Rapid Monitoring of Organochlorine Pesticide Residues in Various Fruit Juices and Water Samples Using Fabric Phase Sorptive Extraction and Gas Chromatography-Mass Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of Fabric Phase Extraction
2.1.1. Selection of Fabric Phase Sorptive Extraction Sorbent Chemistry
2.1.2. Effect of Stirring Speed
2.1.3. Effect of Extraction Time
2.1.4. Effect of Matrix pH
2.1.5. Effect of Salt Addition
2.1.6. Desorption Conditions
2.1.7. Stability and Reusability of Sol-Gel FPSE Media
2.2. Method Validation
2.2.1. Limit of Detection and Quantification
2.2.2. Precision and Accuracy
2.2.3. Application to Real Samples
2.3. Comparison with Other Reported Methods
3. Material and Methods
3.1. Reagents, Solvents and Material
3.2. Instrumentation
3.3. Sample Collection and Preparation
3.4. Preparation of Fabric Phase Sorptive Extraction Media
3.5. Fabric Phase Extraction Procedure
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bajwa, A.; Ali, U.; Mahmood, A.; Chaudhry, M.J.I.; Syed, J.H.; Li, J.; Malik, R.N. Organochlorine pesticides (OCPs) in the Indus River catchment area, Pakistan: Status, soil-air exchange and black carbon mediated distribution. Chemosphere 2016, 152, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.H.B.; Cavalcante, R.M.; Duaví, W.C.; Fernandes, G.M.; Nascimento, R.F.; Queiroz, M.E.L.R.; Mendonça, K.V. The legacy of organochlorine pesticide usage in a tropical semi-arid region (Jaguaribe River, Ceará, Brazil): Implications of the influence of sediment parameters on occurrence, distribution and fate. Sci. Total Environ. 2016, 542, 254–263. [Google Scholar] [CrossRef] [PubMed]
- Sajid, M.; Basheer, C.; Narasimhan, K.; Buhmeida, A.; Al Qahtani, M.; Al-Ahwal, M.S. Persistent and endocrine disrupting organic pollutants: Advancements and challenges in analysis, health concerns and clinical correlates. Nat. Environ. Pollut. Technol. 2016, 15, 733–746. [Google Scholar]
- Cai, S.; Sun, K.; Dong, S.; Wang, Y.M.; Wang, S.; Jia, L. Assessment of Organochlorine Pesticide Residues in Water, Sediment, and Fish of the Songhua River, China. Environ. Forensics 2014, 15, 352–357. [Google Scholar] [CrossRef]
- Liu, W.X.; He, W.; Qin, N.; Kong, X.Z.; He, Q.S.; Ouyang, H.L.; Xu, F.L. The residues, distribution, and partition of organochlorine pesticides in the water, suspended solids, and sediments from a large Chinese lake (Lake Chaohu) during the high water level period. Environ. Sci. Pollut. Res. 2013, 20, 2033–2045. [Google Scholar] [CrossRef]
- Rani, M.; Shanker, U.; Jassal, V. Recent strategies for removal and degradation of persistent & toxic organochlorine pesticides using nanoparticles: A review. J. Environ. Manag. 2017, 190, 208–222. [Google Scholar]
- Tsygankov, V.Y.; Boyarova, M.D. Sample Preparation Method for the Determination of Organochlorine Pesticides in Aquatic Organisms by Gas Chromatography. Achiev. Life Sci. 2015, 9, 65–68. [Google Scholar] [CrossRef] [Green Version]
