Quality Evaluation of Wild and Cultivated Schisandrae Chinensis Fructus Based on Simultaneous Determination of Multiple Bioactive Constituents Combined with Multivariate Statistical Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of Extraction Conditions
2.2. Optimization of UFLC Conditions
2.3. Optimization of MS Conditions
2.4. UFLC Method Validation
2.5. Quantification of Lignans and Organic Acids
2.6. PCA of the Samples
2.7. PLS-DA of the Samples
2.8. T-test
2.9. Gray Relational Analysis (GRA)
3. Materials and Methods
3.1. Plant Materials
3.2. Chemicals and Reagents
3.3. Preparation of Standard Solutions
3.4. Preparation of Sample Solutions
3.5. Chromatographic and Mass Spectrometric Conditions
3.6. Validation of the Method
3.6.1. Linearity, LOD, and LOQ
3.6.2. Precision, Repeatability, Stability, Accuracy
3.7. Multivarite Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zhou, Y.; Huang, S.X.; Pu, J.X.; Li, J.R.; Ding, L.S.; Chen, D.F.; Sun, H.D.; Xu, H.X. Ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometric procedure for qualitative and quantitative analyses of nortriterpenoids and lignans in the genus Schisandra. J. Pharmaceut. Biomed. 2011, 56, 916–927. [Google Scholar] [CrossRef] [Green Version]
- Szopa, A.; Ekiert, R.; Ekiert, H. Current knowledge of Schisandra chinensis (Turcz.) Baill. (Chinese magnolia vine) as a medicinal plant species: A review on the bioactive components, pharmacological properties, analytical and biotechnological studies. Phytochem. Rev. 2017, 16, 195–215. [Google Scholar] [CrossRef]
- Li, X.G.; Gao, Q.; Weng, W.; Zhang, P.F.; Xiao, F.; Luo, H.M. Research progress of effective parts and its pharmacological action of Schisandrae Chinesis Fructus. J. Chin. Med. Mater. 2005, 28, 156–159. [Google Scholar]
- Hu, J.Y.; Mao, C.Q.; Gong, X.D.; Lu, T.L.; Chen, H.; Huang, Z.J.; Cai, B.C. Simultaneous determination of eleven characteristic lignans in Schisandra chinensis by high-performance liquid chromatography. Pharmacogn. Mag. 2013, 9, 155–161. [Google Scholar] [Green Version]
- Ming, Y.B.; Zhao, H.; Zhou, L.; Tian, Y.H. Reseach progress of Schisandra Chinesis (Turcz) Bail. Pract. Pharm. Clin. Remed. 2007, 10, 365–367. [Google Scholar]
- Kormosh, N.; Laktionov, K.; Antoshechkina, M. Effect of a combination of extracts from several plants on cell-mediated and humoral immunity of patients with advanced ovarian cancer. Phytother. Res. 2006, 20, 424–425. [Google Scholar] [CrossRef]
- Liu, K.T.; Cresteil, T.; Columelli, S.; Lesca, P. Pharmacological properties of dibenzo[a,c]cyclooctene derivatives isolated from Fsh, N.; LaII. Induction of phenobarbital-like hepatic monooxygenases. Chem-Biol. Interact. 1982, 39, 315–330. [Google Scholar] [CrossRef]
- Yang, H.J.; Yang, S.M. General situation of pharmacological action of Fructus Schisandra Chinesis (Turcz) Bail. Ginseng Res. 1999, 11, 5–8. [Google Scholar]
