In Vitro Antimicrobial Activity of Essential Oils against Salmonella enterica Serotypes Enteritidis and Typhimurium Strains Isolated from Poultry
Abstract
:1. Introduction
2. Results
2.1. Essential Oil Composition
2.2. Antimicrobial Activity
2.2.1. Agar Disk Diffusion Method
2.2.2. Minimum Inhibitory Concentration
3. Discussion
4. Material and Methods
4.1. Essential Oils
Essential Oils Analysis
4.2. Antimicrobial Activity
4.2.1. Microbial Strains
4.2.2. Agar Disk Diffusion Method
4.2.3. Minimum Inhibitory Concentration
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cosby, D.E.; Cox, N.A.; Harrison, M.A.; Wilson, J.L.; Buhr, R.J.; Fedorka-Cray, P.J. Salmonella and antimicrobial resistance in broilers: A review. J. Appl. Poult. Res. 2015, 24, 408–426. [Google Scholar] [CrossRef]
- Afshari, A.; Baratpour, A.; Khanzade, S.; Jamshidi, A. Salmonella Enteritidis and Salmonella Typhimurium identification in poultry carcasses. Iran J. Microbiol. 2018, 10, 45–50. [Google Scholar] [PubMed]
- Lister, S.A.; Barrow, P. Enterobacteriaceae. In Poultry Diseases, 6th ed.; Pattison, M., McMullin, P.F., Bradbury, J.M., Alexander, D.J., Eds.; Saunders Elsevier: Edinburgh, UK, 2008; pp. 110–145. [Google Scholar]
- Hugas, M.; Beloeil, P.A. Controlling salmonella along the food chain in the European Union-progress over the last ten years. Euro Surveill. 2014, 19, 1–4. [Google Scholar] [CrossRef]
- Pontier-Bres, R.; Munro, P.; Boyer, L.; Anty, R.; Imbert, V.; Terciolo, C.; André, F.; Rampal, P.; Lemichez, E.; Peyron, J.F.; et al. Saccharomyces boulardii modifies Salmonella typhimurium traffic and host immune responses along the intestinal tract. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Tiago, F.C.; Martins, F.S.; Souza, E.L.; Pimenta, P.F.; Araujo, H.R.; Castro, I.M.; Brandão, R.L.; Nicoli, J.R. Adhesion to the yeast cell surface as a mechanism for trapping pathogenic bacteria by Saccharomyces probiotics. J. Med. Microbiol. 2012, 61, 1194–1207. [Google Scholar] [CrossRef] [PubMed]
- Badia, R.; Brufau, M.T.; Guerrero-Zamora, A.M.; Lizardo, R.; Dobrescu, I.; Martin-Venegas, R.; Ferrer, R.; Salmon, H.; Martínez, P.; Brufau, J. β-Galactomannan and Saccharomyces cerevisiae var. boulardii modulate the immune response against Salmonella enterica serovar Typhimurium in porcine intestinal epithelial and dendritic cells. Clin. Vaccine Immunol. 2012, 19, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Ebani, V.V.; Najar, B.; Bertelloni, F.; Pistelli, L.; Mancianti, F.; Nardoni, S. Chemical composition and in vitro antimicrobial efficacy of sixteen essential oils against Escherichia coli and Aspergillus fumigatus isolated from poultry. Vet. Sci. 2018, 5, 62. [Google Scholar] [CrossRef] [PubMed]