- Günter, A.; Balsaa, P.; Werres, F.; Schmidt, T.C. Influence of the drying step within disk-based solid-phase extraction both on the recovery and the limit of quantification of organochlorine pesticides in surface waters including suspended particulate matter. J. Chromatogr. A 2016, 1450, 1–8. [Google Scholar] [CrossRef]
- Hua, S.; Gong, J.L.; Zeng, G.M.; Yao, F.B.; Guo, M.; Ou, X.M. Remediation of organochlorine pesticides contaminated lake sediment using activated carbon and carbon nanotubes. Chemosphere 2017, 177, 65–76. [Google Scholar] [CrossRef]
- Temoka, C.; Wang, J.; Bi, Y.; Deyerling, D.; Pfister, G.; Henkelmann, B.; Schramm, K.W. Concentrations and mass fluxes estimation of organochlorine pesticides in Three Gorges Reservoir with virtual organisms using in situ PRC-based sampling rate. Chemosphere 2016, 144, 1521–1529. [Google Scholar] [CrossRef] [Green Version]
- Andrew, J.; Mahugija, M.; Henkelmann, B.; Schramm, K. Chemosphere Levels, compositions and distributions of organochlorine pesticide residues in soil 5–14 years after clean-up of former storage sites in Tanzania. Chemosphere 2014, 117, 330–337. [Google Scholar]
- Rezaei, F.; Hosseini, M.R.M. New method based on combining ultrasonic assisted miniaturized matrix solid-phase dispersion and homogeneous liquid-liquid extraction for the determination of some organochlorinated pesticides in fish. Anal. Chim. Acta 2011, 702, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Bresin, B.; Piol, M.; Fabbro, D.; Mancini, M.A.; Casetta, B.; Del Bianco, C. Analysis of organo-chlorine pesticides residue in raw coffee with a modified “quick easy cheap effective rugged and safe” extraction/clean up procedure for reducing the impact of caffeine on the gas chromatography-mass spectrometry measurement. J. Chromatogr. A 2015, 1376, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.C.; Wang, C.I.; Sye, W.F. Applications of chitosan beads and porous crab shell powder for the removal of 17 organochlorine pesticides (OCPs) in water solution. Carbohydr. Polym. 2011, 83, 1984–1989. [Google Scholar] [CrossRef]
- Shattar, S.F.A.; Zakaria, N.A.; Foo, K.Y. Feasibility of montmorillonite-assisted adsorption process for the effective treatment of organo-pesticides. Desalin. Water Treat. 2016, 57, 13645–13677. [Google Scholar] [CrossRef]
- Han, Q.; Wang, Z.; Xia, J.; Xia, L.; Chen, S.; Zhang, X.; Ding, M. Graphene as an efficient sorbent for the SPE of organochlorine pesticides in water samples coupled with GC-MS. J. Sep. Sci. 2013, 36, 3586–3591. [Google Scholar] [CrossRef]
- Huang, S.; He, S.; Xu, H.; Wu, P.; Jiang, R.; Zhu, F.; Ouyang, G. Monitoring of persistent organic pollutants in seawater of the Pearl River Estuary with rapid on-site active SPME sampling technique. Environ. Pollut. 2015, 200, 149–158. [Google Scholar] [CrossRef]
