Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds from Annona muricata By-Products and Pulp
Abstract
:1. Introduction
2. Results and Discussion
2.1. Ultrasound-Assisted Extraction of Soluble Polyphenols from Soursop Samples
2.2. Evaluation of Model Reliability and Comparison of Ultrasound-Assisted Extraction with Conventional Extraction
2.3. Soluble Polyphenols Profile
3. Materials and Methods
3.1. Plant Material and Chemicals
3.2. Experimental Design
3.3. Ultrasound-Assisted Extraction Procedure
3.4. Soluble Polyphenolic Compounds
3.5. Response Surface Methodology Analysis
3.6. Model Reliability and Comparison of Ultrasound-Assisted Extraction with Conventional Extraction
3.6.1. Conventional Extraction of Polyphenols
3.6.2. Soluble Polyphenols, Hydrolyzable Polyphenols, and Condensed Tannins
3.6.3. Polyphenol Profile by HPLC
3.6.4. Yield of Polyphenolic Compounds
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zorofchian-Moghadamtousi, S.; Fadaeinasab, M.; Nikzad, S.; Mohan, G.; Mohd-Ali, H.; Kadir, H.A. Annona muricata (Annonaceae): A review of its traditional uses, isolated acetogenins and biological activities. Int. J. Mol. Sci. 2015, 16, 15625–15658. [Google Scholar] [CrossRef] [PubMed]
- Coria-Téllez, A.V.; Montalvo-Gónzalez, E.; Yahia, E.M.; Obledo-Vázquez, E.N. Annona muricata: A comprehensive review on its traditional medicinal uses, phytochemicals, pharmacological activities, mechanisms of action and toxicity. Arabian J. Chem. 2018, 11, 662–691. [Google Scholar] [CrossRef]
- Badrie, N.; Schauss, A.G. Soursop (Annona muricata L.): Composition, nutritional value, medicinal uses, and toxicology. In Bioactive Foods in Promoting Health, 1st ed.; Ross-Watson, R., Preedy, R.V., Eds.; Academic Press: Sand Diego, CA, USA, 2010; pp. 621–643. [Google Scholar]
- Pinto, A.C.Q.; Cordeiro, M.C.R.; Andrade, S.R.M.; Ferreira, F.R.; Filgueiras, H.A.C.; Alves, R.E.; Kinpara, D.I. Annona Species; International Centre for Underutilised Crops, University of Southampton: Southampton, UK, 2005; pp. 3–18. [Google Scholar]
- SIAP. Servicio de Información Agroalimentaria y Pesquera. 2018. Available online: https://www.gob.mx/siap/acciones-y-programas/produccion-agricola-33119 (accessed on 18 December 2018).
- Moreno-Hernández, C.; Sáyago-Ayerdi, S.; García-Galindo, H.; Mata-Montes De Oca, M.; Montalvo-González, E. Effect of the application of 1-methylcyclopropene and wax emulsions on proximate analysis and some antioxidants of soursop (Annona muricata L.). Sci. World J. 2014, 1, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, V.M.; Gruschwitz, M.; Schweiggert, R.M.; Carle, R.; Esquivel, P. Identification of phenolic compounds in soursop (Annona muricata) pulp by high-performance liquid chromatography with diode array and electrospray ionization mass spectrometric detection. Food Res. Int. 2014, 65, 1–18. [Google Scholar] [CrossRef]
- Ajila, C.M.; Bhat, S.G.; Rao, U.J.S.P. Valuable components of raw and ripe peels from two Indian mango varieties. Food Chem. 2007, 102, 1006–1011. [Google Scholar] [CrossRef]