- Adaszyńska-Skwirzyńska, M.; Szczerbińska, D. Use of essential oils in broiler chicken production-a review. Ann. Anim. Sci. 2017, 17, 317–335. [Google Scholar] [CrossRef]
- Brenes, A.; Roura, E. Essential oils in poultry nutrition: Main effects and modes of action. Anim. Feed Sci. Tech. 2010, 158, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Ismail, M.; Kemegne, G.A.; Njayou, F.N.; Penlap, V.; Mbacham, W.F.; Kamdem, S.L.S. Chemical composition, antibiotic promotion and in vivo toxicity of Piper nigrum and Syzygium aromaticum essential oil. Afr. J. Biochem. Res. 2017, 11, 58–71. [Google Scholar]
- Jayaprakasha, G.K.; Negi, P.S.; Jena, B.S.; Jaganmohan Rao, L. Antioxidant and antimutagenic activities of Cinnamomum zeylanicum fruit extracts. J. Food Compost. Anal. 2007, 20, 330–336. [Google Scholar] [CrossRef]
- Di Pasqua, R.; Betts, G.; Hoskins, N.; Edwards, M.; Ercolini, D.; Mauriello, G. Membrane toxicity of antimicrobial compounds from essential oils. J. Agric. Food Chem. 2007, 55, 4863–4870. [Google Scholar] [CrossRef] [PubMed]
- Burt, S. Essential oils: Their antimicrobial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Thanissery, R.; Kathariou, S.; Smith, D.P. Rosemary oil, clove oil, and a mix of thyme-orange essential oils inhibit Salmonella and Campylobacter in vitro. J. Appl. Poult. Res. 2014, 23, 23–221. [Google Scholar] [CrossRef]
- Simitzis, P.E.; Bronis, M.; Charismiadou, M.A.; Mountzouris, K.C.; Deligeorgis, S.G. Effect of cinnamon (Cinnamomum zeylanicum) essential oil supplementation on lamb growth performance and meat quality characteristics. Animal 2014, 8, 1554–1560. [Google Scholar] [CrossRef] [PubMed]
- Abbes, C.; Mansouri, A.; Landoulsi, A. Synergistic Effect of the Lactoperoxidase System and Cinnamon Essential Oil on Total Flora and Salmonella Growth Inhibition in Raw Milk. J. Food Quality 2018, 3, 1–6. [Google Scholar] [CrossRef]
- Sartoratto, A.; Machado, A.L.M.; Delarmelina, C.; Figueira, G.M.; Duarte, M.C.T.; Rehder, V.L.G. Composition and antimicrobial activity of essential oils from aromatic plants used in Brazil. Braz. J. Microbiol. 2004, 35, 275–280. [Google Scholar] [CrossRef]
- Moore-Neibel, K.; Gerber, C.; Patel, J.; Friedman, M.; Ravishankar, S. Antimicrobial activity of lemongrass oil against Salmonella enterica on organic leafy greens. J. Appl. Microbiol. 2012, 112, 485–492. [Google Scholar] [CrossRef]
- Ebani, V.V.; Nardoni, S.; Bertelloni, F.; Giovanelli, S.; Rocchigiani, G.; Pistelli, L.; Mancianti, F. Antibacterial and antifungal activity of essential oils against some pathogenic bacteria and yeasts shed from poultry. Flav. Fragr. J. 2016, 31, 302–309. [Google Scholar] [CrossRef]
