Naturally Lignan-Rich Foods: A Dietary Tool for Health Promotion?
Abstract
:1. Introduction
2. Biosynthesis, Classification and Presence of Lignans in Foods
3. Bioavailability
4. Lignan Content of Various Regional Diets
4.1. Mediterranean Diet
4.2. Northern Hemisphere Diet
4.3. Indian Diet
4.4. Asian Diet
4.5. Latin-American Diet
5. Human Studies Concerning Lignan Bioactivity
5.1. Cancer
5.2. Cardiovascular Disease
5.3. Other Diseases
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Marilena, V.; Olga, V.; Maria, M.; Enzo, B.; Stefano, D.P.; Carlo, B.; Giorda, A.N.; Sebastiano, S.; Stefania, A.; Anna, C.; et al. Rivellese, Polyphenol intake, cardiovascular risk factors in a population with type 2 diabetes: The TOSCA.IT study. Clin. Nutr. 2017, 36, 1686–1692. [Google Scholar] [CrossRef]
- Rocha, L.; Monteiro, M.; Anderson, T. Anticancer Properties of Hydroxycinnamic Acids-A Review. Cancer Clin. Oncol. 2012, 1, 109–121. [Google Scholar] [CrossRef]
- Adlercreutz, H. Lignans, human health. Crit. Rev. Clin. Lab. Sci. 2007, 44, 483–525. [Google Scholar] [CrossRef] [PubMed]
- Ionkova, I. Anticancer lignans—From discovery to biotechnology. Mini Rev. Med. Chem. 2011, 10, 843–856. [Google Scholar] [CrossRef]
- Peterson, J.; Dwyer, J.; Adlercreutz, H.; Scalbert, A.; Jacques, P.; McCullough, M.L. Dietary lignans: Physiology, potential for cardiovascular disease risk reduction. Nutr. Rev. 2010, 10, 571–603. [Google Scholar] [CrossRef] [PubMed]
- Landete, J.M. Plant, mammalian lignans: A review of source, intake, metabolism, intestinal bacteria, health. Food Res. Int. 2012, 46, 410–424. [Google Scholar] [CrossRef]
- Touré, A.; Xu, X. Flaxseed Lignans: Source, Biosynthesis, Metabolism, Antioxidant Activity, Bio-Active Components, Health Benefits. Compr. Rev. Food Sci. Food Saf. 2010, 9, 261–269. [Google Scholar] [CrossRef]
- Marcotullio, M.C.; Curini, M.; Becerra, J.X. An Ethnopharmacological, Phytochemical, Pharmacological Review on Lignans from Mexican Bursera spp. Molecules 2018, 23, 1976. [Google Scholar] [CrossRef] [PubMed]
- Magoulas, G.E.; Papaioannou, D. Bioinspired syntheses of dimeric hydroxycinnamic acids (lignans), hybrids, using phenol oxidative coupling as key reaction, medicinal significance thereof. Molecules 2014, 19, 19769–19835. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xie, S.; Ying, J.; Wei, W.; Gao, K. Chemical Structures of Lignans, Neolignans Isolated from Lauraceae. Molecules 2018, 23, 3164. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.Y.; Chen, S.L.; Yang, M.H.; Wu, J.; Sinkkonen, J.; Zou, K. An update on lignans: Natural products, synthesis. Nat. Prod. Rep. 2009, 26, 1251–1292. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Umezawa, T. Biosynthesis of lignans, norlignans. J. Wood Sci. 2007, 53, 273–284. [Google Scholar] [CrossRef]
- Solyomvary, A.; Beni, S.; Boldizsar, I. Dibenzylbutyrolactone Lignans-A Review of Their Structural Diversity, Biosynthesis, Occurrence, Identification, Importance. Mini Rev. Med. Chem. 2017, 17, 1053–1074. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.-H.; Zhao, P.; Wang, M.; Liang, Q. Naturally occurring furofuran lignans: Structural diversity, biological activities. Nat. Prod. Res. 2018, 16, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, J.; Liang, Z.; Zhao, C. New lignans, their biological activities. Chem. Biodivers 2014, 11, 1–54. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, A.; Zaccaria, M.; Polito, A.; Maiani, G.; Carcea, M. Lignan Content in Cereals, Buckwheat, Derived Foods. Foods 2013, 2, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, A.; Turfani, V.; Azzini, E.; Maiani, G.; Carcea, M. Phenols, lignans, antioxidant properties of legume, sweet chestnutflours. Food Chem. 2013, 140, 666–671. [Google Scholar] [CrossRef] [PubMed]
- Rothwell, J.A.; Pérez-Jiménez, J.; Neveu, V.; Medina-Ramon, A.; M’Hiri, N.; Garcia Lobato, P.; Manach, C.; Knox, K.; Eisner, R.; Wishart, D.; et al. Phenol-Explorer 3.0: A major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database 2013, 2013. [Google Scholar] [CrossRef] [PubMed]
- Smeds, A.I.; Jauhiainen, L.; Tuomola, E. Peltonen-Sainio, P. Characterization of variation in the lignan content, composition of winter rye, spring wheat, spring oat. J. Agric. Food Chem. 2009, 57, 5837–5842. [Google Scholar] [CrossRef] [PubMed]
- Esposito, F.; Arlotti, G.; Maria Bonifati, A.; Napolitano, A.; Vitale, D.; Fogliano, V. Antioxidant activity, dietary fibre in durum wheat bran by-products. Food Res. Int. 2005, 38, 1167–1173. [Google Scholar] [CrossRef]
- Fardet, A. New hypotheses for the health-protective mechanisms of whole-grain cereals: What is beyond fibre? Nutr. Res. Rev. 2010, 23, 65–134. [Google Scholar] [CrossRef] [PubMed]
- Bolvig, A.K.; Adlercreutz, H.; Theil, P.K.; Jorgensen, H.; Bach Knudsen, K.E. Absorption of plant lignans from cereals in an experimental pig model. Br. J. Nutr. 2016, 115, 1711–1720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milder, I.E.; Arts, I.C.; van de Putte, B.; Venema, D.P.; Hollman, P.C. Lignan contents of Dutch plant foods: A database including lariciresinol, pinoresinol, secoisolariciresinol, matairesinol. Br. J. Nutr. 2005, 93, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Aracama, A.; Goicoechea, E.; Guillén, M.D. Direct study of minor extra-virgin olive oil components without any sample modification. 1H NMR multisupression experiment: A powerful tool. Food Chem. 2017, 228, 301–314. [Google Scholar] [CrossRef] [PubMed]
- Ricciutelli, M.; Marconi, S.; Boarelli, M.C.; Caprioli, G.; Sagratini, G.; Ballini, D.; Fiorini, R. Olive oil polyphenols: A quantitative method by high-performance liquid-chromatography-diode-array detection for their determination, the assessment of the related health claim. J. Chromatogr. A 2017, 1481, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Milder, I.E.; Feskens, E.J.; Arts, I.C.; Bueno de Mesquita, H.B.; Hollman, P.C.; Kromhout, D. Intake of the plant lignans secoisolariciresinol, matairesinol, lariciresinol, pinoresinol in Dutch men, women. J. Nutr. 2005, 135, 1202–1207. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Wedick, N.M.; Pan, A.; Townsend, M.K.; Cassidy, A.; Franke, A.A.; Rimm, E.B.; Hu, F.B.; van Dam, R.M. Gut microbiota metabolites of dietary lignans, risk of type 2 diabetes: A prospective investigation in two cohorts of U.S. women. Diabetes Care 2014, 37, 1287–1295. [Google Scholar] [CrossRef] [PubMed]