- Bamba, B.; Shi, J.; Tranchant, C.; Xue, S.; Forney, C.; Lim, L.T. Influence of extraction conditions on ultrasound-assisted recovery of bioactive phenolics from blueberry pomace and their antioxidant activity. Molecules 2018, 23, 1685. [Google Scholar] [CrossRef] [PubMed]
- Costamagna, M.S.; Zampini, I.C.; Alberto, M.R.; Cuello, S.; Torres, S.; Pérez, J.; Quispe, C.; Schemeda-Hirschmann, G.; Isla, M.I. Polyphenols rich fraction from Geoffroea decorticans fruits flour affects key enzymes involved in metabolic syndrome, oxidative stress and inflammatory process. Food Chem. 2016, 190, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Bucio-Noble, D.; Kautto, L.; Krisp, C.; Ball, M.S.; Molloy, M.P. Polyphenol extracts from dried sugarcane inhibit inflammatory mediators in an in vitro colon cancer model. J. Proteomics 2018, 177, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef] [Green Version]
- Zamora-Gasga, V.M.; Serafín-García, M.S.; Sánchez-Burgos, J.A.; Estrada-Velazquez, R.M.; Sáyago-Ayerdi, S.G. Optimization of ultrasonic-assisted extraction of antioxidant compounds from starfruit (Averrhoa carambola L) leaves. J. Food Process. Preserv. 2016, 41, 1–10. [Google Scholar] [CrossRef]
- Rasheed, D.M.; Porzel, A.; Frolov, A.; El Seedi, H.R.; Wessjohann, L.A.; Farag, M.A. Comparative analysis of Hibiscus sabdariffa (roselle) hot and cold extracts in respect to their potential for α-glucosidase inhibition. Food Chem. 2018, 250, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2016, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Anaya-Esparza, L.M.; Ramos-Aguirre, D.; Zamora-Gasga, V.M.; Yahia, E.; Montalvo-González, E. Optimization of ultrasonic-assisted extraction of phenolic compounds from Justicia spicigera leaves. Food Sci. Biotechnol. 2018, 27, 1093–1102. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Qu, W.; Ma, H.; Atungulu, G.G.; McHugh, T.H. Continuous and pulsed ultrasound-assisted extractions of antioxidants from pomegranate peel. Ultrason. Sonochem. 2011, 18, 1249–1257. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.K.; Abert-Vian, M.; Fabiano-Tixier, A.S.; Dangles, O.; Chemat, F. Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chem. 2010, 119, 851–858. [Google Scholar] [CrossRef]
- Aydar, A.Y.; Bagdathiglu, N.; Koseoglu, O. Effect on olive oil extraction and optimization of ultrasound-assisted extraction of extra virgin olive oil by response surface methodology (RSM). Grasas Aceites 2017, 67, l89. [Google Scholar] [CrossRef]
- Box, G.E.P.; Wilson, K.B. On the experimental attainment of optimum conditions. J. R. Stat. Soc. 1951, 13, 1–45. [Google Scholar] [CrossRef]
- Aslan, N.; Cebeci, Y. Application of Box-Behnken design and response surface methodology for modeling of some Turkish coals. Fuel 2007, 86, 90–97. [Google Scholar] [CrossRef]
- León-Fernández, A.L.; Sáyago-Ayerdi, S.G.; Velázquez-Estrada, R.M.; Zepeda-Vallejo, L.G.; Yahia, E.; Montalvo-González, E. In vitro antioxidant capacity of crude extracts and acetogenin fraction of soursop fruit pulp. Pharm. Anal. Acta 2017, 8, 1–7. [Google Scholar] [CrossRef]