- Koh, J.H.; Yu, K.W.; Suh, H.J. Biological activities of Saccharomyces cerevisiae and fermented rice bran as feed additives. Lett. Appl Microbiol. 2002, 35, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.S.; Joshi, N.; Padalia, R.C.; Singh, V.R.; Goswami, P.; Kumar, A.; Iqbal, H.; Verma, R.K.; Chanda, D.; Chauhan, A.; et al. Chemical Composition and Allelopathic, Antibacterial, Antifungal, and Antiacetylcholinesterase Activity of Fish-mint (Houttuynia cordataThunb.) from India. Chem. Biodivers. 2017, 14. [Google Scholar] [CrossRef] [PubMed]
- Thakre, A.; Zore, G.; Kodgire, S.; Kazi, R.; Mulange, S.; Patil, R.; Shelar, A.; Santhakumari, B.; Kulkarni, M.; Kharat, K.; et al. Limonene inhibits Candida albicans growth by inducing apoptosis. Med. Mycol. 2018, 56, 565–578. [Google Scholar] [PubMed]
- Saibabu, V.; Singh, S.; Ansari, M.A.; Fatima, Z.; Hameed, S. Insights into the intracellular mechanisms of citronellal in Candida albicans: Implications for reactive oxygen species-mediated necrosis, mitochondrial dysfunction, and DNA damage. Rev. Soc. Bras. Med. Trop. 2017, 50, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Helal, G.A.; Sarhan, M.M.; Abu Shahla, A.N.; Abou El-Khair, E.K. Antimicrobial activity of some essential oils against microorganisms deteriorating fruit juices. Mycobiology 2006, 34, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Chami, F.; Chami, N.; Bennis, S.; Bouchikhi, T.; Remmal, A. Oregano and clove essential oils induce surface alteration of Saccharomyces cerevisiae. Phytother. Res. 2005, 19, 405–408. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, P.; Cardoso, T.; Ferreira, F.; Fernandes-Ferreira, M.; Piper, P.; Sousa, M.J. Mentha piperita essential oil induces apoptosis in yeast associated with both cytosolic and mitochondrial ROS-mediated damage. FEMS Yeast Res. 2014, 14, 1006–1014. [Google Scholar] [PubMed]
- Pistelli, L.; Najar, B.; Giovanelli, S.; Lorenzini, L.; Tavarini, S.; Angelini, L.G. Agronomic and phytochemical evaluation of lavandin and lavender cultivars cultivated in the Tyrrhenian area of Tuscany (Italy). Ind. Crops Prod. 2017, 109, 37–44. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard-11th Ed; CLSI document; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012; pp. M02–A11. [Google Scholar]
- National Committee for Clinical Laboratory Standards. Performance Standards for Antimicrobial Susceptibility Testing; 12th International Supplement; NCCLS: Wayne, PA, USA, 2002; pp. M100–M112. [Google Scholar]
- CLSI. National Committee for Clinical Laboratory Standards. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved standard M7–A2; National Committee for Clinical Laboratory Standards: Villanova, PA, USA, 1990. [Google Scholar]
- CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 4th ed.; CLSI standard M27; Clinical and Laboratory Standard Institute: Wayne, PA, USA, 2017. [Google Scholar]
