Data Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Banović, M.; Grunert, K.G.; Barreira, M.M.; Fontes, M.A. Beef quality perception at the point of purchase: A study from Portugal. Food Qual. Preference 2009, 20, 335–342. [Google Scholar] [CrossRef]
- Henchion, M.M.; McCarthy, M.; Resconi, V.C. Beef quality attributes: A systematic review of consumer perspectives. Meat Sci. 2017, 128, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Henchion, M.; McCarthy, M.; Resconi, V.C.; Troy, D. Meat consumption: Trends and quality matters. Meat Sci. 2014, 98, 561–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Troy, D.J.; Kerry, J.P. Consumer perception and the role of science in the meat industry. Meat Sci. 2010, 86, 214–226. [Google Scholar] [CrossRef] [PubMed]
- Hocquette, J.F.; Botreau, R.; Picard, B.; Jacquet, A.; Pethick, D.W.; Scollan, N.D. Opportunities for predicting and manipulating beef quality. Meat Sci. 2012, 92, 197–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Żakowska-Biemans, S.; Pieniak, Z.; Gutkowska, K.; Wierzbicki, J.; Cieszyńska, K.; Sajdakowska, M.; Kosicka-Gębska, M. Beef consumer segment profiles based on information source usage in Poland. Meat Sci. 2016, 124, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Uys, P.; Bisschoff, C. Identifying consumer buying preferences of beef. Probl. Perspect. Manag. 2016, 14, 256–263. [Google Scholar] [CrossRef]
- Verbeke, W.; Pérez-Cueto, F.J.A.; de Barcellos, M.D.; Krystallis, A.; Grunert, K.G. European citizen and consumer attitudes and preferences regarding beef and pork. Meat Sci. 2010, 84, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Cassens, A.M.; Arnold, A.N.; Miller, R.K.; Gehring, K.B.; Savell, J.W. Impact of elevated aging temperatures on retail display, tenderness, and consumer acceptability of beef. Meat Sci. 2018, 146, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Moczkowska, M.; Półtorak, A.; Wierzbicka, A. The effect of ageing on changes in myofibrillar protein in selected muscles in relation to the tenderness of meat obtained from cross-breed heifers. Int. J. Food Sci. Technol. 2017, 52, 1375–1382. [Google Scholar] [CrossRef]
- Colle, M.J.; Richard, R.P.; Killinger, K.M.; Bohlscheid, J.C.; Gray, A.R.; Loucks, W.I.; Day, R.N.; Cochran, A.S.; Nasados, J.A.; Doumit, M.E. Influence of extended aging on beef quality characteristics and sensory perception of steaks from the gluteus medius and longissimus lumborum. Meat Sci. 2015, 110, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Colle, M.J.; Richard, R.P.; Killinger, K.M.; Bohlscheid, J.C.; Gray, A.R.; Loucks, W.I.; Day, R.N.; Cochran, A.S.; Nasados, J.A.; Doumit, M.E. Influence of extended aging on beef quality characteristics and sensory perception of steaks from the biceps femoris and semimembranosus. Meat Sci. 2016, 119, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Coutinho, M.A.; Ramos, P.M.; da Luz e Silva, S.; Martello, L.S.; Pereira, A.S.C.; Delgado, E.F. Divergent temperaments are associated with beef tenderness and the inhibitory activity