- Rodríguez-Riera, Z.; Robaina-Mesa, M.; Jáuregui-Haza, U.; Blanco-González, A.; Rodríguez-Chanfrau, J.E. Empleo de la radiación ultrasónica para la extracción de compuestos bioactivos provenientes de fuentes naturales. Estado actual y perspectivas. Revista CENIC Ciencias Químicas 2014, 45, 139–147. [Google Scholar]
- Heydari-Majd, M.; Rajaei, A.; Bashi, D.S.; Mortazavi, S.A.; Bolourian, S. Optimization of ultrasonic-assisted extraction of phenolic compounds from bovine pennyroyal (Phlomidoschema parviflorum) leaves using response surface methodology. Ind. Crops Prod. 2014, 57, 195–202. [Google Scholar] [CrossRef]
- Mihailović, N.R.; Mihailović, V.B.; Kreft, S.; Ćirić, A.R.; Joksović, L.G.; Đurđević, P.T. Analysis of phenolics in the peel and pulp of wild apples (Malus sylvestris (L.) Mill.). J. Food Compos. Anal. 2018, 67, 1–9. [Google Scholar] [CrossRef]
- Albuquerque, T.G.; Santos, F.; Sanches-Silva, A.; Oliveira, M.B.; Bento, A.C.; Costa, H.S. Nutritional and phytochemical composition of Annona cherimola Mill. fruits and by-products: Potential health benefits. Food Chem. 2016, 193, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.L.; Yu, C.H.; Chen, J.; Li, X.X.; Wang, W.; Li, S.Q. Ultrasonic-assisted extraction optimized by response surface methodology, chemical composition and antioxidant activity of polysaccharides from Tremella mesenterica. Carbohydr. Polym. 2011, 83, 217–224. [Google Scholar] [CrossRef]
- Xu, Y.; Pan, S. Effects of various factors of ultrasonic treatment on the extraction yield of all-trans-lycopene from red grapefruit (Citrus paradise Macf.). Ultrason. Sonochem. 2013, 20, 1026–1032. [Google Scholar] [CrossRef] [PubMed]
- Bashi, D.S.; Mortazavi, S.A.; Rezaei, K.; Rajaei, A.; Karimkhani, M.M. Optimization of ultrasound-assisted extraction of phenolic compounds from yarrow (Achillea biebersteinii) by response surface methodology. Food Sci. Biotechnol. 2012, 21, 1005–1011. [Google Scholar] [CrossRef]
- Cvjetko-Bubalo, M.; Curko, N.; Tomaševic, M.; Ganic, K.K.; Redovnikovic, I.R. Green extraction of grape skin phenolics by using deep eutectic solvents. Food Chem. 2016, 200, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Velásquez-García, J.; Gutierrez, D.J.; Andrade-Mahecha, M.M.; Martínez-Correa, H.A. Pretratamiento con ultrasonido en extracción de compuestos bioactivos de mesocarpio de chontaduro (Bactris gasipaes) usando CO2 supercrítico. Agron. Colom. 2016, 34, 1370–1373. [Google Scholar] [CrossRef]
- Sousa, A.D.; Maia, A.I.V.; Rodrigues, T.H.S.; Canuto, K.M.; Ribeiro, P.R.V.; Pereira, R.C.A.; Vieira, R.F.; Brito, E.S. Ultrasound-assisted and pressurized liquid extraction of phenolic compounds from Phyllanthus amarus and its composition evaluation by UPLC-QTOF. Ind. Crops Prod. 2016, 79, 91–103. [Google Scholar] [CrossRef]
- Jovanović, A.A.; Đorđević, V.B.; Zdunić, G.M.; Pljevljakušić, D.S.; Šavikin, K.P.; Gođevac, D.M.; Bugarski, B.M. Optimization of the extraction process of polyphenols from Thymus serpyllum L. herb using maceration, heat- and ultrasound-assisted techniques. Sep. Purif. Technol. 2017, 179, 369–380. [Google Scholar] [CrossRef]