- McCann, M.J.; Gill, C.I.; McGlynn, H.; Rowland, I.R. Role of mammalian lignans in the prevention, treatment of prostate cancer. Nutr. Cancer 2005, 52, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Szewczyk, M.; Abarzua, S.; Schlichting, A.E.; Nebe, B.; Piechulla, B.; Volker, B.; Dagmar-Ulrike, R. Effects of extracts from Linum usitatissimum on cell vitality, proliferation, cytotoxicity in human breast cancer cell lines. J. Med. Plant Res. 2014, 8, 237–245. [Google Scholar] [CrossRef]
- Björck, I.; Östman, E.; Kristensen, M.; Mateo Anson, N.; Price, R.K.; Haenen, G.R.M.M.; Havenaar, R.; Bach Knudsen, K.E.; Frid, A.; Mykkänen, H.; et al. Cereal grains for nutrition, health benefits: Overview of results from in vitro, animal, human studies in the HEALTHGRAIN project. Trends Food Sci. Technol. 2012, 25, 87–100. [Google Scholar] [CrossRef]
- Kuijsten, A.; Arts, I.C.; Vree, T.B.; Hollman, P.C. Pharmacokinetics of enterolignans in healthy men, women consuming a single dose of secoisolariciresinol diglucoside. J. Nutr. 2005, 135, 795–801. [Google Scholar] [CrossRef] [PubMed]
- Tetens, I.; Turrini, A.; Tapanainen, H.; Christensen, T.; Lampe, J.W.; Fagt, S.; Håkansson, N.; Lundquist, A.; Hallund, J.; Valsta, L.M.; et al. Dietary intake, main sources of plant lignans in five European countries. Food Nutr. Res. 2013, 57. [Google Scholar] [CrossRef] [PubMed]
- Heinonen, S.; Nurmi, T.; Liukkonen, K.; Poutanen, K.; Wahala, K.; Deyama, T.; Nishibe, S.; Adlercreutz, H. In vitro metabolism of plant lignans: New precursors of mammalian lignans enterolactone, enterodiol. J. Agric. Food Chem. 2001, 49, 3178–3186. [Google Scholar] [CrossRef] [PubMed]
- Saarinen, N.M.; Thompson, L.U. Prolonged administration of secoisolariciresinol diglycoside increases lignan excretion, alters lignan tissue distribution in adult male, female rats. Br. J. Nutr. 2010, 104, 833–841. [Google Scholar] [CrossRef] [PubMed]
- Mukker, J.K.; Singh, R.S.; Muir, A.D.; Krol, E.S.; Alcorn, J. Comparative pharmacokinetics of purified flaxseed, associated mammalian lignans in male Wistar rats. Br. J. Nutr. 2015, 113, 749–757. [Google Scholar] [CrossRef] [PubMed]
- Chaojie, L.; Ed, S.K.; Jane, A. The Comparison of Rat, Human Intestinal, Hepatic Glucuronidation of Enterolactone Derived from Flaxseed Lignans. Nat. Prod. J. 2013, 3, 159–171. [Google Scholar] [CrossRef]
- Murray, T.; Kang, J.; Astheimer, L.; Price, W.E. Tissue distribution of lignans in rats in response to diet, dose-response, competition with isoflavones. J. Agric. Food Chem. 2007, 55, 4907–4912. [Google Scholar] [CrossRef] [PubMed]
- Thompson, L.U.; Chen, J.M.; Li, T.; Strasser-Weippl, K.; Goss, P.E. Dietary flaxseed alters tumor biological markers in postmenopausal breast cancer. Clin. Cancer Res. 2005, 11, 3828–3835. [Google Scholar] [CrossRef] [PubMed]
- Clavel, T.; Dore, J.; Blaut, M. Bioavailability of lignans in human subjects. Nutr. Res. Rev. 2006, 19, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Adlercreutz, H. Phyto-oestrogens, cancer. Lancet. Oncol. 2002, 3, 364–373. [Google Scholar] [CrossRef]
- Kuijsten, A.; Arts, I.C.; van’t Veer, P.; Hollman, P.C. The relative bioavailability of enterolignans in humans is enhanced by milling, crushing of flaxseed. J. Nutr. 2005, 135, 2812–2816. [Google Scholar] [CrossRef] [PubMed]
- Lærke, H.N.; Mortensen, M.A.; Hedemann, M.S.; Bach Knudsen, K.E.; Penalvo, J.L.; Adlercreutz, H. Quantitative aspects of the metabolism of lignans in pigs fed fibre-enriched rye, wheat bread. Br. J. Nutr. 2009, 102, 985–994. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.W.; Dress, K.R.; Edwards, M. Using the Golden Triangle to optimize clearance, oral absorption. Bioorganic. Med. Chem. Lett. 2009, 19, 5560–5564. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; Cheng, L.; Shen, G.; Qiu, L.; Shen, C.Y.; Zheng, J.; Xu, R.; Yuan, H.L. Improved stability, oral bioavailability of Ganneng dropping pills following transforming lignans of herpetospermum caudigerum into nanosuspensions. Chin. J. Nat. Med. 2018, 16, 70–80. [Google Scholar] [CrossRef]
- Tierney, A.C.; Zabetakis, I. Changing the Irish dietary guidelines to incorporate the principles of the Mediterranean diet: Proposing the MedEire diet. Public Health Nutr. 2018, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean Diet, Survival in a Greek Population. N Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef] [PubMed]
- Pounis, G.; Di Castelnuovo, A.; Bonaccio, M.; Costanzo, S.; Persichillo, M.; Krogh, V.; Donati, M.B.; de Gaetano, G.; Iacoviello, L. Flavonoid, lignan intake in a Mediterranean population: Proposal for a holistic approach in polyphenol dietary analysis, the Moli-sani Study. Eur. J. Clin. Nutr. 2016, 70, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Bolvig, A.K.; Norskov, N.P.; van Vliet, S.; Foldager, L.; Curtasu, M.V.; Hedemann, M.S.; Sorensen, J.F.; Laerke, H.N.; Bach Knudsen, K.E. Rye Bran Modified with Cell Wall-Degrading Enzymes Influences the Kinetics of Plant Lignans but Not of Enterolignans in Multicatheterized Pigs. J. Nutr. 2017, 147, 2220–2227. [Google Scholar] [CrossRef] [PubMed]
- Bolling, B.W.; Chen, C.Y.; McKay, D.L.; Blumberg, J.B. Tree nut phytochemicals: Composition, antioxidant capacity, bioactivity, impact factors. A systematic review of almonds, Brazils, cashews, hazelnuts, macadamias, pecans, pine nuts, pistachios, walnuts. Nutr. Res. Rev. 2011, 24, 244–275. [Google Scholar] [CrossRef] [PubMed]
- Guasch-Ferré, M.; Hu, F.B.; Martínez-González, M.A.; Fitó, M.; Bulló, M.; Estruch, R.; Ros, E.; Corella, D.; Recondo, J.; Gómez-Gracia, E.; et al. Olive oil intake, risk of cardiovascular disease, mortality in the PREDIMED Study. BMC Med. 2014, 12, 78. [Google Scholar] [CrossRef] [PubMed]
- Toledo, E.; Salas-Salvado, J.; Donat-Vargas, C.; Buil-Cosiales, P.; Estruch, R.; Ros, E.; Corella, D.; Fito, M.; Hu, F.B.; Aros, F.E.; et al. Mediterranean Diet, Invasive Breast Cancer Risk Among Women at High Cardiovascular Risk in the PREDIMED Trial: A Randomized Clinical Trial. JAMA Int. Med. 2015, 175, 1752–1760. [Google Scholar] [CrossRef] [PubMed]