of calpastatin. Meat Sci. 2017, 134, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Koohmaraie, M.; Geesink, G.H. Contribution of postmortem muscle biochemistry to the delivery of consistent meat quality with particular focus on the calpain system. Meat Sci. 2006, 74, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Paredi, G.; Raboni, S.; Bendixen, E.; de Almeida, A.M.; Mozzarelli, A. “Muscle to meat” molecular events and technological transformations: The proteomics insight. J. Proteom. 2012, 75, 4275–4289. [Google Scholar] [CrossRef]
- Chriki, S.; Renand, G.; Picard, B.; Micol, D.; Journaux, L.; Hocquette, J.F. Meta-analysis of the relationships between beef tenderness and muscle characteristics. Lives Sci. 2013, 155, 424–434. [Google Scholar] [CrossRef]
- Lee, S.H.; Joo, S.T.; Ryu, Y.C. Skeletal muscle fiber type and myofibrillar proteins in relation to meat quality. Meat Sci. 2010, 86, 166–170. [Google Scholar] [CrossRef]
- Kucha, C.T.; Liu, L.; Ngadi, M.O. Non-destructive spectroscopic techniques and multivariate analysis for assessment of fat quality in pork and pork products: A review. Sensors 2018, 18, 1–23. [Google Scholar]
- Mileusnić, I.M.; Rosic, J.Z.S.; Munćan, J.S.; Dogramadzi, S.B.; Matija, L.R. Computer assisted rapid nondestructive method for evaluation of meat freshness. FME Trans. 2017, 45, 597–602. [Google Scholar] [CrossRef]
- Osborne, B.G. Near-Infrared Spectroscopy in Food Analysis. Encycl. Anal. Chem. 2000, 1–14. [Google Scholar]
- Vote, D.J.; Belk, K.E.; Tatum, J.D.; Scanga, J.A.; Smith, G.C. Online prediction of beef tenderness using a computer vision system equipped with a BeefCam module. J. Anim Sci. 2003, 81, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Clarke, R. On-Line measurement of meat quality. In Encyclopedia of Meat Science, 2nd ed.; Milmeq Ltd.: Auckland, New Zealand, 2014; pp. 489–497. [Google Scholar]
- Wyrwisz, J.; Półtorak, A.; Zalewska, M.; Zaremba, R.; Wierzbicka, A. Analysis of relationship between basic composition, pH, and physical properties of selected bovine muscles. Bull. Vet. Inst. Pulawy 2012, 56, 403–409. [Google Scholar] [CrossRef]
- Wyrwisz, J.; Półtorak, A.; Poławska, E.; Pierzchała, M.; Jóźwik, A.; Zalewska, M.; Wierzbicka, A. The impact of heat treatment methods on the physical properties and cooking yield of selected muscles from Limousine breed cattle. Anim. Sci. Pap. Rep. 2012, 30, 339–351. [Google Scholar]
- De Marchi, M. On-line prediction of beef quality traits using near infrared spectroscopy. Meat Sci. 2013, 94, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lyon, B.G.; Windham, W.R.; Realini, C.E.; Pringle, T.D.D.; Duckett, S. Prediction of color, texture, and sensory characteristics of beef steaks by visible and near infrared reflectance spectroscopy. A feasibility study. Meat Sci. 2003, 65, 1107–1115. [Google Scholar] [CrossRef]