- Poodi, Y.; Bimakr, M.; Ganjloo, A.; Zarringhalami, S. Intensification of bioactive compounds extraction from Feijoa (Feijoa sellowiana Berg.) leaves using ultrasonic waves. Food Bioprod. Process. 2017, 108, 37–50. [Google Scholar] [CrossRef]
- Pérez-Jiménez, J.; Arranz, S.; Tabernero, M.; Díaz-Rubio, M.E.; Serrano, J. Updated methodology to determine antioxidant capacity in plant foods, oils and beverages: Extraction, measurement and expression of results. Food Res. Int. 2008, 41, 274–285. [Google Scholar] [CrossRef]
- Montreau, F. Sur le dosage des composés phénoliques totaux dans les vins par la methode Folin-Ciocalteau. Connaiss Vigne Vin 1972, 24, 397–404. [Google Scholar] [CrossRef]
- Hartzfeld, P.W.; Forkner, R.; Hunter, M.D.; Hagerman, A.E. Determination of hydrolyzable tannins (gallotannins and ellagitannins) after reaction with potassium iodate. J. Agric. Food Chem. 2002, 50, 1785–1790. [Google Scholar] [CrossRef] [PubMed]
- Reed, J.D.; McDowell, R.T.E.; Van Soest, P.J.; Horvath, P.R.J. Condensed tannins: A factor limiting the use of cassava forage. J. Sci. Food Agric. 1982, 33, 213–220. [Google Scholar] [CrossRef]
Sample Availability: Standards of phenolic acids are commercially available. |
Run | UAE Conditions | Final Temperature (°C) | Soluble Polyphenols (mg/g Dry Matter) | |||||
---|---|---|---|---|---|---|---|---|
XET | XSA | XPC | Peel | Seed | Columella | Pulp | ||
1 | 5 | 40 | 0.7 | 23.38 ± 1.84 | 74.26 ± 0.84 i,B | 24.27 ± 0.18 c,d,C | 115.01 ± 4.76 b,A | 23.62 ± 0.16 a,C |
2 | 15 | 40 | 0.7 | 22.25 ± 2.72 | 126.45 ± 8.42 e,f,A | 16.19 ± 0.42 h,C | 84.06 ± 1.30 f,g,B | 20.00 ± 0.69 e,f,C |
3 | 5 | 100 | 0.7 | 24.88 ± 1.89 | 157.40 ± 6.03 a,A | 28.38 ± 0.98 a,C | 106.59 ± 3.93 c,B | 19.50 ± 0.66 f,g,C |
4 | 15 | 100 | 0.7 | 24.50 ± 1.08 | 156.29 ± 4.14 a,b,A | 21.99 ± 0.54 f,C | 91.67 ± 2.53 d,e,B | 19.26 ± 0.47 g,C |
5 | 5 | 70 | 0.4 | 22.25 ± 2.10 | 116.07 ± 7.90 f,g,A | 25.07 ± 0.58 b,c,B | 106.44 ± 5.55 c,A | 19.54 ± 0.19 f,g,B |
6 | 15 | 70 | 0.4 | 23.38 ± 2.32 | 141.68 ± 5.25 b,c,d,A | 15.85 ± 0.22 h,C | 105.82 ± 5.05 c,B | 19.24 ± 0.11 g,C |
7 | 5 | 70 | 1 | 24.75 ± 1.55 | 154.51 ± 9.22 a,b,c,A | 24.91 ± 0.64 b,c,C | 91.64 ± 0.21 d,e,B | 20.62 ± 0.29 d,C |
8 | 15 | 70 | 1 | 24.63 ± 2.43 | 156.76 ± 5.71 a,A | 23.81 ± 0.58 d,e,C | 104.48 ± 2.22 c,B | 19.35 ± 0.34 g,C |
9 | 10 | 40 | 0.4 | 22.88 ± 1.93 | 135.92 ± 2.35 d,e,A | 20.85 ± 0.61 g,B | 143.35 ± 1.52 a,A | 21.45 ± 0.62 c,B |
10 | 10 | 100 | 0.4 | 24.50 ± 1.08 | 141.50 ± 6.60 c,d,A | 20.29 ± 0.52 g,C | 116.47 ± 0.36 b,B | 20.42 ± 0.77 d,e,C |
11 | 10 | 40 | 1 | 24.88 ± 1.31 | 129.23 ± 3.30 d,e,f,A | 23.11 ± 0.52 e,C | 91.08 ± 0.17 d,e,B | 21.33 ± 0.27 c,C |
12 | 10 | 100 | 1 | 25.13 ± 1.65 | 138.20 ± 8.03 d,e,A | 21.26 ± 0.76 f,g,C | 81.46 ± 1.86 f,g,B | 20.40 ± 0.18 d,e,C |
13 | 10 | 70 | 0.7 | 23.88 ± 0.75 | 110.39 ± 7.12 g,h,A | 25.39 ± 0.50 b,C | 93.66 ± 1.13 d,B | 22.19 ± 0.58 b,C |
14 | 10 | 70 | 0.7 | 24.63 ± 1.03 | 99.18 ± 0.87 h,A | 24.45 ± 0.55 b,c,d,C | 86.74 ± 0.59 e,f,B | 22.63 ± 0.38 b,C |
15 | 10 | 70 | 0.7 | 24.63 ± 1.25 | 103.26 ± 7.24 g,h,A | 24.21 ± 0.87 c,d,C | 78.53 ± 0.51 g,B | 19.83 ± 0.49 e,f,g,C |