Sample Availability: Samples of the compounds are available from the authors. |
Chemical Component | LRI | Aloysia triphylla | Cymbopogon citratus | Cinnamomum zeylanicum | Litsea cubeba | Mentha piperita | Syzygium aromaticum | Mixture |
---|---|---|---|---|---|---|---|---|
α-Thujene | 930 | 0.2 | 0.1 | 0.3 | ||||
α-Pinene | 939 | 0.8 | ||||||
Sabinene | 975 | 24.0 | 0.1 | 1.0 | 1.8 | |||
β-Pinene | 979 | 0.5 | 1.2 | 0.2 | ||||
α-Phellandrene | 1003 | 2.1 | 0.3 | |||||
α-Terpinene | 1017 | 0.2 | 1.0 | 0.2 | 0.1 | |||
p-Cymene | 1025 | 0.4 | 3.0 | 0.2 | 0.4 | 0.5 | ||
Limonene | 1029 | 36.7 | 2.0 | 16.3 | 3.0 | |||
β-Phellandrene | 1030 | 5.9 | 1.1 | |||||
1,8-Cineole | 1031 | 0.3 | 2.3 | 5.0 | ||||
γ-Terpinene | 1060 | 0.3 | 0.1 | 0.3 | ||||
Terpinolene | 1089 | 0.1 | 0.3 | 0.1 | ||||
Linalool | 1097 | 3.0 | 1.5 | 6.3 | 1.5 | 0.4 | 1.5 | |
Menthone | 1153 | 26.6 | ||||||
Citronellal | 1153 | 12.0 | 0.5 | 0.9 | ||||
Menthofuran | 1164 | 12.5 | ||||||
Menthol | 1172 | 32.4 | ||||||
4-Terpineol | 1177 | 0.7 | 0.3 | 0.1 | 0.1 | |||
α-Terpineol | 1189 | 0.4 | 0.8 | 0.5 | 0.3 | 0.3 | ||
Citronellol | 1226 | 1.9 | ||||||
Neral | 1238 | 0.7 | 35.2 | 32.5 | ||||
Geraniol | 1253 | 4.4 | 0.5 | |||||
Geranial | 1267 | 1.2 | 38.4 | 36.4 | ||||
(E)-Cinnamaldehyde | 1270 | 56.4 | 18.5 | |||||
Menthyl acetate | 1295 | 6.1 | ||||||
Eugenol | 1359 | 3.0 | 77.9 | 51.7 | ||||
β-Caryophyllene | 1419 | 1.3 | 2.3 | 10.3 | 0.8 | 2.8 | 8.9 | 7.6 |
Germacrene D | 1485 | 0.7 | 0.2 | 0.7 | ||||
Eugenyl acetate | 1523 | 12.2 | 12.7 | |||||
δ-Cadinene | 1523 | 0.3 | 0.2 | 0.2 | 0.2 | 0.9 | ||
τ-Cadinol | 1640 | 0.1 | ||||||
Unknown | 0.5 | 0.4 | 0.3 | 0.6 | 0.2 | 0.1 | ||
Total | 99.5 | 99.6 | 99.7 | 99.4 | 99.8 | 100.0 | 99.9 | |
Monoterpene Hydrocarbons (MH) | 66.0 | 3.9 | 15.5 | 21.3 | 6.9 | 2.2 | ||
Oxygenated Monoterpenes (OM) | 26.4 | 86.3 | 7.4 | 75.7 | 87.8 | 1.9 | ||
Sesquiterpene Hydrocarbons (SH) | 4.7 | 4.5 | 14.7 | 0.9 | 4.6 | 9.5 | 10.1 | |
Oxygenated Sesquiterpenes (OS) | 1.9 | 0.9 | 0.8 | 0.3 | 0.4 | 1.2 | ||
Phenylpropanoides (PP) | 2.0 | 60.3 | 90.1 | 64.4 | ||||
Non-terpenes (NT) | 0.5 | 2.0 | 1.0 | 1.5 | 0.2 | 20.1 |
Bacterial Strain | Essential Oil | Chloramphenicol | ||||||
---|---|---|---|---|---|---|---|---|
Aloysia triphylla | Cinnamomu zeylanicum | Cymbopogon citratus | Litsea cubeba | Mentha piperita | Syzygium aromaticum | Mixture | ||
M SD | M SD | M SD | M SD | M SD | M SD | M SD | ||
S. Enteritidis 217 | 7.0 ± 0.0 | 11 ± 0.0 | 7.0 ± 0.0 | 7.0 ± 0.0 | 7.0 ± 0.0 | 9.0 ± 0.0 | 12 ± 0.6 | 19 (S) |
S. Enteritidis 218 | 7.0 ± 0.0 | 12 ± 0.6 | 7.0 ± 0.0 | 7.0 ± 0.0 | 7.0 ± 0.0 | 10 ± 0.0 | 12 ± 0.0 | 18 (S) |
S. Enteritidis 219 | 7.0 ± 0.0 | 13 ± 1.0 | 7.0 ± 0.0 | 7.0 ± 0.0 | 7.0 ± 0.0 | 12 ± 1.0 | 13 ± 0.6 | 20 (S) |