- Medina-Remón, A.; Casas, R.; Tressserra-Rimbau, A.; Ros, E.; Martínez-González, M.A.; Fitó, M.; Corella, D.; Salas-Salvadó, J.; Lamuela-Raventos, R.M.; Estruch, R.; et al. Polyphenol intake from a Mediterranean diet decreases inflammatory biomarkers related to atherosclerosis: A substudy of the PREDIMED trial. Br. J. Clin. Pharmacol. 2017, 83, 114–128. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Biedma, A.; Sanchez-Quesada, C.; Beltran, G.; Delgado-Rodriguez, M.; Gaforio, J.J. Phytoestrogen (+)-pinoresinol exerts antitumor activity in breast cancer cells with different oestrogen receptor statuses. BMC Compl. Altern. Med. 2016, 16, 350. [Google Scholar] [CrossRef] [PubMed]
- Antonini, E.; Farina, A.; Scarpa, E.S.; Frati, A.; Ninfali, P. Quantity, quality of secoiridoids, lignans in extra virgin olive oils: The effect of two-, three-way decanters on Leccino, Raggiola olive cultivars. Int. J. Food Sci. Nutr. 2016, 67, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Ramezani-Jolfaie, N.; Mohammadi, M.; Salehi-Abargouei, A. The effect of healthy Nordic diet on cardio-metabolic markers: A systematic review, meta-analysis of randomized controlled clinical trials. Eur. J. Nutr. 2018, 57, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Galbete, C.; Kröger, J.; Jannasch, F.; Iqbal, K.; Schwingshackl, L.; Schwedhelm, C.; Weikert, C.; Boeing, H.; Schulze, M.B. Nordic diet, Mediterranean diet, the risk of chronic diseases: The EPIC-Potsdam study. BMC Med. 2018, 16, 99. [Google Scholar] [CrossRef] [PubMed]
- Smeds, A.I.; Eklund, P.C.; Sjoholm, R.E.; Willfor, S.M.; Nishibe, S.; Deyama, T.; Holmbom, B.R. Quantification of a broad spectrum of lignans in cereals, oilseeds, nuts. J. Agric. Food Chem. 2007, 55, 1337–1346. [Google Scholar] [CrossRef] [PubMed]
- Konye, R.; Toth, G.; Solyomvary, A.; Mervai, Z.; Zurn, M.; Baghy, K.; Kovalszky, I.; Horvath, P.; Molnar-Perl, I.; Noszal, B.; et al. Chemodiversity of Cirsium fruits: Antiproliferative lignans, neolignans, sesquineolignans as chemotaxonomic markers. Fitoterapia 2018, 127, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Boldizsar, I.; Kraszni, M.; Toth, F.; Noszal, B.; Molnar-Perl, I. Complementary fragmentation pattern analysis by gas chromatography-mass spectrometry, liquid chromatography tandem mass spectrometry confirmed the precious lignan content of Cirsium weeds. J. Chromatogr. A 2010, 1217, 6281–6289. [Google Scholar] [CrossRef] [PubMed]
- Singh, L.; Agarwal, T. PAHs in Indian diet: Assessing the cancer risk. Chemosphere 2018, 202, 366–376. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.J.; Chen, Y.; Chen, D.; Wu, Y.; Gao, Y.J.; Li, J.; Zhong, W.J.; Jiang, L. A new pair of enantiomeric lignans from the fruits of Morinda citrifolia, their absolute configuration. Nat. Prod. Res. 2018, 32, 933–938. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.H.; Yang, J.L.; Uddin, M.N.; Park, S.L.; Lim, S.I.; Jung, D.W.; Williams, D.R.; Oh, W.K. Protein tyrosine phosphatase 1B (PTP1B) inhibitors from Morinda citrifolia (Noni), their insulin mimetic activity. J. Nat. Prod. 2013, 76, 2080–2087. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, Y.; Tian, J.; Ge, H.; Liang, X.; Xiao, J.; Lin, H. Simultaneous determination of four sesame lignans, conversion in Monascus aged vinegar using HPLC method. Food Chem. 2018, 256, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Yashaswini, P.S.; Sadashivaiah, B.; Ramaprasad, T.R.; Singh, S.A. In vivo modulation of LPS induced leukotrienes generation, oxidative stress by sesame lignans. J. Nutr. Biochem. 2017, 41, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Namiki, M. Nutraceutical functions of sesame: A review. Crit. Rev. Food Sci. Nutr. 2007, 47, 651–673. [Google Scholar] [CrossRef] [PubMed]
- Dar, A.A.; Arumugam, N. Lignans of sesame: Purification methods, biological activities, biosynthesis—A review. Bioorganic Chem. 2013, 50, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Katayama, S.; Sugiyama, H.; Kushimoto, S.; Uchiyama, Y.; Hirano, M.; Nakamura, S. Effects of Sesaminol Feeding on Brain Aβ Accumulation in a Senescence-Accelerated Mouse-Prone 8. J. Agric. Food Chem. 2016, 64, 4908–4913. [Google Scholar] [CrossRef]
- Liu, Z.; Saarinen, N.M.; Thompson, L.U. Sesamin Is One of the Major Precursors of Mammalian Lignans in Sesame Seed (Sesamum indicum) as Observed In Vitro, in Rats. J. Nutr. 2006, 136, 906–912. [Google Scholar] [CrossRef] [PubMed]
- Hsu, W.C.; Lau, K.H.K.; Matsumoto, M.; Moghazy, D.; Keenan, H.; King, G.L. Improvement of Insulin Sensitivity by Isoenergy High Carbohydrate Traditional Asian Diet: A Randomized Controlled Pilot Feasibility Study. PLoS ONE 2014, 9, e106851. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Wink, M. Natural lignans from Arctium lappa as antiaging agents in Caenorhabditis elegans. Phytochemistry 2015, 117, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Kou, X.; Qi, S.; Dai, W.; Luo, L.; Yin, Z. Arctigenin inhibits lipopolysaccharide-induced iNOS expression in RAW264.7 cells through suppressing JAK-STAT signal pathway. Int. Immunopharmacol. 2011, 11, 1095–1102. [Google Scholar] [CrossRef] [PubMed]
- Susanti, S.; Iwasaki, H.; Inafuku, M.; Taira, N.; Oku, H. Mechanism of arctigenin-mediated specific cytotoxicity against human lung adenocarcinoma cell lines. Phytomedicine 2013, 21, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, K.; Chen, H.; He, R.; Cai, R.; Li, J.; Zhou, D.; Liu, W.; Huang, X.; Yang, R.; et al. Anti-inflammatory lignans, phenylethanoid glycosides from the root of Isodon ternifolius (D.Don) Kudô. Phytochemistry 2018, 153, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Tang, Y.M.; Yu, S.L.; Han, Y.W.; Kou, J.P.; Liu, B.L.; Yu, B.Y. Advances in the pharmacological activities, mechanisms of diosgenin. Chin. J. Nat. Med. 2015, 13, 578–587. [Google Scholar] [CrossRef]
- Chen, F.; Li, C.; Ma, J.; Ni, L.; Huang, J.; Li, L.; Lin, M.; Hou, Q.; Zhang, D. Diterpenoids, lignans from the leaves of Tripterygium wilfordii. Fitoterapia 2018, 129, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Lu, J.; Sun, F.; Zhu, H.; Wang, L.; Zhang, X.; Ma, Z. Terpenoids from Tripterygium wilfordii. Phytochemistry 2011, 72, 1482–1487. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Yang, Z.; Yao, X.; Wang, H.; Han, N.; Liu, Z.; Wang, Y.; Yang, J.; Yin, J. Dibenzocyclooctadiene lignans from Schisandra chinensis, their inhibitory activity on NO production in lipopolysaccharide-activated microglia cells. Phytochemistry 2014, 104, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.Y.; Han, W.; Han, H.; Liu, Y.; Guan, W.; Li, X.M.; Kuang, H.X. Effects of Lignans from Schisandra chinensis Rattan Stems against Abeta1-42-Induced Memory Impairment in Rats, Neurotoxicity in Primary Neuronal Cells. Molecules 2018, 23, e870. [Google Scholar] [CrossRef] [PubMed]