Sample | Polynomial Equation | R2 |
---|---|---|
Peel | 594.18 − 8.08XSA + 0.04XSA2 − 1459.15XPC + 891.37XPC2 + 4.51XET + 0.61XET2 + 21.09XSA*XPC − 9.12XSA*XPC2 − 0.06XSA2*XPC − 0.27XSA*XET + 0.00XSA2*XET − 3.89XPC*XET | 0.91 |
Seeds | 74.23 − 0.98XSA + 0.004XPC2 − 109.02XPC + 59.83XPC2 − 2.40XET − 0.01XET2 + 2.15XSA*XPC − 1.14XSA*XPC2 − 0.004XSA2*XPC + 0.035XSA*XET − 0.001XSA2*XET + 1.35XPC*XET | 0.97 |
Columella | 778 − 14.68XSA + 0.08XSA2 − 906.85XPC + 367.59XPC2 − 21.45XET + 0.14XET2 + 14.32XSA*XPC − 3.30XSA*XPC2 − 0.06XSA2*XPC + 0.47XSA*XET − 0.003XSA2*XET + 2.24XPC*XET | 0.94 |
Pulp | 24.40 − 0.27XSA + 0.002XSA2 + 35.55XPC − 27.78XPC2 − 0.11XET − 0.04XET2 − 0.21XSA*XPC + 0.27XSA*XPC2 − 0.001XSA2*XPC + 0.02XSA*XET − 0.001XSA2*XET − 0.16XPC*XET | 0.77 |
Source | Regression Coefficients | |||
---|---|---|---|---|
Total Soluble Phenolic Content β Coefficient | ||||
Peel | Seed | Columella | Pulp | |
Mean/intercept | 594.18 | 74.23 | 778.00 | 20.48 |
XSA | −8.08 + | −0.98 + | −14.68 + | −0.29 ++ |
XSA2 | 0.04 + | −0.004 + | 0.08 + | 0.002 + |
XPC | −1459.15 + | −109.02 + | −906.85 + | 35.55 + |
XPC2 | 891.37 + | 59.83 + | 367.59 + | −27.78 + |
XET | 4.51 ++ | −2.40 + | −21.45 + | −0.11 ++ |
XET2 | 0.61 + | −0.01 + | 0.14 + | −0.04 + |
XSA*XPC | 21.09 + | 2.15 + | 14.35 + | −0.21 ++ |
XSA*XPC2 | −9.12 + | −1.14 + | −3.30 + | 0.27 + |
XSA2*XPC | −0.06 + | −0.004 + | −0.06 + | −0.001 ++ |
XSA*XET | −0.27 + | 0.03 + | 0.47 + | 0.023 + |
XSA2*XET | 0.00 ++ | −0.0002 + | −0.003 + | −0.0001 ++ |
XPC*XET | −3.89 + | 1.35 + | 2.24 + | −0.05 ++ |
R-square | 0.91 | 0.97 | 0.94 | 0.77 |
R-adjust | 0.87 | 0.96 | 0.92 | 0.69 |
Parameter | Peel | Seeds | Columella | Pulp |
---|---|---|---|---|
Extraction time (min) | 15 | 5 | 7.5 | 5 |
Pulse cycle (s) | 0.4 | 0.7 | 0.4 | 0.7 |
Sonication amplitude (%) | 99.95 | 100 | 40 | 40 |
Optimal response (mg/g DM) | 161.76 | 28.38 | 153.65 | 23.62 |
−95% Confidence limit | 148.21 | 27.63 | 147.64 | 22.74 |
+95% Confidence limit | 175.30 | 29.13 | 159.65 | 24.50 |
Confidence interval (±) | 27.09 | 1.5 | 11.98 | 1.76 |
Parameter | Ultrasound-Assisted Extraction | Conventional Extraction | ||||||
---|---|---|---|---|---|---|---|---|
Peel | Seeds | Columella | Pulp | Peel | Seeds | Columella | Pulp | |
Soluble polyphenols (mg/g dry matter) | 171.26 ± 8.83 a | 24.92 ± 0.33 d | 152.97 ± 1.01 b | 24.70 ± 1.52 d | 133.96 ± 0.03 c | 23.58 ± 2.14 d | 124.91 ± 8.81 c | 24.76 ± 1.72 d |
Hydrolyzable polyphenols (mg/g dry matter) | 8.40 ± 0.14 c | 11.05 ± 0.38 a | 6.14 ± 0.96 d | 5.68 ± 0.21 e | 6.51 ± 0.23 d | 9.01 ± 0.41 b | 7.31 ± 0.14 d | 5.47 ± 0.28 e |
Condensed tannins (mg/g dry matter) | 7.66 ± 0.74 a | 0.18 ± 0.02 d | 5.13 ± 0.20 b | 2.86 ± 0.22 c | 8.21 ± 0.49 a | 0.72 ± 0.07 d | 4.90 ± 0.69 b | 0.91 ± 0.02 d |
Total polyphenols (mg/g dry matter) | 187.32 ± 3.23 a | 36.15 ± 0.24 d | 164.14 ± 0.70 b | 33.24 ± 0.65 e | 148.68 ± 0.25 c | 33.31 ± 0.87 e | 137.12 ± 3.21 c | 31.14 ± 3.01 e |
Polyphenolic yield (%) | 37.51 ± 2.87 a | 7.13 ± 0.14 c | 32.34 ± 0.31 a | 6.59 ± 0.25 c | 16.68 ± 0.15 b | 6.67 ± 0.48 c | 14.87 ± 1.43 b | 5.42 ± 1.01 c |