- Zhong, S.; Nie, Y.C.; Gan, Z.Y.; Liu, X.D.; Fang, Z.F.; Zhong, B.N.; Tian, J.; Huang, C.Q.; Lai, K.F.; Zhong, N.S. Effects of Schisandra chinensis extracts on cough and pulmonary inflammation in a cough hypersensitivity guinea pig model induced by cigarette smoke exposure. J. Ethnopharmacol. 2015, 165, 73–82. [Google Scholar] [CrossRef]
- Wang, C.C.; Cai, H.; Zhao, H.; Yan, Y.; Shi, J.J.; Chen, S.Y.; Tan, M.X.; Chen, J.L.; Zou, L.S.; Chen, C.H. Distribution patterns for metabolites in medicinal parts of wild and cultivated licorice. J. Pharm. Biomed. Anal. 2018, 161, 464–473. [Google Scholar] [CrossRef]
- Brunetti, C.; George, R.M.; Tattini, M.; Field, K.; Davey, M.P. Metabolomics in plant environmental physiology. J. Exp. Bot. 2013, 64, 4011–4020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Astaf’eva, O.V.; Sukhenko, L.T. Comparative analysis of antibacterial properties and chemical composition of Glycyrrhiza glabra L. from Astrakhan region (Russia) and Calabria region (Italy). Bull. Exp. Biol. Med. 2014, 156, 829–832. [Google Scholar] [CrossRef]
- Wei, S.S.; Yang, M.; Chen, X.; Wang, Q.R.; Cui, Y.J. Simultaneous determination and assignment of 13 major flavonoids and glycyrrhizic acid in licorices by HPLC-DAD and Orbirap mass spectrometry analyses. Chin. J. Nat. Med. 2015, 13, 232–240. [Google Scholar] [CrossRef]
- Ren, M.T.; Chen, J.; Song, Y.; Sheng, L.S.; Li, P.; Qi, L.W. Identification and quantification of 32 bioactive compounds in Lonicera species by high performance liquid chromatography coupled with time-of-flight mass spectrometry. J. Pharm. Biomed. Anal. 2008, 48, 1351–1360. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.X.; Chen, X.H.; Cheng, W.M.; Cheng, W.M.; Shen, Z.D.; Bi, K.S. Simultaneous LC–MS Quantification of 15 Lignans in Schisandra chinensis (Turcz.) Baill. Fruit. Chromatographia 2008, 67, 559–566. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, G.Q.; Zhu, Z.Y.; Zhao, L.; Fei, Y.; Jing, J.; Chai, Y.F. Determination of six lignans in Schisandra chinensis (Turcz.) Baill. Fruits and related Chinese multiherb remedies by HPLC. Food Chem. 2009, 115, 735–739. [Google Scholar] [CrossRef]
- Liu, H.; Lai, H.; Jia, X.; Liu, J.; Zhang, Z.; Qi, Y.; Zhang, J.; Song, J.; Wu, C.; Zhang, B. Comprehensive chemical analysis of Schisandra chinensis by HPLC–DAD–MS combined with chemometrics. Phytomedicine. 2013, 20, 1135–1143. [Google Scholar] [CrossRef]
- An, K.L.; Li, D.K.; Zhou, D.Z.; Ye, Z.L.; Guo, Q.S. Effects of different drying methods on quality of schisandrae chinensis fructus. Chin. J. Chin. Mater. Med. 2014, 39, 2900–2906. [Google Scholar]
- Xu, J.H.; Su, L.L.; Wang, Q.H.; Mao, C.Q.; Wang, D.D. Determination of citric acid, L-malic acid and 5-hydroxyl methyl furfural in diffe-rent processed products of Schisandra chinensis by HPLC. Northwest Pharm. J. 2017, 32, 548–551. [Google Scholar]
- Ji-ye, A.; He, J.; Sun, R.B. Multivariate statistical analysis for metabolomic data: the key points in principal component analysis. Acta Pharm. Sin. 2018, 53, 929–937. [Google Scholar]