- Wang, O.; Cheng, Q.; Liu, J.; Wang, Y.; Zhao, L.; Zhou, F.; Ji, B. Hepatoprotective effect of Schisandra chinensis (Turcz.) Baill. lignans, its formula with Rubus idaeus on chronic alcohol-induced liver injury in mice. Food Funct. 2014, 5, 3018–3025. [Google Scholar] [CrossRef] [PubMed]
- Panossian, A.; Wikman, G. Pharmacology of Schisandra chinensis Bail.: An overview of Russian research, uses in medicine. J. Ethnopharmacol. 2008, 118, 183–212. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Ruan, H. Triterpenoids, lignans from the stems of Schisandra glaucescens. Nat. Prod. Res. 2018, 32, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.Y.; Chen, Z.Y.; Sun, B.; Liu, J.; Meng, F.Y.; Liu, Y.; Tian, T.; Jin, A.; Ruan, H.L. Lignans from the fruit of Schisandra glaucescens with antioxidant, neuroprotective properties. J. Nat. Prod. 2014, 77, 1311–1320. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Kallio, H.; Yang, B. Phenolic Compounds in Hawthorn (Crataegus grayana) Fruits, Leaves, Changes during Fruit Ripening. J. Agric. Food Chem. 2011, 59, 11141–11149. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.-X.; Bai, M.; Zhou, L.; Lou, L.-L.; Liu, Q.-B.; Zhang, Y.; Li, L.-Z.; Song, S.-J. Food Byproducts as a New, Cheap Source of Bioactive Compounds: Lignans with Antioxidant, Anti-inflammatory Properties from Crataegus pinnatifida Seeds. J. Agric. Food Chem. 2015, 63, 7252–7260. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Song, Q.Y.; Peng, S.J.; Zhao, Q.Q.; Li, G.D.; Li, Y.; Gao, K. New lignans from the roots of Schisandra sphenanthera. Fitoterapia 2015, 103, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, Y.; Tasneem, S.; Hussain, N.; Daniyal, M. Lignans from Tujia Ethnomedicine Heilaohu: Chemical Characterization, Evaluation of Their Cytotoxicity, Antioxidant Activities. Molecules 2018, 23, e2147. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Yao, J.; Huang, S.; Long, X.; Wang, J.; García-García, E. Antioxidant activity of polyphenol, anthocyanin extracts from fruits of Kadsura coccinea (Lem.) A.C. Smith. Food Chem. 2009, 117, 276–281. [Google Scholar] [CrossRef]
- Kim, K.H.; Choi, J.W.; Ha, S.K.; Kim, S.Y.; Lee, K.R. Neolignans from Piper kadsura, their anti-neuroinflammatory activity. Bioorg. Med. Chem. Lett. 2010, 20, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Sun, Y.N.; Yan, X.T.; Yang, S.Y.; Kim, E.J.; Kang, H.K.; Kim, Y.H. Coumarins, lignans from Zanthoxylum schinifolium, their anticancer activities. J. Agric. Food Chem. 2013, 61, 10730–10740. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.Z.; Choi, H.R.; Choi, D.H.; Cho, K.W.; Kang, D.G.; Lee, H.S. Aqueous extract of Zanthoxylum schinifolium elicits contractile, secretory responses via beta1-adrenoceptor activation in beating rabbit atria. J. Ethnopharmacol. 2009, 126, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Min, B.K.; Hyun, D.G.; Jeong, S.Y.; Kim, Y.H.; Ma, E.S.; Woo, M.H. A new cytotoxic coumarin, 7-[(E)-3′,7′-dimethyl-6′-oxo-2′,7′-octadienyl] oxy coumarin, from the leaves of Zanthoxylum schinifolium. Arch. Pharm. Res. 2011, 34, 723–726. [Google Scholar] [CrossRef] [PubMed]
- Teponno, R.B.; Kusari, S.; Spiteller, M. Recent advances in research on lignans, neolignans. Nat. Prod. Rep. 2016, 33, 1044–1092. [Google Scholar] [CrossRef] [PubMed]
- Fuentealba, C.; Figuerola, F.; Estevez, A.M.; Bastias, J.M.; Munoz, O. Bioaccessibility of lignans from flaxseed (Linum usitatissimum L.) determined by single-batch in vitro simulation of the digestive process. J. Sci. Food Agric. 2014, 94, 1729–1738. [Google Scholar] [CrossRef] [PubMed]
- Zahir, A.; Ahmad, W.; Nadeem, M.; Giglioli-Guivarc’h, N.; Hano, C.; Abbasi, B.H. In vitro cultures of Linum usitatissimum L.: Synergistic effects of mineral nutrients, photoperiod regimes on growth, biosynthesis of lignans, neolignans. J. Photochem. Photobiol. B 2018, 187, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Gabr, A.M.M.; Mabrok, H.B.; Abdel-Rahim, E.A.; El-Bahr, M.K.; Smetanska, I. Determination of lignans, phenolic acids, antioxidant capacity in transformed hairy root culture of Linum usitatissimum. Nat. Prod. Res. 2017, 32, 1867–1871. [Google Scholar] [CrossRef] [PubMed]
- Schogor, A.L.B.; Huws, S.A.; Santos, G.T.D.; Scollan, N.D.; Hauck, B.D.; Winters, A.L.; Kim, E.J.; Petit, H.V. Ruminal Prevotella spp. May Play an Important Role in the Conversion of Plant Lignans into Human Health Beneficial Antioxidants. PLoS ONE 2014, 9, e87949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Côrtes, C.; Gagnon, N.; Benchaar, C.; Da Silva, D.; Santos, G.T.D.; Petit, H.V. In vitro metabolism of flax lignans by ruminal, faecal microbiota of dairy cows. J. Appl. Microbiol. 2008, 105, 1585–1594. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Martinez, F.J.; Barrajon-Catalan, E.; Encinar, J.A.; Rodriguez-Diaz, J.C.; Micol, V. Antimicrobial Capacity of Plant Polyphenols against Gram-positive Bacteria: A Comprehensive Review. Curr. Med. Chem. 2018. [Google Scholar] [CrossRef] [PubMed]
- Nor Azman, N.S.; Hossan, M.S.; Nissapatorn, V.; Uthaipibull, C.; Prommana, P.; Jin, K.T.; Rahmatullah, M.; Mahboob, T.; Raju, C.S.; Jindal, H.M.; et al. Anti-infective activities of 11 plants species used in traditional medicine in Malaysia. Exp. Parasitol. 2018, 194, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Pang, S.; Yang, N.; Meng, H.; Liu, J.; Zhou, N.; Zhang, M.; Xu, Z.; Gao, W.; Chen, B.; et al. Beneficial effects of schisandrin B on the cardiac function in mice model of myocardial infarction. PLoS ONE 2013, 8, e79418. [Google Scholar] [CrossRef] [PubMed]
- Chun, J.N.; Cho, M.; So, I.; Jeon, J.H. The protective effects of Schisandra chinensis fruit extract, its lignans against cardiovascular disease: A review of the molecular mechanisms. Fitoterapia 2014, 97, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Olaru, O.T.; Niţulescu, G.M.; Orțan, A.; Dinu-Pîrvu, C.E. Ethnomedicinal, Phytochemical, Pharmacological Profile of Anthriscus sylvestris as an Alternative Source for Anticancer Lignans. Molecules 2015, 8, 15003–15022. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Yngve, A.; Lagergren, J.; Lu, Y. A dietary pattern rich in lignans quercetin, resveratrol decreases the risk of oesophageal cancer. Br. J. Nutr. 2014, 112, 2002–2009. [Google Scholar] [CrossRef] [PubMed]