- Fernandes, V.C.; Subramanian, V.; Mateus, N.; Domingues, V.F.; Delerue-Matos, C. The development and optimization of a modified single-drop microextraction method for organochlorine pesticides determination by gas chromatography-tandem mass spectrometry. Microchim. Acta 2012, 178, 195–202. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Wang, P.; Liu, D.; Zhou, Z. Hydrophilic-lipophilic balanced magnetic nanoparticles: Preparation and application in magnetic solid-phase extraction of organochlorine pesticides and triazine herbicides in environmental water samples. Talanta 2014, 127, 1–8. [Google Scholar] [CrossRef]
- Huang, Z.; Lee, H.K. Micro-solid-phase extraction of organochlorine pesticides using porous metal-organic framework MIL-101 as sorbent. J. Chromatogr. A 2015, 1401, 9–16. [Google Scholar] [CrossRef]
- Zhou, Q.; Huang, Y.; Xiao, J.; Xie, G. Micro-solid phase equilibrium extraction with highly ordered TiO2 nanotube arrays: A new approach for the enrichment and measurement of organochlorine pesticides at trace level in environmental water samples. Anal. Bioanal. Chem. 2011, 400, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Grossi, P.; Olivares, I.R.B.; de Freitas, D.R.; Lancas, F.M. A novel HS-SBSE system coupled with gas chromatography and mass spectrometry for the analysis of organochlorine pesticides in water samples. J. Sep. Sci. 2008, 31, 3630–3637. [Google Scholar] [CrossRef] [PubMed]
- Rodil, R.; Popp, P. Development of pressurized subcritical water extraction combined with stir bar sorptive extraction for the analysis of organochlorine pesticides and chlorobenzenes in soils. J. Chromatogr. A 2006, 1124, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Kabir, A.; Furton, K.G.; Malik, A. Innovations in sol-gel microextraction phases for solvent-free sample preparation in analytical chemistry. Trac—Trends Anal. Chem. 2013, 45, 197–218. [Google Scholar]
- Aznar, M.; Úbeda, S.; Nerin, C.; Kabir, A.; Furton, K.G. Fabric phase sorptive extraction as a reliable tool for rapid screening and detection of freshness markers in oranges. J. Chromatogr. A 2017, 1500, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Alcudia-León, M.C.; Lucena, R.; Cárdenas, S.; Valcárcel, M.; Kabir, A.; Furton, K.G. Integrated sampling and analysis unit for the determination of sexual pheromones in environmental air using fabric phase sorptive extraction and headspace-gas chromatography–mass spectrometry. J. Chromatogr. A 2017, 1488, 17–25. [Google Scholar] [CrossRef] [PubMed]
- García-Guerra, R.B.; Montesdeoca-Esponda, S.; Sosa-Ferrera, Z.; Kabir, A.; Furton, K.G.; Santana-Rodríguez, J.J. Rapid monitoring of residual UV-stabilizers in seawater samples from beaches using fabric phase sorptive extraction and UHPLC-MS/MS. Chemosphere 2016, 164, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Dong, S.; Zhang, M.; Zhang, H.; Huang, T. Fabric phase sorptive extraction: Two practical sample pretreatment techniques for brominated flame retardants in water. Water Res. 2016, 101, 547–554. [Google Scholar] [CrossRef]