- Price, D.M.; Hilton, G.G.; VanOverbeke, D.L.; Morgan, J.B. Using the near-infrared system to sort various beef middle and end muscle cuts into tenderness categories. J. Anim. Sci. 2008, 86, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Rust, S.R.; Price, D.M.; Subbiah, J.; Kranzler, G.; Hilton, G.G.; Vanoverbeke, D.L.; Morgan, J.B. Predicting beef tenderness using near-infrared spectroscopy. J. Anim. Sci. 2008, 86, 211–219. [Google Scholar] [CrossRef]
- Adzitey, F.; Nurul, H. Pale soft exudative (PSE) and dark firm dry (DFD) meats: Causes and measures to reduce these incidences-a mini review. Int. Food Res. J. 2011, 18, 11–20. [Google Scholar]
- Kim, J.-H.; Kim, D.-H.; Ji, D.-S.; Lee, H.-J.; Yoon, D.-K.; Lee, C.-H. Effect of aging process and time on physicochemical and sensory evaluation of raw beef top round and shank muscles using an electronic tongue. Korean J. Food Sci. Anim. 2017, 37, 823–832. [Google Scholar]
- Zeng, Z.; Li, C.; Ertbjerg, P. Relationship between proteolysis and water-holding of myofibrils. Maet Sci. 2017, 131, 48–55. [Google Scholar] [CrossRef]
- Wyrwisz, J.; Moczkowska, M.; Kurek, M.; Stelmasiak, A.; Półtorak, A.; Wierzbicka, A. Influence of 21 days of vacuum-aging on color, bloom development, and WBSF of beef semimembranosus. Meat Sci. 2016, 122, 48–54. [Google Scholar] [CrossRef] [PubMed]
- MacDougall, D.B.; Taylor, A.A. Colour retention in freshly cut meat stored in oxygen a commercial scale trial. J. Food Techol. 1975, 10, 339–347. [Google Scholar] [CrossRef]
- Furtado, E.J.G.; Bridi, A.M.; Barbin, D.F.; Barata, C.C.P.; Peres, L.M.; Da Costa Barbon, A.P.A.; Andreo, N.; De Lima Giangareli, B.; Terto, D.K.; Batista, J.P. Prediction of pH and color in pork meat using VIS-NIR Near-infrared Spectroscopy. Food Sci. Technol. 2018, 6, 1–5. [Google Scholar] [CrossRef]
- Andrés, S.; Giráldez, F.J.; López, S.; Mantecón, Á.R.; Calleja, A. Nutritive evaluation of herbage from permanent meadows by near-infrared reflectance spectroscopy: 1. Prediction of chemical composition and in vitro digestibility. J. Sci. Food Agric. 2005, 85, 1564–1571. [Google Scholar]
- Hoving-Bolink, A.H.; Vedder, H.W.; Merks, J.W.M.; de Klein, W.J.H.; Reimert, H.G.M.; Frankhuizen, R.; van den Broek, W.H.A.M.; Lambooij, E. Perspective of NIRS measurements early post mortem for prediction of pork quality. Meat Sci. 2005, 69, 417–423. [Google Scholar] [CrossRef]
- Brøndum, J.; Munck, L.; Henckel, P.; Karlsson, A.; Tornberg, E.; Engelsen, S.B. Prediction of water-holding capacity and composition of porcine meat by comparative spectroscopy. Meat Sci. 2000, 55, 177–185. [Google Scholar] [CrossRef]
- Bowling, M.B.; Vote, D.J.; Belk, K.E.; Scanga, J.A.; Tatum, J.D.; Smith, G.C. Using reflectance spectroscopy to predict beef tenderness. Meat Sci. 2009, 82, 1–5. [Google Scholar] [CrossRef]
- Tian, Y.Q.; McCall, D.G.; Dripps, W.; Yu, Q.; Gong, P. Using computer vision technology to evaluate the meat tenderness of grazing beef. Food Aust. 2005, 57, 322–326. [Google Scholar]
- Saadatian, F.; Liu, L.; Ngadi, M.O. Hyperspectral imaging for beef tenderness assessment. Int. J. Food Process. Technol. 2015, 2, 19. [Google Scholar]