- Kyselka, J.; Rabiej, D.; Dragoun, M.; Kreps, F.; Burčová, Z.; Němečková, I.; Smolová, J.; Bjelková, M.; Szydłowska-Czerniak, A.; Schmidt, S.; et al. Antioxidant, antimicrobial activity of linseed lignans, phenolic acids. Eur. Food Res. Technol. 2017, 243, 1633–1644. [Google Scholar] [CrossRef]
- Vo, Q.V.; Nam, P.C.; Bay, M.V.; Thong, N.M.; Cuong, N.D.; Mechler, A. Density functional theory study of the role of benzylic hydrogen atoms in the antioxidant properties of lignans. Sci. Rep. 2018, 8, 12361. [Google Scholar] [CrossRef] [PubMed]
- Sammartino, A.; Tommaselli, G.A.; Gargano, V.; di Carlo, C.; Attianese, W.; Nappi, C. Short-term effects of a combination of isoflavones, lignans, Cimicifuga racemosa on climacteric-related symptoms in postmenopausal women: A double-blind, randomized, placebo-controlled trial. Gynecol. Endocrinol. 2006, 22, 646–650. [Google Scholar] [CrossRef] [PubMed]
- McCann, S.E.; Thompson, L.U.; Nie, J.; Dorn, J.; Trevisan, M.; Shields, P.G.; Ambrosone, C.B.; Edge, S.B.; Li, H.-F.; Kasprzak, C.; et al. Dietary lignan intakes in relation to survival among women with breast cancer: The Western New York Exposures, Breast Cancer (WEB) Study. Breast Cancer Res. Treat. 2010, 122, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, R.; Rylander-Rudqvist, T.; Saji, S.; Bergkvist, L.; Adlercreutz, H.; Wolk, A. Dietary lignans, postmenopausal breast cancer risk by oestrogen receptor status: A prospective cohort study of Swedish women. Br. J. Cancer 2008, 98, 636–640. [Google Scholar] [CrossRef] [PubMed]
- Cotterchio, M.; Boucher, B.A.; Kreiger, N.; Mills, C.A.; Thompson, L.U. Dietary phytoestrogen intake—lignans, isoflavones—and breast cancer risk (Canada). Cancer Causes Control. 2008, 19, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Trock, B.J.; Hilakivi-Clarke, L.; Clarke, R. Meta-analysis of soy intake, breast cancer risk. J. Natl. Cancer Inst. 2006, 98, 459–471. [Google Scholar] [CrossRef] [PubMed]
- Lowcock, E.C.; Cotterchio, M.; Boucher, B.A. Consumption of flaxseed, a rich source of lignans, is associated with reduced breast cancer risk. Cancer Causes Control. 2013, 24, 813–816. [Google Scholar] [CrossRef] [PubMed]
- Buck, K.; Vrieling, A.; Zaineddin, A.K.; Becker, S.; Husing, A.; Kaaks, R.; Linseisen, J.; Flesch-Janys, D.; Chang-Claude, J. Serum enterolactone, prognosis of postmenopausal breast cancer. J. Clin. Oncol. 2011, 29, 3730–3738. [Google Scholar] [CrossRef] [PubMed]
- McCann, S.E.; Hootman, K.C.; Weaver, A.M.; Thompson, L.U.; Morrison, C.; Hwang, H.; Edge, S.B.; Ambrosone, C.B.; Horvath, P.J.; Kulkarni, S.A. Dietary intakes of total, specific lignans are associated with clinical breast tumor characteristics. J. Nutr. 2012, 142, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Zaineddin, A.K.; Buck, K.; Vrieling, A.; Heinz, J.; Flesch-Janys, D.; Linseisen, J.; Chang-Claude, J. The association between dietary lignans, phytoestrogen-rich foods, fiber intake, postmenopausal breast cancer risk: A German case-control study. Nutr. Cancer 2012, 64, 652–665. [Google Scholar] [CrossRef] [PubMed]
- Velentzis, L.S.; Cantwell, M.M.; Cardwell, C.; Keshtgar, M.R.; Leathem, A.J.; Woodside, J.V. Lignans, breast cancer risk in pre-, post-menopausal women: Meta-analyses of observational studies. Br. J. Cancer 2009, 100, 1492–1498. [Google Scholar] [CrossRef] [PubMed]
- Buck, K.; Zaineddin, A.K.; Vrieling, A.; Linseisen, J.; Chang-Claude, J. Meta-analyses of lignans, enterolignans in relation to breast cancer risk. Am. J. Clin. Nutr. 2010, 92, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Yngve, A.; Lagergren, J.; Lu, Y. Dietary intake of lignans, risk of adenocarcinoma of the esophagus, gastroesophageal junction. Cancer Causes Control. 2012, 23, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Wolk, A.; Hakansson, N.; Lagergren, J.; Lu, Y. Dietary intake of lignans, risk of esophageal, gastric adenocarcinoma: A cohort study in Sweden. Cancer Epidemiol. Biomarkers Prev. 2013, 22, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Ros, R.; Guinó, E.; Alonso, M.H.; Vidal, C.; Barenys, M.; Soriano, A.; Moreno, V. Dietary flavonoids, lignans, colorectal cancer prognosis. Sci. Rep. 2015, 5, 14148. [Google Scholar] [CrossRef] [PubMed]
- Wallstrom, P.; Drake, I.; Sonestedt, E.; Gullberg, B.; Bjartell, A.; Olsson, H.; Adlercreutz, H.; Tikkanen, M.J.; Wirfält, E. Plasma enterolactone, risk of prostate cancer in middle-aged Swedish men. Eur J. Nutr. 2018, 57, 2595–2606. [Google Scholar] [CrossRef] [PubMed]
- Eriksen, A.K.; Kyrø, C.; Nørskov, N.; Bolvig, A.K.; Christensen, J.; Tjønneland, A.; Overvad, K.; Landberg, R.; Olsen, A. Prediagnostic enterolactone concentrations, mortality among Danish men diagnosed with prostate cancer. Eur. J. Clin. Nutr. 2017, 71, 1235–1240. [Google Scholar] [CrossRef] [PubMed]
- Bylund, A.; Lundin, E.; Zhang, J.X.; Nordin, A.; Kaaks, R.; Stenman, U.H.; Aman, P.; Adlercreutz, H.; Nilsson, T.K.; Hallmans, G.; et al. Randomised controlled short-term intervention pilot study on rye bran bread in prostate cancer. Eur. J. Cancer Prev. 2003, 12, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Hedelin, M.; Klint, A.; Chang, E.T.; Bellocco, R.; Johansson, J.E.; Andersson, S.O.; Heinonen, S.M.; Adlercreutz, H.; Adami, H.O.; Grönberg, H.; et al. Dietary phytoestrogen, serum enterolactone, risk of prostate cancer: The cancer prostate Sweden study (Sweden). Cancer Causes Control. 2006, 17, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Anjum, S.; Abbasi, B.H.; Doussot, J.; Favre-Réguillon, A.; Hano, C. Effects of photoperiod regimes, ultraviolet-C radiations on biosynthesis of industrially important lignans, neolignans in cell cultures of Linum usitatissimum L. (Flax). J. Photochem. Photobiol. B 2017, 167, 216–227. [Google Scholar] [CrossRef] [PubMed]
- Correa, R.C.G.; Peralta, R.M.; Haminiuk, C.W.I.; Maciel, G.M.; Bracht, A.; Ferreira, I. New phytochemicals as potential human anti-aging compounds: Reality, promise, challenges. Crit. Rev. Food Sci. Nutr. 2018, 58, 942–957. [Google Scholar] [CrossRef] [PubMed]