- Kabir, A.; Furton, K.G.; Tinari, N.; Grossi, L.; Innosa, D.; Macerola, D.; Locatelli, M. Fabric phase sorptive extraction-high performance liquid chromatography-photo diode array detection method for simultaneous monitoring of three inflammatory bowel disease treatment drugs in whole blood, plasma and urine. J. Chromatogr. B 2018, 1084, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, M.; Kabir, A.; Innosa, D.; Lopatriello, T.; Furton, K.G. A fabric phase sorptive extraction-High performance liquid chromatography-Photo diode array detection method for the determination of twelve azole antimicrobial drug residues in human plasma and urine. J. Chromatogr. B 2017, 1040, 192–198. [Google Scholar] [CrossRef]
- Lakade, S.S.; Borrull, F.; Furton, K.G.; Kabir, A.; Marcé, R.M.; Fontanals, N. Dynamic fabric phase sorptive extraction for a group of pharmaceuticals and personal care products from environmental waters. J. Chromatogr. A 2016, 1456, 19–26. [Google Scholar] [CrossRef]
- Montesdeoca-Esponda, S.; Sosa-Ferrera, Z.; Kabir, A.; Furton, K.G.; Santana-Rodríguez, J.J. Fabric phase sorptive extraction followed by UHPLC-MS/MS for the analysis of benzotriazole UV stabilizers in sewage samples. Anal. Bioanal. Chem. 2015, 407, 8137–8150. [Google Scholar] [CrossRef]
- Guedes-Alonso, R.; Ciofi, L.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J.; Del Bubba, M.; Kabir, A.; Furton, K.G. Determination of androgens and progestogens in environmental and biological samples using fabric phase sorptive extraction coupled to ultra-high performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2016, 1437, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Samanidou, V.; Filippou, O.; Marinou, E.; Kabir, A.; Furton, K.G. Sol–gel-graphene-based fabric-phase sorptive extraction for cow and human breast milk sample cleanup for screening bisphenol A and residual dental restorative material before analysis by HPLC with diode array detection. J. Sep. Sci. 2017, 40, 2612–2619. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Gu, Y.; Wu, X.; Xi, X.; Yang, X.; Zhou, W.; Li, J. Rapid analysis of fungicides in tea infusions using ionic liquid immobilized fabric phase sorptive extraction with the assistance of surfactant fungicides analysis using IL-FPSE assisted with surfactant. Food Chem. 2018, 239, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Santana-Viera, S.; Guedes-Alonso, R.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J.; Kabir, A.; Furton, K.G. Optimization and application of fabric phase sorptive extraction coupled to ultra-high performance liquid chromatography tandem mass spectrometry for the determination of cytostatic drug residues in environmental waters. J. Chromatogr. A 2017, 1529, 39–49. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors upon request. |