- Bo, N.; Broberg, P.; Lindberg, C.; Plymoth, A. Analysis and understanding of high-dimensionality data by means of multivariate data analysis. Chem. Bio-divers. 2005, 2, 1487–1494. [Google Scholar]
- Mediani, A.; Abas, F.; Maulidiani, M.; Khatib, A.; Tan, C.P.; Ismail, I.S.; Shaari, K.; Ismail, A. Characterization of Metabolite Profile in Phyllanthus niruri and Correlation with Bioactivity Elucidated by Nuclear Magnetic Resonance Based Metabolomics. Molecules 2017, 22, 902. [Google Scholar] [CrossRef]
- Han, D.Q.; Zhao, J.; Xu, J.; Peng, H.S.; Chen, X.J.; Li, S.P. Quality evaluation of Polygonum multiflorum in China based on HPLC analysis of hydrophilic bioactive compounds and chemometrics. J. Pharm. Biomed. Anal. 2013, 72, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Da, J.; Wu, W.Y.; Hou, J.J.; Long, H.L.; Yao, S.; Yang, Z.; Cai, L.Y.; Yang, M.; Jiang, B.H.; Liu, X.; et al. Comparison of two officinal Chinese pharmacopoeia species of Ganoderma based on chemical research with multiple technologies and chemometrics analysis. J. Chromatogr. A. 2012, 1222, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Xu, S.; Zhang, Y.; Zhang, H.; Liu, M.N.; Liu, H.; Gao, Y.; Xue, X.; Xiong, H.; Lin, R.; et al. Chemical Comparison of Two Drying Methods of Mountain Cultivated Ginseng by UPLC-QTOF-MS/MS and Multivariate Statistical Analysis. Molecules 2017, 22, 717. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Liu, Z.X.; Zou, L.S.; Liu, X.H.; Chai, C.; Zhao, H.; Yan, Y.; Wang, C.C. Quality evaluation of Apocyni Veneti Folium from different habitats and commercial herbs based on simultaneous determination of multiple bioactive constituents combined with multivariate statistical analysis. Molecules 2018, 23, 573. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the authors. |
No | Coumpounds | tR (min) | Mass Data (m/z) | Precursor Ion | Product Ion | FV (V) | CE (eV) |
---|---|---|---|---|---|---|---|
1 | Quinic acid | 0.79 | 191.1[M − H]− | 191.1 | 85.02 | −120 | −26 |
2 | d(−)-Tartaric acid | 0.82 | 149.0[M − H]− | 149.0 | 87 | −55 | −16 |
3 | l-(−)-Malic acid | 0.84 | 133.0 [M − H]− | 133.0 | 114.9 | −80 | −14 |
4 | Protocatechuic acid | 1.11 | 153.0 [M − H]− | 153.0 | 106 | −85 | −16 |
5 | Schisandrin | 5.65 | 433.3[M + H]+ | 433.3 | 415.34 | 146 | 13 |
6 | Gomisin D | 5.75 | 553.3[M + Na]+ | 553.3 | 507.32 | 21 | 35 |
7 | Gomisin J | 5.92 | 389.3[M + H]+ | 389.3 | 287.1 | 156 | 27 |
8 | Schisandrol B | 6.11 | 417.3[M + H]+ | 417.3 | 399.2 | 131 | 15 |
9 | Angeloylgomisin H | 6.67 | 501.3[M + H]+ | 501.3 | 401.2 | 146 | 11 |
10 | Schizantherin B | 7.34 | 515.3[M + H]+ | 515.3 | 415.2 | 56 | 11 |
11 | Schisanhenol | 7.63 | 403.2[M + H]+ | 403.2 | 340.2 | 1 | 27 |
12 | Deoxyschizandrin | 8.83 | 417.3[M + H]+ | 417.3 | 316.18 | 241 | 31 |
13 | γ-schisandrin | 9.50 | 401.3[M + H]+ | 401.3 | 300.15 | 231 | 31 |