- Witkowska, A.M.; Waśkiewicz, A.; Zujko, M.E.; Szcześniewska, D.; Stepaniak, U.; Pająk, A.; Drygas, W. Are Total, Individual Dietary Lignans Related to Cardiovascular Disease, Its Risk Factors in Postmenopausal Women? A Nationwide Study. Nutrients 2018, 10, 865. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, N.; Valtuena, S.; Ardigo, D.; Brighenti, F.; Franzini, L.; Del Rio, D.; Scazzina, F.; Piatti, P.M.; Zavaroni, I. Intake of the plant lignans matairesinol, secoisolariciresinol, pinoresinol, lariciresinol in relation to vascular inflammation, endothelial dysfunction in middle age-elderly men, post-menopausal women living in Northern Italy. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, D.R.; Pereira, M.A.; Meyer, K.A.; Kushi, L.H. Fiber from whole grains, but not refined grains, is inversely associated with all-cause mortality in older women: The Iowa women’s health study. J. Am. Coll. Nutr. 2000, 19, 326–330. [Google Scholar] [CrossRef]
- Vanharanta, M.; Voutilainen, S.; Rissanen, T.; Adlercreutz, H.; Salonen, J.T. Risk of cardiovascular disease-related, all-cause death according to serum concentrations of enterolactone: Kuopio Ischaemic Heart Disease Risk Factor Study. Arch. Intern. Med. 2003, 163, 1099–1104. [Google Scholar] [CrossRef] [PubMed]
- Franco, O.H.; Burger, H.; Lebrun, C.E.; Peeters, P.H.; Lamberts, S.; Grobbee, D.E.; Van Der Schouw, Y.T. Higher dietary intake of lignans is associated with better cognitive performance in postmenopausal women. J. Nutr. 2005, 135, 1190–1195. [Google Scholar] [CrossRef] [PubMed]
- Eichholzer, M.; Richard, A.; Nicastro, H.L.; Platz, E.A.; Linseisen, J.; Rohrmann, S. Urinary lignans, inflammatory markers in the US National Health, Nutrition Examination Survey (NHANES) 1999–2004, 2005–2008. Cancer Causes Control. 2014, 25, 395–403. [Google Scholar] [CrossRef] [PubMed]
Seeds | HMA | HSE | OXO | ARC | CYC | CON | DIM |
Sesame seed | 7.2 | 0.01 | 0.7 | 0.01 | 1.77 | 0.75 | 0.39 |
ISO | LAR | LAS | MAT | MED | NOR | SEC | |
1.61 | 10.37 | 0.08 | 29.79 | 4.15 | 0.08 | 0.1 | |
SECS | SES | SEI | SEN | SYR | TOD | Total | |
0.01 | 538.08 | 102.86 | 133.94 | 0.2 | 2.47 | 834.57 |
LAR | MAT | MED | SEC | SYR | Total | |
---|---|---|---|---|---|---|
Other Seeds | ||||||
Flaxseed | 11.46 | 6.68 | - | 257.6 | - | 257.6 |
Sunflower seed | 0.67 | 0.67 | - | 0.18 | - | 1.52 |
Nuts | ||||||
Almond | 0.03 | 3 × 10−4 | - | 0.07 | - | 0.10 |
Brazil nut | - | 0.01 | - | 0.77 | - | 0.78 |
Cashew nut | 49.6 | 2.5 × 10−3 | - | 6.73 | - | 56.33 |
Chesnut | 7.8 × 10−3 | 8.42 × 10−3 | - | 0.2 | - | 0.21 |
Hazelnut | 0.01 | 3.3 × 10−3 | - | 0.05 | - | 0.06 |
Peanut | 4.1 | 2.5 × 10−3 | - | 2.7 | - | 6.8 |
Pecan nut | 8.4 × 10−3 | 3.15 × 10−3 | - | 0.01 | - | 0.02 |
Pistachio | 0.12 | 1 × 10−4 | - | 0.04 | - | 0.16 |
Walnut | 7.2 × 10−3 | 3.8 × 10−3 | - | 0.12 | - | 0.13 |
Pulses-Beans | ||||||
Common bean white | 0.12 | 1 × 10−3 | - | 0.08 | 8 × 10−3 | 0.2 |
Broad bean seed whole | - | 8.9 × 10−4 | - | 0.09 | - | 0.09 |
Mung bean | - | - | - | 0.18 | - | 0.18 |
Soy and soy products | ||||||
Soy paste, miso | 0.02 | 3.6 × 10−3 | - | 0.01 | - | 0.03 |
Soy flour | - | 7.5 × 10−3 | - | 0.3 | - | 0.3 |
Soy tempe | 0.01 | 5 × 10−4 | - | 0.01 | - | 0.02 |
Soy tofu | 0.04 | 7.27 × 10−5 | 8.5 × 10−3 | 9.91 × 10−3 | 0.04 | 0.09 |
Soy yogurt | 0.01 | 3 × 10−3 | - | 0.02 | - | 0.03 |
Soyben edamame | 0.07 | - | 0.02 | 0.07 | 0.2 | 0.3 |
Soybean sprout | 0.03 | 5 × 10−4 | 0.01 | 0.03 | 0.05 | 0.12 |
LAR | MAT | MED | SEC | SYR | Total | |
---|---|---|---|---|---|---|
Cereal products | ||||||
Bread (whole grain flour) | 0.05 | 3.1 × 10−4 | - | 8.68 × 10−3 | - | 0.05 |
Bread (refined flour) | 0.01 | 1.23 × 10−3 | - | 7.19 × 10−3 | 0.04 | 0.05 |
Bread, rye, whole grain flour | 0.01 | 0.02 | - | 0.14 | - | 0.17 |
Breakfast cereals, bran | 0.01 | 4.87 × 10−3 | - | 0.03 | - | 0.04 |
Breakfast cereals, corn | - | 1.67 × 10−3 | - | 5.5 × 10−3 | - | 0.007 |
Breakfast cereals, muesli | 0.14 | 5.6 × 10−3 | - | 0.08 | - | 0.22 |
Breakfast cereal, oat | - | 0.06 | - | 0.02 | - | 0.08 |
Pasta | - | 1.85 × 10−3 | - | 2.3 × 10−3 | - | 0.004 |
Pasta Whole Grain | - | 1.5 × 10−3 | - | 5 × 10−3 | - | 0.006 |
Cereals | ||||||
Barley, whole grain flour | 0.08 | 3 × 10−3 | 0.01 | 0.03 | 0.16 | 0.28 |
Buckwheat, whole grain flour | 0.36 | 1 × 10−3 | 0.03 | 0.13 | 0.24 | 0.76 |
Common wheat, germ | - | 9 × 10−3 | - | 0.02 | - | 0.02 |
Common wheat, refined flour | 0.18 | 2.14 × 10−4 | - | 0.02 | - | 0.2 |
Common wheat, whole grain flour | 0.1 | 9 × 10−4 | 0.03 | 0.02 | 0.37 | 0.52 |
Hard wheat, semolin | - | - | - | 2 × 10−3 | - | 0.002 |
Maize, whole grain | 0.12 | 6.55 × 10−5 | - | 0.14 | 0.07 | 0.33 |
Oat, whole grain flour | 0.18 | 0.07 | 0.04 | 0.01 | 0.35 | 0.65 |
Rye, whole grain flour | 0.32 | 0.01 | 0.14 | 0.02 | 0.97 | 1.46 |
LAR | MAT | MED | SEC | SYR | Total | |
---|---|---|---|---|---|---|
Cabbages | ||||||
Broccoli | 97.2 | 2.44 × 10−5 | - | 1.31 | - | 98.51 |
Brussel sprouts | 49.3 | 4 × 10−5 | - | 1.06 | - | 50.36 |
Cauliflower | 9.31 | 2.4 × 10−5 | 0.02 | 0.13 | 0.02 | 9.48 |
Collards | 0.06 | 4 × 10−4 | - | 5.9 × 10−3 | - | 0.06 |
Green cabbage | 0.03 | 3.5 × 10−5 | - | 9.2 × 10−3 | - | 0.03 |
Red cabbage | 17.8 | 4.44 × 10−5 | - | 0.3 | - | 18.1 |
White cabbage | 21.2 | - | - | 0.31 | - | 21.51 |
Kale | 59.9 | 1.2 | - | 1.9 | - | 63 |
Sauerkraut | 11.6 | - | - | 6.7 | - | 18.3 |
Fruit vegetales | ||||||
Avocado | 0.03 | 7.67 × 10−3 | 0.24 | 0.02 | 0.44 | 0.73 |
Eggplant purple | 0.05 | - | 7 × 10−3 | 7.79 × 10−3 | 6 × 10−3 | 0.07 |
Black olive | 0.03 | 5.62 × 10−3 | - | 5.75 × 10−3 | - | 0.04 |
Green olive | 3.9 × 10−3 | 3.34 × 10−3 | - | 0.02 | - | 0.02 |
Green sweet pepper | 12.32 | - | 1 × 10−3 | 0.22 | 4 × 10−3 | 12.54 |
Red sweet pepper | 7.97 | - | - | 0.24 | - | 8.21 |
Yellow sweet pepper | 0.07 | - | - | 5.5 × 10−3 | - | 0.07 |
Tomato (Cherry) | 0.03 | - | 3 × 10−3 | 0.01 | 4.5 × 10−3 | 0.04 |
Tomato (Whole) | 2.1 | 8.33 × 10−6 | 3.5 × 10−3 | 0.05 | 4.5 × 10−3 | 2.15 |
Gourds | ||||||
Cucumber | 3.55 | - | - | 0.25 | - | 3.8 |
Pumpkin | 0.01 | 2.5 × 10−5 | - | 0.1 | - | 0.11 |
Squash | - | - | - | 9 × 10−3 | - | 0.009 |
Zucchini | 6.4 | - | - | 0.62 | - | 7.02 |
Leaf vegetables | ||||||
Arugula | - | 2 × 10−4 | - | 0.1 | - | 0.1 |
Chicory (green) | 0.6 | 1.24 × 10−4 | - | 0.57 | - | 1.17 |
Lettuce (green) | 0.3 | 2.24 × 10−4 | - | 0.18 | - | 0.48 |
Spinach | 0.06 | 2.37 × 10−5 | - | 4.85 × 10−3 | - | 0.06 |
Broad bean pod | - | - | - | 0.02 | - | 0.02 |
Pod vegetables | ||||||
Green bean | 22 | - | - | 0.67 | - | 22.67 |