- Dixit, Y.; Casado-Gavalda, M.P.; Cama-Moncunill, R.; Cama-Moncunill, X.; Markiewicz-Keszycka, M.; Cullen, P.J.; Sullivan, C. Developments and challenges in online NIR spectroscopy for meat processing. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1172–1187. [Google Scholar] [CrossRef]
- Cluff, K.; Naganathan, G.K.; Subbiah, J.; Lu, R.; Calkins, C.R.; Samal, A. Optical scattering in beef steak to predict tenderness using hyperspectral imaging in the VIS-NIR region. Sens. Instrum. Food Qual. 2008, 2, 189–196. [Google Scholar] [CrossRef]
- Prieto, N.; Roehe, R.; Lavín, P.; Batten, G.; Andrés, S. Application of near infrared reflectance spectroscopy to predict meat and meat products quality: A review. Meat Sci. 2009, 83, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Watson, A.D.; Gunning, Y.; Rigby, N.M.; Philo, M.; Kemsley, E.K. Meat authentication via multiple reaction monitoring mass spectrometry of myoglobin peptides. Anal. Chem. 2015, 87, 10315–10322. [Google Scholar] [CrossRef] [PubMed]
- Prieto, N.; Andrés, S.; Giráldez, F.J.; Mantecón, A.R.; Lavín, P. Ability of near infrared reflectance spectroscopy (NIRS) to estimate physical parameters of adult steers (oxen) and young cattle meat samples. Meat Sci. 2008, 79, 692–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Półtorak, A.; Wyrwisz, J.; Moczkowska, M.; Marcinkowska-Lesiak, M.; Stelmasiak, A.; Rafalska, U.; Wierzbicka, A.; Sun, D.W. Microwave vs. convection heating of bovine Gluteus Medius muscle: Impact on selected physical properties of final product and cooking yield. Int. J. Food Sci. Technol. 2015, 50, 958–965. [Google Scholar] [CrossRef]
- Kapper, C.; Klont, R.E.; Verdonk, J.M.A.J.; Williams, P.C.; Urlings, H.A.P. Prediction of pork quality with near infrared spectroscopy (NIRS) 2. Feasibility and robustness of NIRS measurements under production plant conditions. Meat Sci. 2012, 91, 300–305. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
Aging Time | ||||
---|---|---|---|---|
D1 | D7 | D14 | D21 | |
pH | 5.51 ± 0.15 | 5.55 ± 0.09 | 5.64 ± 0.11 | 5.68 ± 0.06 |
Water, % | 74.51 ± 1.08 | 74.01 ± 1.05 | 73.11 ± 0.88 | 73.15 ± 0.79 |
Fat, % | 2.44 ± 0.66 | 2.51 ± 0.46 | 2.58 ± 0.32 | 2.57 ± 0.48 |
Protein, % | 22.41 ± 0.47 | 22.65 ± 0.87 | 23.24 ± 0.64 | 23.35 ± 1.01 |
Total connective tissue, % | 1.47 ± 0.27 | 1.51 ± 0.38 | 1.62 ± 0.41 | 1.64 ± 0.35 |
Aging Day | Mean | SD | Range | CV, % | ||
---|---|---|---|---|---|---|
min | max | |||||
WBSF [N] | D1 | 44.60 | 11.97 | 22.01 | 77.64 | 26.85 |
D7 | 38.04 | 10.57 | 20.65 | 66.73 | 27.80 | |
D14 | 33.27 | 7.78 | 15.69 | 59.81 | 23.37 | |
D21 | 30.95 | 8.53 | 13.06 | 57.98 | 27.54 | |
L* [%] | D1 | 37.49 | 2.75 | 30.43 | 45.19 | 7.33 |
D7 | 38.97 | 2.99 | 31.89 | 46.67 | 7.67 | |
D14 | 39.97 | 3.14 | 32.06 | 47.37 | 7.86 | |
D21 | 39.50 | 2.77 | 32.85 | 45.89 | 7.02 | |
a* | D1 | 18.97 | 2.52 | 13.36 | 25.13 | 13.28 |
D7 | 21.49 | 2.45 | 15.47 | 26.21 | 11.38 | |
D14 | 21.98 | 2.65 | 15.87 | 28.21 | 12.06 | |
D21 | 21.72 | 3.35 | 16.11 | 26.01 | 15.44 | |
b* | D1 | 8.92 | 1.18 | 5.06 | 11.74 | 13.29 |
D7 | 10.07 | 1.46 | 5.61 | 13.00 | 14.54 | |
D14 | 10.39 | 1.53 | 5.45 | 13.38 | 14.76 | |