14 | Schizandrin C | 9.85 | 385.2[M +H]+ | 385.2 | 285.16 | 201 | 29 |
15 | Schisantherin | 11.96 | 537.4[M + H]+ | 537.4 | 282.3 | 56 | 15 |
No. | Compounds | Regression Equation | r2 | Liner Range (ng/mL) | LODs (ng/mL) | LOQs (ng/mL) | Precision (RSD, %) | Repeatability (RSD, %) (n = 6) | Stability (RSD, %) (n = 6) | Recovery (%) (n = 3) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Intra-Day (n = 6) | Inter-Day (n = 3) | Low | Medium | High | ||||||||||||
Mean | RSD | Mean | RSD | Mean | RSD | |||||||||||
1 | Quinic acid | Y = 1330X + 76100 | 1.0000 | 133 – 13300 | 2.66 | 6.57 | 2.40 | 2.63 | 3.5 | 1.1 | 99.55 | 0.22 | 99.65 | 0.36 | 99.83 | 0.05 |
2 | d(−)-Tartaric acid | Y = 1240X + 1190 | 0.9995 | 3.75 – 24.9 | 0.49 | 1.62 | 3.09 | 1.60 | 2.1 | 2.3 | 95.62 | 2.1 | 98.07 | 0.57 | 97.34 | 0.74 |
3 | l-(−)-Malic acid | Y = 2040X + 149000 | 0.9991 | 148 – 29500 | 2.95 | 12.42 | 1.79 | 1.45 | 3.2 | 1.2 | 99.92 | 0.06 | 99.93 | 0.03 | 99.96 | 0.06 |
4 | Protocatechuic acid | Y = 162X + 3100 | 0.9997 | 255 – 12800 | 1.96 | 9.03 | 2.31 | 1.27 | 2.5 | 3.3 | 99.98 | 0.01 | 99.96 | 0.02 | 99.93 | 0.06 |
5 | Schisandrin | Y = 21.3X + 1550 | 0.9991 | 11.6 – 9320 | 1.36 | 7.84 | 3.06 | 1.86 | 0.7 | 3.1 | 99.36 | 0.3 | 99.8 | 0.1 | 99.63 | 0.06 |
6 | Gomisin D | Y = 3770X + 34900 | 0.9992 | 10.1 – 506 | 0.84 | 6.61 | 1.11 | 0.81 | 1.5 | 1.2 | 96.63 | 2.36 | 96.96 | 1.87 | 96.33 | 4.12 |
7 | Gomisin J | Y = 739X + 7100 | 0.9993 | 23.3 – 931 | 1.53 | 6.07 | 2.03 | 1.26 | 3.0 | 3.0 | 98.63 | 0.62 | 98.59 | 0.54 | 97.7 | 0.45 |
8 | Schisandrol B | Y = 4140X + 260000 | 0.9997 | 107 – 5350 | 1.92 | 8.15 | 2.56 | 0.31 | 2.4 | 0.8 | 99.05 | 0.38 | 98.85 | 0.18 | 99.13 | 0.7 |
9 | Angeloylgomisin H | Y = 25800X + 623000 | 0.9991 | 5.65 – 2260 | 1.36 | 5.38 | 2.45 | 0.15 | 1.6 | 3.1 | 99.84 | 0.22 | 99.24 | 0.74 | 99.68 | 0.32 |
10 | Schizantherin B | Y = 240X + 3640 | 0.9998 | 55.2 – 2210 | 2.29 | 12.65 | 1.00 | 0.54 | 1.3 | 2.3 | 99.02 | 0.34 | 98.98 | 0.73 | 99.33 | 0.69 |
11 | Schisanhenol | Y = 2900X + 10800 | 0.9999 | 19.9 – 1194 | 1.99 | 5.82 | 2.59 | 1.58 | 4.9 | 1.5 | 98.19 | 1.12 | 98.63 | 0.88 | 96.92 | 3.3 |
12 | Deoxyschizandrin | Y = 26600X + 217000 | 1.0000 | 24 – 2400 | 2.91 | 11.21 | 0.87 | 1.10 | 1.6 | 1.3 | 97.83 | 0.74 | 98.86 | 0.34 | 99.42 | 0.02 |
13 | γ-schisandrin | Y = 15700X + 214000 | 1.0000 | 15.2 – 4560 | 1.79 | 6.92 | 1.91 | 0.43 | 0.5 | 1.1 | 99.63 | 0.3 | 99.75 | 0.09 | 99.69 | 0.13 |
14 | Schizandrin C | Y = 6410X + 24300 | 0.9991 | 29.3 – 1470 | 0.52 | 1.38 | 2.25 | 0.66 | 3.8 | 2.5 | 98.57 | 0.41 | 97.64 | 0.61 | 98.24 | 0.61 |
15 | Schisantherin | Y = 25X +1860 | 0.9998 | 12 – 7200 | 1.59 | 5.62 | 0.67 | 1.61 | 2.2 | 1.0 | 99.89 | 0.04 | 99.89 | 0.04 | 99.97 | 0.02 |
Sample No. | Habitats | GPS Records | Harvesting Time | Processing Method |
---|---|---|---|---|
S1 | Mulan, Heilongjiang | 45°56′54″ N, 128°02′14″ E | 10 August 2017 | sun drying |