Pulse vegetables | ||||||
Fresh pea | 0.05 | - | 3.5 × 10−3 | 7.56 × 10−4 | - | 0.0542 |
Root vegetables | ||||||
Carrot | 4.5 | 3.89 × 10−3 | - | 3.16 | - | 7.66 |
Celeriac | - | 3 × 10−5 | - | 0.02 | - | 0.02 |
Parsnip | - | 0.02 | - | 0.03 | - | 0.05 |
Radish | 0.01 | 1.25 × 10−4 | 5.5 × 10−3 | 6.57 × 10−3 | 0.02 | 0.04 |
Swede | - | 7.43 × 10−5 | - | 4.93 × 10−3 | - | 0.005 |
Turnip root | 0.1 | - | 4 × 10−3 | 9.83 × 10−3 | 0.03 | 0.14 |
Shoot vegetables | ||||||
Asparagus | 0.07 | 3.97 × 10−3 | 4 × 10−3 | 0.25 | 0.05 | 0.37 |
Fennel | - | 0.01 | - | 0.05 | - | 0.06 |
Stalks vegetables | ||||||
Celery stalks | - | - | - | 5.99 × 10−3 | - | 0.005 |
Tubers | ||||||
Potato | 2.8 | 7.69 × 10−4 | - | 0.09 | - | 2.89 |
Sweet potato | 0.07 | 0.1 | - | 0.12 | - | 0.29 |
HMA | OXO | CON | CYC | LAR | LAS | |
Fruit Berries | ||||||
Bilberry | - | - | - | 6.24 × 10−3 | 0.04 | 0.09 |
Blackberry | - | - | - | 7.96 × 10−3 | 0.15 | 0.15 |
Blackcurrant | - | - | - | 0.01 | 7.3 × 10−3 | 0.01 |
Cloudberry | - | - | - | - | 0.65 | 0.25 |
Black grape | - | - | - | - | 5.2 | - |
Green grape | - | - | - | - | 1.88 | - |
Lingonberry | - | - | 1.04 × 10−3 | 0.03 | 0.03 | 0.01 |
Strawberry | 8.55 × 10−4 | 4.59 × 10−4 | 9.45 × 10−3 | 0.01 | 5.87 | 0.1 |
MAT | MED | SEC | SECS | SYR | Total | |
Bilberry | - | 0.08 | 0.06 | 0.01 | 0.12 | 0.4 |
Blackberry | 9.07 × 10−4 | 0.05 | 0.1 | 0.13 | 0.19 | 0.77 |
Blackcurrant | 1.47 × 10−3 | 0.01 | 0.09 | 0.03 | - | 0.15 |
Cloudberry | - | 0.48 | 0.05 | 0.01 | 0.41 | 1.85 |
Black grape | 0.11 | - | 0.09 | - | - | 5.4 |
Green grape | 0.09 | - | 0.28 | - | - | 2.25 |
Lingonberry | - | 0.23 | 0.37 | 0.02 | 0.14 | 0.83 |
Strawberry | 1.58 × 10−5 | 0.03 | 0.14 | 0.01 | 0.03 | 6.2 |
LAR | MAT | MED | SEC | SYR | Total | |
Fruits Citrus | ||||||
Grapefruit | 7.13 | 0.05 | - | 0.26 | - | 7.44 |
Lemon | - | - | - | 0.02 | - | 0.02 |
Orange | 2.4 | 0.05 | 9.5 × 10−3 | 0.14 | 0.12 | 2.71 |
Tangerine | 5.7 | 0.02 | - | 0.08 | - | 5.8 |
Fruits Drupes | ||||||
Apricot | 10.5 | 3.11 × 10−5 | - | 1.07 | - | 11.57 |
Nectarine | 4.1 | - | - | 0.61 | - | 4.71 |
Peach | 6 | 1.71 × 10−4 | - | 0.83 | - | 6.83 |
Plum | 0.31 | 2.22 × 10−4 | 1 × 10−3 | 0.09 | - | 0.4 |
Fruits-Gourds | ||||||
Cantaloupe | 1.8 × 10−3 | - | - | 4.7 × 10−3 | - | 0.006 |
Melon | 4.4 | 1.05 × 10−5 | - | 0.09 | - | 4.49 |
Watermelon | 0.04 | - | 1 × 10−3 | 0.02 | 0.02 | 0.08 |
Fruits-Pomes | ||||||
Apple | 0.1 | 2.71 × 10−5 | - | 1.79 × 10−3 | - | 0.1 |
Pear | 15.5 | 4.3 × 10−5 | - | 0.06 | - | 15.56 |
Fruits-Tropical | ||||||
Banana | 2.2 × 10−3 | 5.45 × 10−5 | - | 7.73 × 10−5 | 0.01 | 0.01 |
Kiwi | 1.03 | 1.93 × 10−3 | 4.5 × 10−3 | 3.13 | 4 × 10−3 | 4.17 |
Mango | - | 1.06 × 10−3 | - | 0.01 | - | 0.01 |
Passion fruit | - | - | - | 0.02 | - | 0.02 |
Papaya | - | 2 × 10−3 | - | - | - | 0.002 |
Persimmon | - | - | - | 4 × 10−3 | - | 0.004 |
Pineapple | 0.2 | 0.16 | 2 × 10−3 | 0.21 | 0.09 | 0.66 |
Pomegranate | - | 9 × 10−3 | - | 0.29 | - | 0.29 |
ISO | LAR | MAT | SEC | SYR | Total | |
Alcoholic Beverages | ||||||
Red Wine | 0.07 | 7.56 × 10−3 | 5.51 × 10−3 | 0.04 | 3.43 × 10−3 | 0.12 |
White Wine | 0.03 | 6.65 × 10−3 | 2.68 × 10−3 | 7.45 × 10−3 | 1.45 × 10−3 | 0.04 |
Dark Beer | - | - | - | 0.04 | - | 0.04 |
Beer | - | - | - | 0.03 | - | 0.03 |
Cider | - | - | - | 0.04 | - | 0.04 |
Scotch whisky | - | - | - | 4 × 10−3 | - | 0.004 |
Sherry | - | - | - | 0.02 | - | 0.02 |
Non-alcoholic Beverages | ||||||
Cocoa | - | - | - | 0.03 | - | 0.03 |
Coffee | - | 9 × 10−4 | 4 × 10−4 | 8.67 × 10−3 | - | 0.009 |
Decaffeinated Coffe | - | 1.1 × 10−3 | 4.25 × 10−4 | 8.35 × 10−3 | - | 0.009 |
Roman camomile | - | - | 5 × 10−4 | 1 × 10−3 | - | 0.001 |
Lemon juice | - | - | - | 2 × 10−3 | - | 0.002 |
Orange juice | - | 2 × 10−4 | - | 8 × 10−3 | - | 0.008 |
Soy milk | - | 6.17 × 10−3 | 5 × 10−5 | 2.25 × 10−3 | - | 0.008 |
Black Tea | - | 2 × 10−4 | 2.65 × 10−3 | 0.03 | - | 0.03 |
Green Tea | - | 1 × 10−4 | 3.38 × 10−3 | 0.03 | - | 0.03 |
Oolong Tea | - | - | 1.8 × 10−3 | 0.02 | - | 0.02 |
Fruit oils | ACE | LAR | MAT | PIN | SEC | Total | ||
Extra virgin Olive Oil | 0.66 | 3.43 × 10−3 | 7.5 × 10−5 | 0.42 | 2.5 × 10−4 | 1.08 | ||
Nut oils | ||||||||
Peanut, butter | - | 8.8 × 10−3 | 7.52 × 10−3 | - | 0.05 | 0.06 | ||
Other seed oils | EPI | EPL | SES | SEI | SEO | SEN | SEL | Total |
Sesame seed oil | 192.6 | 51.97 | 420.99 | 305.43 | 24.92 | 243.13 | 55.71 | 1294.75 |
Sesame seed black oil | - | - | 644.5 | 226.92 | 21.55 | 287.33 | 43 | 1223.3 |
Author, Year | Methods | Results |
---|---|---|
Breast Cancer | ||
Lowcock, E.C. et al. (2013) [111] | Case-control study (2999 cases and 3370 controls) FFQ | Consumption of flaxseed and flax bread was associated with a significant reduction in breast cancer risk (OR 0.82, 95% CI 0.69–0.97; and OR 0.77, 95% CI 0.67–0.89), respectively. |
McCann et al. (2012) [113] | Case-control study (638 cases and 611 controls) BioRepository at Roswell Park Cancer Institute FFQ | Lignan intakes were inversely associated with risk of ER (−) breast cancer among premenopausal women (OR 0.16, 95% CI 0.03–0.44) and particularly triple negative tumors (OR 0.16, 95% CI 0.04–0.62). |
Zaineddin AK et al. (2012) [114] | Case-control study (2884 cases and 5509 controls) FFQ | High and low consumption of soybeans, as well as of sunflower and pumpkin seeds were associated with significantly reduced breast cancer risk compared to no consumption (OR 0.83, 95% CI 0.70–0.97; and OR 0.66, 95% CI 0.77–0.97, respectively). |
Buck K et al. (2011) [112] | 1140 postmenopausal patients (age 50 to 74 years) FFQ Serum Enterolactone | Serum enterolactone was associated with a significantly reduced risk of death only for estrogen receptor-negative tumors (HR 0.27; 95% CI 0.08 to 0.87) |
Buck K et al. (2010) [116] | Meta-analyses Medline search to identify epidemiologic studies published between 1997 and August 2009 | Lignan exposure was not associated with overall breast cancer risk (RE 0.92; 95% CI 0.81, 1.02). |
McCann, S.E et al. (2010) [107] | Breast cancer patients; National Death Index Food frequency questionnaire (FFQ), DietSys (3.7) | Lignan intake among post-menopausal women with breast cancer significantly reduced risk of mortality from breast cancer (HR 0.29, 95% CI, 0.11–0.76), as well as significantly reducing risk of all-cause mortality (HR 0.49, 95% CI 0.26–0.91). |