FPSE Sorbent | Predicted Absolute Recovery Values (%) | ||||||
---|---|---|---|---|---|---|---|
β-Endosulfan | Endosulfan Sulfate | γ-BHC | β-BHC | α-BHC | δ-BHC | Endrine Aldehyde | |
Sol-gel PEG-PPG-PEG | 74.49 | 75.29 | 76.48 | 77.65 | 78.37 | 84.44 | 95.71 |
Sol-gel PCAP-PDMS-PCAP | 75.86 | 76.61 | 77.70 | 78.79 | 79.33 | 84.97 | 94.88 |
Organochlorine Pesticides | Linear Range (ng/mL) | Coefficient of Determination, r2 | LOD (ng/mL) | LOQ (ng/mL) | RSD % | |
---|---|---|---|---|---|---|
Intra-Day | Inter-Day | |||||
α-Benzenehexachloride (α-BHC) | 0.1–500 | 0.9977 | 0.013 | 0.042 | 4.2 | 5.2 |
β-Benzenehexachloride (β-BHC) | 0.1–500 | 0.9968 | 0.008 | 0.026 | 3.3 | 4.1 |
γ-Benzenehexachloride (γ-BHC) | 0.1–500 | 0.9944 | 0.021 | 0.069 | 4.6 | 5.0 |
δ-Benzenehexachloride (δ-BHC) | 0.1–500 | 0.9931 | 0.032 | 0.105 | 3.5 | 4.7 |
Heptachlor | 0.1–500 | 0.9951 | 0.014 | 0.046 | 4.3 | 5.4 |
Aldrin | 0.1–500 | 0.9929 | 0.026 | 0.086 | 2.3 | 3.8 |
Heptachlorepoxide | 0.1–500 | 0.9965 | 0.015 | 0.049 | 3.3 | 4.5 |
Trans Chlordane | 0.1–500 | 0.9952 | 0.013 | 0.042 | 3.1 | 3.9 |
Cis Chlordane | 0.1–500 | 0.9954 | 0.014 | 0.046 | 2.6 | 3.3 |
p,p Dichlorodiphenyldichloroeth ylene (p,p’ DDE) | 0.1–500 | 0.9984 | 0.011 | 0.0363 | 2.7 | 3.7 |
Dieldrin | 0.1–500 | 0.9963 | 0.013 | 0.042 | 3.5 | 5.3 |
Endrin | 0.1–500 | 0.9938 | 0.012 | 0.039 | 3.4 | 5.6 |
β-Endosulfan | 0.1–500 | 0.9960 | 0.016 | 0.053 | 2.8 | 3.7 |
p,p Dichlorodiphenyldichloroeth ane (p,p’ DDD) | 0.1–500 | 0.9969 | 0.007 | 0.023 | 3.7 | 4.2 |
Endrin Aldehyde | 0.1–500 | 0.9977 | 0.012 | 0.039 | 3.1 | 3.9 |
Endosulfan sulfate | 0.1–500 | 0.9932 | 0.015 | 0.049 | 4.6 | 5.5 |
p,p Dichlorodiphenyltrichloroeth ane (p,p’ DDT) | 0.1–500 | 0.9984 | 0.021 | 0.069 | 2.5 | 3.9 |
Endrin ketone | 0.1–500 | 0.9986 | 0.018 | 0.059 | 4.1 | 5.7 |
Methoxychlor | 0.1–500 | 0.9971 | 0.027 | 0.089 | 4.4 | 5.6 |
OCP | Amount Added ng/mL | Tap Water | Ground Water | Municipal Water | Apple Juice | Litchi Juice | Pomegranate Juice | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Extraction Yield | Intraday RSD (%) | Interday RSD (%) | Extraction Yield | Intraday RSD (%) | Interday RSD (%) | Extraction Yield | Intraday RSD (%) | Interday RSD (%) | Extraction Yield | Intraday RSD (%) | Interday RSD (%) | Extraction Yield | Intraday RSD (%) | Interday RSD (%) | Extraction Yield | Intraday RSD (%) | Interday RSD (%) | ||
α-Benzenehexachloride (α-BHC) | 0.1 | 97.4 | 4.5 | 5.1 | 96.8 | 4.7 | 4.9 | 96.6 | 3.5 | 4.8 | 95.7 | 4.3 | 5.4 | 95.6 | 3.6 | 4.4 | 95.5 | 4.4 | 5.6 |
1 | 98.7 | 4.1 | 4.9 | 97.6 | 4.1 | 4.8 | 97.5 | 3.4 | 4.6 | 96.4 | 4.2 | 5.1 | 96.2 | 3.5 | 4.7 | 96.3 | 4.2 | 5.2 | |
10 | 98.9 | 3.6 | 4.3 | 97.8 | 4.2 | 5.2 | 97.3 | 3.2 | 4.2 | 96.7 | 3.7 | 4.8 | 97.1 | 3.4 | 4.3 | 96.3 | 3.3 | 4.9 | |