S. Enteritidis 220 | 7.0 ± 0.0 | 7.0 ± 0.0 | 7.0 ± 0.0 | 7.0 ± 0.0 | 7.0 ± 0.0 | 13 ± 1.0 | 11 ± 0.0 | 20 (S) |
S. Enteritidis 221 | 7.0 ± 0.0 | 8.0 ± 0.0 | 7.0 ± 0.0 | 7.0 ± 0.0 | 8.0 ± 0.0 | 12 ± 0.6 | 13 ± 1.0 | 19 (S) |
S. Enteritidis 232 | 7.0 ± 0.0 | 7.0 ± 0.0 | 7.0 ± 0.0 | 7.0 ± 0.0 | 7.0 ± 0.0 | 10 ± 0.6 | 10 ± 0.0 | 19 (S) |
S. Enteritidis 233 | 7.0 ± 0.0 | 7.0 ± 0.0 | 7.0 ± 0.0 | 7.0 ± 0.0 | 7.0 ± 0.0 | 9.0 ± 0.0 | 15 ± 1.0 | 19 (S) |
S. Enteritidis 234 | 7.0 ± 0.0 | 17 ± 0.6 | 7.0 ± 0.0 | 7.0 ± 0.0 | 7.0 ± 0.0 | 9.0 ± 0.0 | 17 ± 0.6 | 21 (S) |
S. Enteritidis 236 | 7.0 ± 0.0 | 17 ± 0.6 | 7.0 ± 0.0 | 7.0 ± 0.0 | 7.0 ± 0.0 | 9.0 ± 0.0 | 16 ± 1.0 | 18 (S) |
S. Typhimurium 240 | 7.0 ± 0.0 | 7.0 ± 0.0 | 7.0 ± 0.0 | 7.0 ± 0.0 | 7.0 ± 0.0 | 9.0 ± 0.0 | 10 ± 0.0 | 20 (S) |
S. Typhimurium 241 | 7.0 ± 0.0 | 7.0 ± 0.0 | 7.0 ± 0.0 | 7.0 ± 0.0 | 7.0 ± 0.0 | 9.0 ± 0.0 | 11 ± 0.0 | 21 (S) |
S. Typhimurium 245 | 7.0 ± 0.0 | 7.0 ± 0.0 | 7.0 ± 0.0 | 7.0 ± 0.0 | 7.0 ± 0.0 | 9.0 ± 0.0 | 9 ± 0.0 | 21 (S) |
S. Typhimurium 250 | 7.0 ± 0.0 | 7.0 ± 0.0 | 7.0 ± 0.0 | 7.0 ± 0.0 | 7.0 ± 0.0 | 9.0 ± 0.0 | 10 ± 0.6 | 19 (S) |
S. Typhimurium 251 | 7.0 ± 0.0 | 7.0 ± 0.0 | 7.0 ± 0.0 | 8.0 ± 0.0 | 8.0 ± 0.0 | 10 ± 0.0 | 10 ± 0.0 | 20 (S) |
S. Typhimurium 252 | 7.0 ± 0.0 | 7.0 ± 0.0 | 7.0 ± 0.0 | 8.0 ± 0.0 | 7.0 ± 0.0 | 9.0 ± 0.0 | 12 ± 0.6 | 19 (S) |
S. Typhimurium 258 | 7.0 ± 0.0 | 7.0 ± 0.0 | 7.0 ± 0.0 | 8.0 ± 0.0 | 7.0 ± 0.0 | 10 ± 0.6 | 13 ± 1.0 | 18 (S) |
S. Typhimurium 261 | 7.0 ± 0.0 | 10 ± 0.0 | 7.0 ± 0.0 | 7.0 ± 0.0 | 8.0 ± 0.0 | 11 ± 0.6 | 11 ± 0.6 | 19 (S) |
S. Typhimurium 176 | 7.0 ± 0.0 | 13 ± 0.6 | 7.0 ± 0.0 | 7.0 ± 0.0 | 8.0 ± 0.0 | 9.0 ± 0.0 | 13 ± 0.6 | 19 (S) |
Bacterial Strain | Essential Oil | Chloramphenicol | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Aloysia triphylla | Cinnamomum zeylanicum | Cymbopogon citratus | Litsea cubeba | Mentha piperita | Syzygium aromaticum | Mixture | |||||||||
% | mg/mL | % | mg/mL | % | mg/mL | % | mg/mL | % | mg/mL | % | mg/mL | % | mg/mL | µg/mL | |
S. Enteritidis 217 | 10 | 17.1 | 0.3 | 0.63 | 10 | 17.9 | 10 | 17.7 | 10 | 18.24 | 1.25 | 2.637 | 0.15 | 0.644 | 8 |
S. Enteritidis 218 | 10 | 17.1 | 0.6 | 1.26 | 10 | 17.9 | 10 | 17.7 | 10 | 18.24 | 0.3 | 0.659 | 0.15 | 0.644 | 6 |
S. Enteritidis 219 | 10 | 17.1 | 0.3 | 0.63 | 10 | 17.9 | 10 | 17.7 | 10 | 18.24 | 0.3 | 0.659 | 0.15 | 0.644 | 6 |
S. Enteritidis 220 | 10 | 17.1 | 0.3 | 0.63 | 10 | 17.9 | 10 | 17.7 | 10 | 18.24 | 0.3 | 0.659 | 0.15 | 0.644 | 7 |
S. Enteritidis 221 | 10 | 17.1 | 0.3 | 0.63 | 10 | 17.9 | 10 | 17.7 | 5 | 9.12 | 0.6 | 1.318 | 0.15 | 0.644 | 8 |
S. Enteritidis 232 | 10 | 17.1 | 0.6 | 1.26 | 10 | 17.9 | 10 | 17.7 | 10 | 18.24 | 0.6 | 1.318 | 0.15 | 0.644 | 7 |
S. Enteritidis 233 | 10 | 17.1 | 0.6 | 1.26 | 10 | 17.9 | 10 | 17.7 | 10 | 18.24 | 0.15 | 0.329 | 0.07 | 0.322 | 7 |