Velentzis LS et al. (2009) [115] | Meta-analy sesMedline, BIOSIS and EMBASE databases publications up to 30 September 2008 | Overall, there was little association between high plant lignan intake and breast cancer risk (11 studies, OR 0.93, 95% CI 0.83–1.03). |
Cotterchio, M et al. (2008) [109] | Ontario Cancer Registry; Controls: Age-stratified random sample of women FFQ | Total phytoestrogen intake in pre-menopausal women was associated with a significant reduction in breast cancer risk among overweight women (OR 0.51, 95% CI 0.30, 0.87). |
Suzuki, R. et al. (2008) [108] | Swedish Mammography Cohort FFQ and Swedish National Food database Serum Enterolactone: Fluoroimmunoassay Receptor status of tumors: Immunohistochemical | A significant 17% risk reduction for breast cancer overall in high lignan intake was observed, but no heterogeneity across Estrogen Receptor/Progesterone Receptor subtypes. |
Trock BJ et al. (2006) [110] | Meta-analysis of 18 epidemiologic studies published from 1978 through 2004 | High soy intake was discreetly associated with reduction of breast cancer risk (OR 0.86, 95% CI: 0.75 to 0.99); association was not statistically significant among women in Asian countries (OR 0.89, 95% CI 0.71 to 1.12). |
Gastroesophageal Cancer | ||
Lin Y et al. (2012) [117] | Case-control study (1995–1997); 806 controls, 181 cases of esophageal adenocarcinoma, 255 cases of gastroesophageal junctional adenocarcinoma, and 158 cases of esophageal squamous cell carcinoma. Interviews and questionnaires; FFQ | No clear associations were found between risk of esophageal carcinoma and lignan intake. |
Lin Y et al. (2012) [118] | Cohort study in Sweden, 81,670 (followed up 1998 to 2009). Cancer cases: Swedish Cancer Register FFQ | There was no statistically significant association between dietary intake of lignans and any of the studied adenocarcinomas. |
Colon Cancer | ||
Zamora-Ros, R. et al. (2015) [119] | 409 CRC cases in Barcelona (Spain). FFQ; Phenol-Explorer database. | No associations were also observed with either total lignans or any flavonoid subclass intake. |
Prostate Cancer | ||
Wallström P et al. (2018) [120] | Case-control study (1010 cases and 1817 controls) National registers and hospital records FFQ Plasma Enterolactone: Fluoroimmunoassay | There were no significant associations between plasma enterolactone and incidence of prostate cancer (OR 0.99, 95% CI 0.77–1.280) |
Eriksen AK et al. (2017) [121] | 1390 men diagnosed with prostate cancer from the Danish Diet, Cancer and Health cohort Plasma Enterolactone: Fluoroimmunoassay | No associations between plasma enterolactone concentrations and prostate cancer aggressiveness. |
Hedelin M et al. (2006) [123] | Swedish case-control study (1499 prostate cancer cases and 1130 controls) FFQ | No association was found between dietary intake of total or individual lignans or isoflavonoids and risk of prostate cancer. |
Bylund A. et al. (2003) [122] | 10 men with prostate cancer were randomized to a daily supplement of rye bran bread and 8 men of wheat bread Blood and urine samples. Ultrasound-guided core biopsies of the prostate. | In the rye group, there was a significant increase in plasma enterolactone. However, only small changes were observed in plasma concentrations of prostate specific antigen (PSA). |
Cardiovascular disease | ||
Witkowska AM et al. (2018) [126] | 2599 postmenopausal women, participants of the Multi-center National Population Health Examination Surveys. 24-h Dietary recall and food databases. | In postmenopausal women, total and individual lignan intakes (secoisolariciresinol, pinoresinol, matairesinol) were not associated with the prevalence of CVD and its risk factors. |
Pellegrini N et al. (2010) [127] | Cross-sectional study in 151 men and 91 post-menopausal women. Anthropometric characteristics. Soluble intercellular adhesion molecule-1 (sICAM-1), CRP, insulin, glucose, total cholesterol, HDL-cholesterol and triacylglycerols. Three-day weighed food record | No relationship between intake of pinoresinol, lariciresinol or total lignans and sICAM-1 values was observed. |
Jacobs DR. et al. (2000) [128] | 11,040 postmenopausal women enrolled in the Iowa Women’s Health Study Followed from baseline 1986−997. | Women who consumed on average 1.9 g refined grain fiber/2000 kcal and 4.7 g whole grain fiber/2000 kcal had a 17% lower mortality rate (RR = 0.83, 95% CI = 0.73–0.94) than women who consumed predominantly refined grain fiber. |
Vanharanta M. et al. (2003) [129] | A prospective study of Finnish men. 1889 men aged 42 to 60 years. Followed up 12.2 years. | Multivariate analyses showed significant associations between elevated serum enterolactone concentration and reduced risk of CVD-related mortality. |
Other diseases | ||
Franco OH. et al. (2005) [130] | Community-based survey among 394 postmenopausal women. FFQ; Cognitive function:Mini-Mental Examination | Increasing dietary lignans intake was associated with better performance on the MMSE (OR 1.49, 95% CI 0.94–2.38). Results were most pronounced in women who were 20–30 years. |
Eichholzer M. et al. (2014) [131] | 2028 participants of NHANES 2005-2008 and 2628 participants of NHANES 1999-2004 (aged ≥18 years) Inflammatory marker: CRP | Statistically significant inverse associations of urinary lignan, enterodiol, and enterolactone concentrations with circulating CRP counts were observed in the multivariate-adjusted models. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-García, C.; Sánchez-Quesada, C.; Toledo, E.; Delgado-Rodríguez, M.; Gaforio, J.J. Naturally Lignan-Rich Foods: A Dietary Tool for Health Promotion? Molecules 2019, 24, 917. https://doi.org/10.3390/molecules24050917
Rodríguez-García C, Sánchez-Quesada C, Toledo E, Delgado-Rodríguez M, Gaforio JJ. Naturally Lignan-Rich Foods: A Dietary Tool for Health Promotion? Molecules. 2019; 24(5):917. https://doi.org/10.3390/molecules24050917
Chicago/Turabian StyleRodríguez-García, Carmen, Cristina Sánchez-Quesada, Estefanía Toledo, Miguel Delgado-Rodríguez, and José J. Gaforio. 2019. "Naturally Lignan-Rich Foods: A Dietary Tool for Health Promotion?" Molecules 24, no. 5: 917. https://doi.org/10.3390/molecules24050917
APA StyleRodríguez-García, C., Sánchez-Quesada, C., Toledo, E., Delgado-Rodríguez, M., & Gaforio, J. J. (2019). Naturally Lignan-Rich Foods: A Dietary Tool for Health Promotion? Molecules, 24(5), 917. https://doi.org/10.3390/molecules24050917