100 | 99.3 | 3.1 | 3.9 | 98.7 | 3.6 | 4.1 | 98.4 | 2.5 | 3.1 | 97.7 | 3.4 | 4.6 | 97.4 | 2.3 | 3.5 | 97.6 | 3.2 | 4.5 | |
β-Benzenehexachloride (β-BHC) | 0.1 | 96.4 | 4.2 | 5.4 | 97.4 | 4.1 | 4.9 | 95.6 | 4.7 | 5.7 | 94.4 | 3.7 | 5.6 | 96.9 | 4.9 | 5.5 | 95.5 | 4.2 | 5.3 |
1 | 97.7 | 3.5 | 5.1 | 98.7 | 3.8 | 4.7 | 95.5 | 4.1 | 3.6 | 94.9 | 3.6 | 4.9 | 97.2 | 4.6 | 5.1 | 96.4 | 4.1 | 5.1 | |
10 | 98.4 | 3.1 | 4.7 | 98.6 | 3.6 | 4.2 | 96.3 | 4.2 | 3.6 | 95.3 | 3 | 4.5 | 97.5 | 4 | 4.9 | 96.8 | 3.3 | 4.7 | |
100 | 99.4 | 2.9 | 3.8 | 99.5 | 2.5 | 3.8 | 98.4 | 3.6 | 4.7 | 96.7 | 2.8 | 3.8 | 98.4 | 3.9 | 4.6 | 97.1 | 3.1 | 4.3 | |
γ-Benzenehexachloride (γ-BHC) | 0.1 | 97 | 3.9 | 5.1 | 97.4 | 3.6 | 4.7 | 96.6 | 4.2 | 5.3 | 96.6 | 4.6 | 5.5 | 96.2 | 4.9 | 5.7 | 95.6 | 4.7 | 5.7 |
1 | 97.8 | 3.5 | 4.9 | 98.7 | 3.3 | 4.1 | 97.8 | 3.9 | 4.2 | 96.5 | 3.9 | 4.3 | 97.3 | 4.7 | 5.1 | 96.9 | 4.2 | 5.2 | |
10 | 98.9 | 3.4 | 4.3 | 98.9 | 3.1 | 4.2 | 97.4 | 3.4 | 4.8 | 96.9 | 3.4 | 3.9 | 97.5 | 3.9 | 4.6 | 97.3 | 3.9 | 4.9 | |
100 | 99.5 | 2.9 | 3.9 | 99.8 | 2.9 | 3.4 | 98.5 | 2.7 | 3.6 | 97.5 | 3 | 4.3 | 98.6 | 3.5 | 4.2 | 97.6 | 3 | 4.3 | |
δ-Benzenehexachloride (δ-BHC) | 0.1 | 97.6 | 3.7 | 5.3 | 97.9 | 3.8 | 5.1 | 97.9 | 4.8 | 5.8 | 95.6 | 3.7 | 5.1 | 93.6 | 4.8 | 5.6 | 91.5 | 4.4 | 5.1 |
1 | 98 | 3.4 | 4.9 | 98 | 3.4 | 4.6 | 97.6 | 3.7 | 5.1 | 95.9 | 3.2 | 4.8 | 94.2 | 3.8 | 4.6 | 92.3 | 3.9 | 4.8 | |
10 | 98.7 | 3.3 | 4.2 | 98.6 | 2.8 | 3.9 | 98.5 | 3.1 | 4.8 | 96.4 | 2.9 | 3.8 | 97.1 | 3.2 | 4 | 94.3 | 3.5 | 4.1 | |
100 | 99.5 | 3 | 3.7 | 99.8 | 2.4 | 3.2 | 98.4 | 2.9 | 3.7 | 96.9 | 2.1 | 3.5 | 98.4 | 2.7 | 3.3 | 96.6 | 2.7 | 3.5 | |
Heptachlor | 0.1 | 97.2 | 3.8 | 5.1 | 97.6 | 4.7 | 5.7 | 97.5 | 4.9 | 5.9 | 96.7 | 3.6 | 5 | 97.9 | 4.6 | 5.4 | 97.6 | 4.4 | 5.3 |
1 | 97.6 | 3.4 | 4.9 | 97.5 | 4.1 | 5 | 97.8 | 4.6 | 5.1 | 97.4 | 3.1 | 4.7 | 97 | 3.6 | 4.4 | 97.9 | 3.5 | 4.3 | |
10 | 98.1 | 3.3 | 4.3 | 98.3 | 4.2 | 4.9 | 98.4 | 4.2 | 4.9 | 97.7 | 2.7 | 3.9 | 98.1 | 3.4 | 4 | 98.1 | 3.3 | 3.9 | |
100 | 99.1 | 2.9 | 3.9 | 99.1 | 3.6 | 3.9 | 98.5 | 3.6 | 4.3 | 98.7 | 2.2 | 3.4 | 98.9 | 2.9 | 3.2 | 98.6 | 2.8 | 3.3 | |
Aldrin | 0.1 | 97.6 | 4.6 | 5.7 | 97.4 | 4.9 | 5.6 | 97.6 | 4.8 | 5.7 | 97.7 | 4.2 | 4.9 | 96.9 | 4.8 | 5.6 | 98.1 | 4.6 | 5.4 |
1 | 97.6 | 4.2 | 5.2 | 97.2 | 4.2 | 4.9 | 97.9 | 4.3 | 5 | 98.4 | 3.8 | 4.5 | 97.1 | 4.2 | 4.9 | 98.3 | 3.8 | 4.1 | |
10 | 98.4 | 3.9 | 4.3 | 98.8 | 3.9 | 4.2 | 98.3 | 4 | 4.8 | 98.6 | 3.3 | 3.8 | 97.9 | 3.9 | 4.6 | 99 | 3.5 | 3.7 | |
100 | 99.3 | 3.2 | 3.9 | 98.5 | 2.8 | 3.5 | 99.4 | 3.1 | 4.2 | 99.4 | 2.9 | 3.2 | 98.1 | 3.3 | 3.9 | 99.6 | 2.9 | 3.5 | |
Heptachlorepoxide | 0.1 | 97.5 | 4.3 | 5 | 96.5 | 3.8 | 4.6 | 97.5 | 4.7 | 5.6 | 97 | 4.1 | 4.8 | 96.9 | 4.7 | 5.5 | 97.5 | 4.5 | 5.3 |
1 | 98.8 | 3.6 | 4.8 | 97.7 | 3.3 | 4 | 97.6 | 4.2 | 5.1 | 97.2 | 3.7 | 4.4 | 97.1 | 4.1 | 5 | 97.9 | 3.6 | 4.2 | |