S. Enteritidis 234 | 10 | 17.1 | 0.6 | 1.26 | 10 | 17.9 | 10 | 17.7 | 10 | 18.24 | 0.15 | 0.329 | 0.07 | 0.322 | 7 |
S. Enteritidis 236 | 10 | 17.1 | 0.6 | 1.26 | 10 | 17.9 | 10 | 17.7 | 10 | 18.24 | 0.07 | 0.164 | 0.07 | 0.322 | 5 |
S. Typhimurium 240 | 10 | 17.1 | 0.3 | 0.63 | 10 | 17.9 | 10 | 17.7 | 10 | 18.24 | 1.25 | 2.637 | 0.3 | 1.289 | 6 |
S. Typhimurium 241 | 10 | 17.1 | 0.6 | 1.26 | 10 | 17.9 | 10 | 17.7 | 10 | 18.24 | 0.6 | 1.318 | 0.3 | 1.289 | 6 |
S. Typhimurium 245 | 10 | 17.1 | 0.3 | 0.63 | 10 | 17.9 | 10 | 17.7 | 10 | 18.24 | 0.6 | 1.318 | 0.3 | 1.289 | 8 |
S. Typhimurium 250 | 10 | 17.1 | 0.3 | 0.63 | 10 | 17.9 | 10 | 17.7 | 10 | 18.24 | 0.3 | 0.659 | 0.3 | 1.289 | 7 |
S. Typhimurium 251 | 10 | 17.1 | 0.3 | 0.63 | 10 | 17.9 | 5 | 8.85 | 5 | 9.12 | 0.07 | 0.164 | 0.3 | 1.289 | 5 |
S. Typhimurium 252 | 10 | 17.1 | 0.3 | 0.63 | 10 | 17.9 | 10 | 17.7 | 10 | 18.24 | 0.3 | 0.659 | 0.15 | 0.644 | 6 |
S. Typhimurium 258 | 10 | 17.1 | 0.3 | 0.63 | 10 | 17.9 | 5 | 8.85 | 10 | 18.24 | 0.07 | 0.164 | 0.15 | 0.644 | 6 |
S. Typhimurium 261 | 10 | 17.1 | 0.6 | 1.26 | 10 | 17.9 | 10 | 17.7 | 5 | 9.12 | 0.15 | 0.329 | 0.3 | 1.289 | 7 |
S. Typhimurium 176 | 10 | 17.1 | 0.6 | 1.26 | 10 | 17.9 | 10 | 17.7 | 10 | 18.24 | 1.25 | 2.637 | 0.3 | 1.289 | 5 |
S. cerevisiae | 5 | 8.55 | 10 | 20.2 | 7.5 | 13.42 | 7.5 | 13.27 | 10 | 18.24 | ne | ne | 0.20 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebani, V.V.; Nardoni, S.; Bertelloni, F.; Tosi, G.; Massi, P.; Pistelli, L.; Mancianti, F. In Vitro Antimicrobial Activity of Essential Oils against Salmonella enterica Serotypes Enteritidis and Typhimurium Strains Isolated from Poultry. Molecules 2019, 24, 900. https://doi.org/10.3390/molecules24050900
Ebani VV, Nardoni S, Bertelloni F, Tosi G, Massi P, Pistelli L, Mancianti F. In Vitro Antimicrobial Activity of Essential Oils against Salmonella enterica Serotypes Enteritidis and Typhimurium Strains Isolated from Poultry. Molecules. 2019; 24(5):900. https://doi.org/10.3390/molecules24050900
Chicago/Turabian StyleEbani, Valentina Virginia, Simona Nardoni, Fabrizio Bertelloni, Giovanni Tosi, Paola Massi, Luisa Pistelli, and Francesca Mancianti. 2019. "In Vitro Antimicrobial Activity of Essential Oils against Salmonella enterica Serotypes Enteritidis and Typhimurium Strains Isolated from Poultry" Molecules 24, no. 5: 900. https://doi.org/10.3390/molecules24050900
APA StyleEbani, V. V., Nardoni, S., Bertelloni, F., Tosi, G., Massi, P., Pistelli, L., & Mancianti, F. (2019). In Vitro Antimicrobial Activity of Essential Oils against Salmonella enterica Serotypes Enteritidis and Typhimurium Strains Isolated from Poultry. Molecules, 24(5), 900. https://doi.org/10.3390/molecules24050900