S2 | Jingyu, Jilin | 42°23′11″ N, 126°48′28″ E | 14 August 2017 | sun drying |
S3 | Jingyu, Jilin | 42°23′11″ N, 126°48′28″ E | 17 August 2017 | sun drying |
S4 | Xinbin, Liaoning | 41°43′53″ N, 125°02′01″ E | 14 August 2017 | sun drying |
S5 | Hengren, Liaoning | 41°15′13″ N, 125°22′15″ E | 10 August 2017 | sun drying |
S6 | Baoqing, Heilongjiang | 46°19′29″ N, 132°11′22″ E | 20 August 2017 | sun drying |
S7 | Jingyu, Jilin | 42°23′11″ N, 126°48′28″ E | 16 August 2017 | sun drying |
S8 | Jingyu, Jilin | 42°23′11″ N, 126°48′28″ E | 17 August 2017 | sun drying |
S9 | Jingyu, Jilin | 42°23′11″ N, 126°48′28″ E | 20 August 2017 | sun drying |
S10 | Fengcheng, Liaoning | 41°48′19″ N, 123°27′47″ E | 10 August 2017 | sun drying |
S11 | Shuangyang, Jilin | 43°31′22″ N, 125°39′31″ E | 10 August 2017 | sun drying |
S12 | Heihe, Heilongjiang | 50°14′37″ N, 127°31′16″ E | 16 August 2017 | sun drying |
Analyte | Wild | Cultivated | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 a | S2 a | S3 a | S4 a | S5 a | S6 a | S7 a | S8 a | S9 a | S10 a | S11 a | S12 a | |
1b | 5093.16 ± 30.08 | 4213.46 ± 7.52 | 4283.63 ± 18.92 | 5155.81 ± 4.34 | 3461.58 ± 52.63 | 4070.60 ± 22.56 | 5108.20 ± 15.04 | 5243.53 ± 30.08 | 5228.50 ± 22.56 | 6220.98 ± 15.04 | 6175.86 ± 22.56 | 6115.71 ± 0.00 |
2b | 5.27 ± 0.04 | 6.23 ± 0.01 | 6.45 ± 0.04 | 6.80 ± 0.03 | 5.05 ± 0.01 | 4.73 ± 0.01 | 8.15 ± 0.48 | 8.31 ± 0.32 | 4.60 ± 0.06 | 7.06 ± 0.01 | 6.69 ± 0.03 | 8.31 ± 0.32 |
3b | 657.03 ± 0.57 | 2050.65 ± 1.98 | 2687.42 ± 1.13 | 1564.71 ± 0.85 | 1245.42 ± 0.28 | 3781.21 ± 2.26 | 4196.57 ± 8.49 | 5413.89 ± 5.66 | 3585.78 ± 5.09 | 5379.58 ± 19.81 | 4673.53 ± 2.55 | 4884.48 ± 11.32 |
4b | 3382.10 ± 24.69 | 5061.52 ± 0.71 | 3680.04 ± 2.85 | 5562.96 ± 3.21 | 4363.58 ± 0.00 | 4469.14 ± 1.07 | 2470.58 ± 7.13 | 2981.07 ± 0.36 | 1426.13 ± 1.43 | 1716.67 ± 2.14 | 2408.23 ± 2.49 | 2290.53 ± 1.78 |
5b | 6171.36 ± 46.95 | 5847.42 ± 72.88 | 7110.33 ± 37.56 | 7287.17 ± 9.77 | 6457.75 ± 4.69 | 7482.79 ± 5.42 | 5847.42 ± 54.14 | 6451.49 ± 2.71 | 5093.11 ± 49.31 | 5988.26 ± 101.02 | 5847.42 ± 16.93 | 5510.95 ± 42.34 |
6b | 107.63 ± 0.31 | 64.04 ± 0.15 | 61.48 ± 1.6 | 94.81 ± 0.67 | 93.75 ± 1.62 | 119.30 ± 0.93 | 37.16 ± 0.46 | 63.69 ± 0.80 | 42.29 ± 0.77 | 54.58 ± 0.31 | 60.86 ± 0.41 | 54.49 ± 0.55 |
7b | 662.92 ± 2.34 | 601.58 ± 0.78 | 562.34 ± 6.1 | 389.13 ± 2.07 | 539.33 ± 4.35 | 617.82 ± 2.82 | 312.90 ± 3.91 | 309.29 ± 3.13 | 260.13 ± 1.56 | 478.89 ± 4.06 | 600.68 ± 3.58 | 382.81 ± 1.35 |
8b | 4800.32 ± 27.89 | 2537.84 ± 13.95 | 3528.18 ± 13.95 | 2859.90 ± 48.31 | 3560.39 ± 53.14 | 3850.24 ± 48.31 | 1512.88 ± 1.39 | 1762.48 ± 6.08 | 1802.74 ± 2.79 | 2029.79 ± 3.69 | 3278.58 ± 27.89 | 3061.19 ± 60.79 |
9b | 1814.35 ± 5.92 | 1216.16 ± 38.76 | 1518.49 ± 3.88 | 1344.07 ± 11.63 | 1446.14 ± 8.07 | 1690.97 ± 22.35 | 934.51 ± 13.61 | 916.42 ± 4.48 | 878.95 ± 15.50 | 1014.61 ± 7.75 | 1182.83 ± 2.05 | 1147.69 ± 2.24 |