10 | 98.9 | 3.2 | 4.2 | 98.8 | 3 | 4.1 | 98.6 | 4.1 | 4.7 | 98.1 | 3.4 | 3.7 | 97.6 | 3.6 | 4.5 | 98.3 | 3 | 3.6 | |
100 | 99.1 | 3 | 3.8 | 98.6 | 2.3 | 3.5 | 99.3 | 2.9 | 4.1 | 98.8 | 2.5 | 3.1 | 98.6 | 3.1 | 3.9 | 98.7 | 2.8 | 3.4 | |
Trans Chlordane | 0.1 | 97.4 | 3.8 | 4.9 | 97.6 | 3.9 | 4.2 | 97.6 | 4.6 | 5.4 | 97 | 4.5 | 5.8 | 96.6 | 4.6 | 5.8 | 97.5 | 4.4 | 5.3 |
1 | 97.9 | 3.7 | 4.5 | 98 | 3.6 | 3.9 | 97.8 | 4.1 | 4.9 | 97.9 | 3.9 | 4.4 | 97.1 | 4 | 5.1 | 98.5 | 3.7 | 4.2 | |
10 | 98.6 | 3.6 | 4.2 | 98.6 | 2.7 | 3.7 | 98.8 | 4 | 4.8 | 98.2 | 3.6 | 3.9 | 97.4 | 3.7 | 4.5 | 98.7 | 3.1 | 3.6 | |
100 | 99.2 | 2.3 | 3.8 | 99.8 | 2.4 | 2.6 | 99.4 | 3.7 | 4.5 | 99.6 | 2.5 | 3.1 | 98.3 | 3.2 | 3.8 | 99.1 | 2.9 | 3.4 | |
Cis Chlordane | 0.1 | 97.4 | 3.7 | 5.1 | 97.2 | 4.7 | 4.7 | 96.7 | 4.5 | 5.3 | 96.4 | 4.6 | 5.5 | 96.2 | 4.7 | 5.7 | 96.6 | 4.3 | 5.2 |
1 | 98.9 | 3.4 | 4.9 | 98.1 | 4.1 | 4.1 | 97.8 | 4 | 4.9 | 96.4 | 4.3 | 4.9 | 97.1 | 4.1 | 5 | 97.4 | 3.6 | 4.3 | |
10 | 98.7 | 3.3 | 4.3 | 98.6 | 4.2 | 4.2 | 98.5 | 3.9 | 4.4 | 97.2 | 3.7 | 4.8 | 97.8 | 3.8 | 4.4 | 98.6 | 3.1 | 3.9 | |
100 | 99.3 | 3 | 3.9 | 99.3 | 3.6 | 3.6 | 99.4 | 2.9 | 3.5 | 98.8 | 2.6 | 3.2 | 98.2 | 3.3 | 3.1 | 98.2 | 2.8 | 3.5 | |
p,p Dichlorodiphenyldichloroethylene (p,p’ DDE) | 0.1 | 96.5 | 3.6 | 5 | 97.2 | 4.8 | 5.2 | 96.5 | 4.6 | 5.6 | 96.7 | 4.9 | 5.6 | 96.8 | 4.6 | 5.5 | 96.5 | 4.5 | 5.1 |
1 | 96.9 | 3.5 | 4.8 | 98.1 | 4.9 | 4.3 | 98 | 4.2 | 4.9 | 96.5 | 4.4 | 4.9 | 97 | 4 | 5 | 97.4 | 3.5 | 4.5 | |
10 | 97.7 | 3.2 | 4.2 | 98.6 | 4.7 | 4.2 | 98.9 | 3.8 | 4.8 | 97.1 | 3.9 | 4.7 | 97.5 | 3.9 | 4.3 | 98.5 | 3.1 | 3.9 | |
100 | 98.3 | 3 | 3.8 | 99.3 | 3.9 | 3.1 | 99 | 2.7 | 3.5 | 97.8 | 2.5 | 3.3 | 98 | 3.4 | 3.2 | 98.8 | 2.7 | 3.6 | |
Dieldrin | 0.1 | 94.8 | 4.9 | 5.8 | 95.7 | 4.7 | 5.6 | 94.5 | 4.5 | 5.5 | 95.7 | 4.4 | 5.5 | 95.6 | 4.1 | 5.3 | 94 | 4.3 | 5.2 |
1 | 95.2 | 3.7 | 4.6 | 96.1 | 4.2 | 5.1 | 95 | 3.8 | 4.9 | 96.6 | 4.1 | 5.1 | 96.4 | 3.8 | 4.7 | 94.9 | 3.9 | 4.8 | |
10 | 95.6 | 3.3 | 4.2 | 97.2 | 2.9 | 3.9 | 95.8 | 2.9 | 3.7 | 97.1 | 3.9 | 4.6 | 97.6 | 3.6 | 4.5 | 95 | 3.1 | 4.2 | |
100 | 96.5 | 2.8 | 3.9s | 98.4 | 2.6 | 3.6 | 96.1 | 2.5 | 3.3 | 97.9 | 2.8 | 3.5 | 98.1 | 2.3 | 3.1 | 96.6 | 2.6 | 3.5 | |
Endrin | 0.1 | 96.4 | 3.9 | 5.2 | 97.3 | 4.7 | 5.6 | 95.5 | 4.5 | 5.6 | 95.4 | 4.7 | 5.4 | 96 | 5.1 | 5.8 | 95.6 | 4.6 | 5.6 |
1 | 97.1 | 3.6 | 4.9 | 98 | 4.6 | 5.2 | 96.1 | 4.1 | 4.8 | 96.6 | 4.5 | 4.9 | 97.2 | 4.7 | 5.2 | 96.4 | 3.7 | 5 | |
10 | 97.8 | 3.3 | 4.5 | 98.5 | 4.7 | 4.9 | 97.9 | 3.9 | 4.7 | 97.2 | 3.9 | 4.7 | 97.6 | 4.2 | 4.9 | 97.4 | 3.2 | 4.5 | |
100 | 98.7 | 3 | 3.9 | 98.7 | 3.6 | 4.1 | 98.5 | 3.5 | 4.2 | 97.8 | 2.6 | 3.3 | 98.1 | 3.2 | 3.9 | 98.7 | 2.9 | 3.9 | |
β-Endosulfan | 0.1 | 94.1 | 4.5 | 5.6 | 94.3 | 4.6 | 5.8 | 94.4 | 4.7 | 5.4 | 95.5 | 4.3 | 5.4 | 95.5 | 4.4 | 5.3 | 94.2 | 4.2 | 5.1 |