D21 | 9.57 | 1.19 | 5.57 | 12.72 | 12.44 | |
CL [%] | D1 | 28.34 | 3.69 | 21.74 | 37.22 | 13.02 |
D7 | 29.22 | 3.85 | 22.91 | 35.54 | 13.18 | |
D14 | 31.13 | 4.52 | 21.82 | 36.23 | 14.52 | |
D21 | 31.75 | 5.21 | 20.33 | 35.11 | 16.41 |
Spectral Pretreatment | Model | No. of Lv | R2c | SEC | R2p | SEP | RPD | Bias | ||
---|---|---|---|---|---|---|---|---|---|---|
WBSF [N] | D1 | SNV | PLS | 3 | 0.65 | 4.22 | 0.62 | 4.83 | 2.48 | 0.15 |
D7 | I DSG | PLS | 5 | 0.71 | 4.81 | 0.67 | 4.85 | 2.18 | −0.12 | |
D14 | SNV | PLS | 5 | 0.54 | 4.89 | 0.49 | 5.02 | 1.55 | −0.72 | |
D21 | SNV | PLS | 3 | 0.22 | 5.12 | 0.31 | 6.58 | 1.30 | −0.96 | |
L* [%] | D1 | MSC | PLS | 3 | 0.46 | 2.4 | 0.33 | 2.79 | 0.98 | −1.06 |
D7 | MSC | PCR | 7 | 0.84 | 1.87 | 0.87 | 1.52 | 1.97 | −0.27 | |
D14 | SNV | PCR | 5 | 0.34 | 2.91 | 0.35 | 2.89 | 1.09 | 0.88 | |
D21 | MSC | PLS | 8 | 0.12 | 1.74 | 0.23 | 1.85 | 1.50 | 0.43 | |
a* | D1 | I DSG | PLS | 6 | 0.60 | 1.08 | 0.57 | 1.17 | 2.15 | 0.14 |
D7 | I DSG | PLS | 4 | 0.22 | 2.18 | 0.35 | 2.01 | 1.22 | −0.75 | |
D14 | I DSG | PLS | 6 | 0.15 | 2.63 | 0.21 | 2.61 | 1.02 | −0.83 | |
D21 | SNV | PLS | 5 | 0.21 | 4.45 | 0.46 | 2.16 | 1.55 | −0.97 | |
b* | D1 | I DSG | PLS | 4 | 0.61 | 0.95 | 0.61 | 0.97 | 1.22 | 0.72 |
D7 | MSC | PCR | 3 | 0.44 | 1.25 | 0.42 | 1.26 | 1.16 | −0.95 | |
D14 | I DSG | PCR | 3 | 0.34 | 1.44 | 0.34 | 1.12 | 1.37 | 1.01 | |
D21 | II DSG | PLS | 2 | 0.25 | 0.98 | 0.29 | 1.11 | 1.07 | 0.75 | |
CL | D1 | I DSG | PLS | 3 | 0.64 | 3.49 | 0.47 | 3.64 | 1.01 | 0.83 |
D7 | MSC | PCR | 5 | 0.13 | 6.03 | 0.07 | 6.12 | 0.63 | 1.23 | |
D14 | SNV | PLS | 4 | 0.23 | 3.94 | 0.27 | 3.9 | 1.16 | −0.87 | |
D21 | SNV | PLS | 4 | 0.72 | 2.54 | 0.66 | 1.89 | 2.05 | −0.11 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wyrwisz, J.; Moczkowska, M.; Kurek, M.A.; Karp, S.; Atanasov, A.G.; Wierzbicka, A. Evaluation of WBSF, Color, Cooking Loss of Longissimus Lumborum Muscle with Fiber Optic Near-Infrared Spectroscopy (FT-NIR), Depending on Aging Time. Molecules 2019, 24, 757. https://doi.org/10.3390/molecules24040757
Wyrwisz J, Moczkowska M, Kurek MA, Karp S, Atanasov AG, Wierzbicka A. Evaluation of WBSF, Color, Cooking Loss of Longissimus Lumborum Muscle with Fiber Optic Near-Infrared Spectroscopy (FT-NIR), Depending on Aging Time. Molecules. 2019; 24(4):757. https://doi.org/10.3390/molecules24040757
Chicago/Turabian StyleWyrwisz, Jarosław, Małgorzata Moczkowska, Marcin Andrzej Kurek, Sabina Karp, Atanas G. Atanasov, and Agnieszka Wierzbicka. 2019. "Evaluation of WBSF, Color, Cooking Loss of Longissimus Lumborum Muscle with Fiber Optic Near-Infrared Spectroscopy (FT-NIR), Depending on Aging Time" Molecules 24, no. 4: 757. https://doi.org/10.3390/molecules24040757
APA StyleWyrwisz, J., Moczkowska, M., Kurek, M. A., Karp, S., Atanasov, A. G., & Wierzbicka, A. (2019). Evaluation of WBSF, Color, Cooking Loss of Longissimus Lumborum Muscle with Fiber Optic Near-Infrared Spectroscopy (FT-NIR), Depending on Aging Time. Molecules, 24(4), 757. https://doi.org/10.3390/molecules24040757