10b | 840.39 ± 2.41 | 547.33 ± 4.17 | 877.89 ± 10.49 | 684.83 ± 15.02 | 870.94 ± 18.79 | 714.00 ± 12.50 | 714.00 ± 12.50 | 557.06 ± 6.36 | 458.44 ± 18.79 | 726.50 ± 8.33 | 690.39 ± 12.73 | 1205.67 ± 36.32 |
11b | 626.16 ± 5.27 | 528.46 ± 10.53 | 523.86 ± 6.90 | 485.93 ± 10.34 | 468.69 ± 3.45 | 508.92 ± 12.11 | 457.20 ± 8.68 | 481.33 ± 1.99 | 268.92 ± 0.80 | 341.1 ± 0.00 | 263.63 ± 0.53 | 245.59 ± 0.34 |
12b | 1749.99 ± 2.17 | 978.71 ± 4.34 | 974.32 ± 2.56 | 965.35 ± 3.76 | 849.74 ± 10.85 | 971.36 ± 41.41 | 916.18 ± 5.74 | 1028.87 ± 1.30 | 602.78 ± 4.24 | 729.21 ± 3.39 | 538.68 ± 4.7 | 521.74 ± 3.57 |
13b | 4046.88 ± 3.18 | 3149.85 ± 3.68 | 3165.77 ± 1.84 | 3158.56 ± 0.37 | 3504.42 ± 9.73 | 3774.06 ± 16.03 | 2635.63 ± 0.74 | 2647.94 ± 5.15 | 2208.87 ± 5.74 | 2495.71 ± 6.05 | 2489.55 ± 6.37 | 2374.27 ± 5.44 |
14b | 787.58 ± 1.00 | 333.70 ± 0.90 | 689.40 ± 2.38 | 516.23 ± 3.25 | 704.79 ± 2.05 | 737.24 ± 5.40 | 249.41 ± 0.95 | 281.70 ± 1.56 | 247.38 ± 0.00 | 277.80 ± 0.78 | 437.55 ± 1.58 | 455.91 ± 5.01 |
15b | 705.60 ± 12.00 | 708.27 ± 2.31 | 1692.27 ± 2.31 | - | 2046.93 ± 8.33 | 2386.93 ± 6.11 | 1889.60 ± 4.00 | 1421.60 ± 0.00 | 3490.93 ± 4.62 | 3093.60 ± 6.93 | 19.87 ± 1.01 | - |
Total | 31,450.74 ± 55.65 | 27,844.58 ± 40.31 | 31,361.47 ± 100.10 | 30,076.44 ± 28.88 | 29,619 ± 105.38 | 35,179.73 ± 61.85 | 27,289.59 ± 94.08 | 29,568.49 ± 19.79 | 25,598.77 ± 42.20 | 30,553.57 ± 169.43 | 28,674.25 ± 21.71 | 28,259.65 ± 12.66 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Shi, J.; Zou, L.; Liu, X.; Tang, R.; Ma, J.; Wang, C.; Tan, M.; Chen, J. Quality Evaluation of Wild and Cultivated Schisandrae Chinensis Fructus Based on Simultaneous Determination of Multiple Bioactive Constituents Combined with Multivariate Statistical Analysis. Molecules 2019, 24, 1335. https://doi.org/10.3390/molecules24071335
Chen S, Shi J, Zou L, Liu X, Tang R, Ma J, Wang C, Tan M, Chen J. Quality Evaluation of Wild and Cultivated Schisandrae Chinensis Fructus Based on Simultaneous Determination of Multiple Bioactive Constituents Combined with Multivariate Statistical Analysis. Molecules. 2019; 24(7):1335. https://doi.org/10.3390/molecules24071335
Chicago/Turabian StyleChen, Shuyu, Jingjing Shi, Lisi Zou, Xunhong Liu, Renmao Tang, Jimei Ma, Chengcheng Wang, Mengxia Tan, and Jiali Chen. 2019. "Quality Evaluation of Wild and Cultivated Schisandrae Chinensis Fructus Based on Simultaneous Determination of Multiple Bioactive Constituents Combined with Multivariate Statistical Analysis" Molecules 24, no. 7: 1335. https://doi.org/10.3390/molecules24071335
APA StyleChen, S., Shi, J., Zou, L., Liu, X., Tang, R., Ma, J., Wang, C., Tan, M., & Chen, J. (2019). Quality Evaluation of Wild and Cultivated Schisandrae Chinensis Fructus Based on Simultaneous Determination of Multiple Bioactive Constituents Combined with Multivariate Statistical Analysis. Molecules, 24(7), 1335. https://doi.org/10.3390/molecules24071335