No. | Compound | Retention Time (min) | Ultrasound-Assisted Extraction (μg/g Dry Matter) | Conventional Extraction (μg/g Dry Matter) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Peel | Seed | Columella | Pulp | Peel | Seed | Columella | Pulp | |||
1 | Gallic acid | 20.66 | 14.50 ± 0.44 a | 0.36 ± 0.01 c | 12.16 ± 0.37 b | 15.86 ± 1.68 a | 1.10 ± 0.08 c | 0.46 ± 0.03 c | 0.61 ± 0.12 c | 0.08 ± 0.01 c |
2 | Coumaric acid | 46.61 | 1.37 ± 0.09 a | 0.07 ± 0.00 c,d | 0.08 ± 0.01 bc | 0.07 ± 0.01 c,d | 0.15 ± 0.04 b | 0.07 ± 0.02 c,d | 0.08 ± 0.01 b,c | 0.05 ± 0.01 c,d |
3 | Cinnamic acid | 52.91 | 45.51 ± 1.88 a | 40.48 ± 1.21 a,b | 30.36 ± 1.98 b | 42.04 ± 8.72 a,b | 37.16 ± 1.33 a,b | 42.51 ± 0.59 a | 14.51 ± 3.88 c | 7.67 ± 1.14 c |
4 | Caffeic acid | 37.17 | 43.68 ± 1.78 a | 32.62 ± 1.22 b | nd | nd | 30.20 ± 8.38 b | 34.44 ± 0.46 b | 11.83 ± 3.19 c | nd |
5 | Chlorogenic acid | 34.23 | 32.67 ± 0.53 a | 12.33 ± 0.46 b,c | 9.18 ± 0.59 c | 12.80 ± 2.72 b | 12.25 ± 2.87 b,c | 13.08 ± 0.18 b | nd | 3.15 ± 0.25 d |
6 | Protocateic acid | 23.02 | 150.46 ± 6.62 a | 133.47 ± 5.02 a | nd | nd | 123.12 ± 4.28 a | 140.97 ± 1.62 a | nd | 25.37 ± 3.77 b |
7 | 4-Hydroxybenzoic acid | 31.16 | 145.98 ± 6.47 a | nd | 94.45 ± 6.15 a,b | 131.63 ± 2.87 a,b | 117.37 ± 32.65 b | nd | 45.96 ± 12.43 c | 24.22 ± 3.60 c,d |
8 | Syringic acid | 41.62 | 883.71 ± 3.94 a | 780.77 ± 9.31 b | nd | nd | nd | 824.05 ± 1.89 b | nd | 148.83 ± 2.14 c |
9 | Neochlorogenic acid | 24.05 | 78.86 ± 3.48 a | 69.70 ± 2.62 a | 51.90 ± 3.38 b | 72.32 ± 1.31 a | nd | 73.56 ± 0.97 a | nd | 13.30 ± 1.98 c |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilar-Hernández, G.; García-Magaña, M.d.L.; Vivar-Vera, M.d.l.Á.; Sáyago-Ayerdi, S.G.; Sánchez-Burgos, J.A.; Morales-Castro, J.; Anaya-Esparza, L.M.; Montalvo González, E. Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds from Annona muricata By-Products and Pulp. Molecules 2019, 24, 904. https://doi.org/10.3390/molecules24050904
Aguilar-Hernández G, García-Magaña MdL, Vivar-Vera MdlÁ, Sáyago-Ayerdi SG, Sánchez-Burgos JA, Morales-Castro J, Anaya-Esparza LM, Montalvo González E. Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds from Annona muricata By-Products and Pulp. Molecules. 2019; 24(5):904. https://doi.org/10.3390/molecules24050904
Chicago/Turabian StyleAguilar-Hernández, Gabriela, María de Lourdes García-Magaña, María de los Ángeles Vivar-Vera, Sonia Guadalupe Sáyago-Ayerdi, Jorge Alberto Sánchez-Burgos, Juliana Morales-Castro, Luis Miguel Anaya-Esparza, and Efigenia Montalvo González. 2019. "Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds from Annona muricata By-Products and Pulp" Molecules 24, no. 5: 904. https://doi.org/10.3390/molecules24050904
APA StyleAguilar-Hernández, G., García-Magaña, M. d. L., Vivar-Vera, M. d. l. Á., Sáyago-Ayerdi, S. G., Sánchez-Burgos, J. A., Morales-Castro, J., Anaya-Esparza, L. M., & Montalvo González, E. (2019). Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds from Annona muricata By-Products and Pulp. Molecules, 24(5), 904. https://doi.org/10.3390/molecules24050904