1 | 95.5 | 3.6 | 4.7 | 95.6 | 4.3 | 5.2 | 95.1 | 4 | 4.8 | 96.8 | 4 | 5.1 | 96.3 | 3.9 | 4.8 | 95.9 | 3.7 | 4.8 | |
10 | 96.2 | 3.2 | 4.3 | 96.7 | 3.6 | 4.7 | 96.8 | 2.8 | 3.8 | 97.3 | 3.7 | 4.6 | 97.4 | 3.4 | 4.6 | 96.9 | 3.3 | 4.4 | |
100 | 97.8 | 2.9 | 3.8 | 97.8 | 2.5 | 3.6 | 97.4 | 2.4 | 3.4 | 98.8 | 2.6 | 3.5 | 98.6 | 2.2 | 3.1 | 97.2 | 2.4 | 3.3 | |
p,p Dichlorodiphenyldichloroethane (p,p’ DDD) | 0.1 | 96.4 | 3.7 | 5.3 | 97.9 | 4.6 | 5.5 | 96.7 | 4.1 | 5.5 | 95.8 | 4.7 | 5.8 | 96.9 | 4.9 | 5.6 | 95.5 | 4.6 | 5.5 |
1 | 96.1 | 3.7 | 4.9 | 98.5 | 4.7 | 4.9 | 97.4 | 4 | 5.1 | 96.3 | 4.2 | 5.1 | 97.1 | 4.2 | 5.1 | 95.8 | 4.1 | 4.9 | |
10 | 97.1 | 3.4 | 4.3 | 98.9 | 4.5 | 4.6 | 97.8 | 3.8 | 4.6 | 97.5 | 3.7 | 4.6 | 97.6 | 3.7 | 4.6 | 96.4 | 3.8 | 4.7 | |
100 | 98.2 | 3.2 | 3.9 | 99.1 | 3.7 | 4.1 | 98.1 | 2.5 | 3.3 | 97.8 | 2.7 | 3.6 | 98.7 | 3.2 | 4.3 | 97.3 | 3.1 | 4.2 | |
Endrin Aldehyde | 0.1 | 95 | 4.2 | 4.1 | 95.2 | 4.7 | 5.7 | 94.1 | 4.8 | 5.6 | 94.1 | 4.6 | 5.5 | 95.2 | 4.8 | 5.8 | 95.8 | 4.4 | 5.5 |
1 | 95.8 | 3.8 | 4.8 | 96.5 | 4.4 | 5.5 | 95.4 | 4.1 | 5 | 95.5 | 4.2 | 5.1 | 95.3 | 3.8 | 4.7 | 96.1 | 4 | 5.2 | |
10 | 96.4 | 3.1 | 4.1 | 97.8 | 3.5 | 4.4 | 95.7 | 3 | 4 | 96.4 | 3.3 | 4.5 | 96.7 | 3.5 | 4.4 | 96.8 | 3.5 | 4.7 | |
100 | 96.9 | 2.8 | 3.5 | 98.9 | 2.2 | 3.1 | 96.2 | 2.7 | 3.5 | 97.3 | 2.3 | 3.2 | 98.9 | 2.3 | 3.2 | 97.1 | 2.3 | 3.2 | |
Endosulfan sulfate | 0.1 | 95.5 | 4.4 | 5.6 | 96.4 | 4.8 | 5.6 | 96.4 | 4.9 | 5.8 | 94.6 | 5.2 | 5.9 | 95.2 | 5.1 | 5.9 | 94.2 | 4.9 | 5.8 |
1 | 96.6 | 3.9 | 4.9 | 97.3 | 4.4 | 5.2 | 97 | 4.6 | 5.2 | 95.4 | 4.5 | 5.4 | 96.7 | 4.8 | 5.6 | 95.6 | 4.4 | 4.9 | |
10 | 97.7 | 3.5 | 4.6 | 98.4 | 4.1 | 4.9 | 97.9 | 3.2 | 4.4 | 96.2 | 3.9 | 4.5 | 97.3 | 4.1 | 4.9 | 96.5 | 3.9 | 4.6 | |
100 | 98.1 | 3.2 | 3.8 | 99.2 | 3.5 | 4.6 | 98.8 | 2.7 | 3.3 | 97.5 | 3.2 | 4.3 | 98.2 | 3.4 | 4.2 | 97.7 | 3.3 | 4.3 | |
p,p Dichlorodiphenyltrichloroethane (p,p’ DDT) | 0.1 | 95.2 | 3.9 | 4.6 | 95.5 | 4.9 | 5.8 | 94.7 | 4.9 | 5.8 | 94.8 | 4.7 | 5.6 | 94.2 | 5 | 5.9 | 94.6 | 4.8 | 5.7 |
1 | 96.7 | 3.4 | 4.2 | 96.1 | 4.6 | 5.7 | 95.2 | 4.2 | 5.2 | 95.4 | 4.1 | 5 | 95.5 | 3.9 | 5.2 | 95.8 | 4.3 | 5.3 | |
10 | 96.1 | 2.9 | 3.7 | 96.8 | 3.7 | 4.6 | 96.5 | 3.2 | 4.1 | 96.3 | 3.4 | 4.4 | 96.6 | 3.4 | 4.5 | 96.1 | 3.9 | 4.9 | |
100 | 97.5 | 2.6 | 3.5 | 97.7 | 2.3 | 3.4 | 97.5 | 2.8 | 3.6 | 96.9 | 2.6 | 3.5 | 97.6 | 2.4 | 3.1 | 97.7 | 3 | 4.2 | |
Endrin ketone | 0.1 | 96.4 | 3.5 | 5 | 96.7 | 4.8 | 5.6 | 95.1 | 4.2 | 5.6 | 94.4 | 4.6 | 5.7 | 95.6 | 5.3 | 5.9 | 95.1 | 4.8 | 5.6 |
1 | 97.4 | 3.1 | 4.8 | 97.2 | 4.6 | 5.2 | 96.5 | 3.8 | 5.2 | 95.5 | 4.1 | 5.3 | 95.8 | 4.4 | 5.5 | 95.6 | 4.3 | 5.1 | |
10 | 98 | 2.9 | 3.5 | 98.2 | 4.1 | 4.9 | 97.8 | 2.9 | 4.1 | 96.9 | 3.8 | 4.8 | 97.1 | 3.9 | 4.7 | 96.6 | 3.6 | 4.6 | |
100 | 98.9 | 2.6 | 3.2 | 98.8 | 3.5 | 4.2 | 98.3 | 2.6 | 3.4 | 97.2 | 2.9 | 3.8 | 98.1 | 3.4 | 4.5 | 98.1 | 3 | 4.1 | |
Methoxychlor | 0.1 | 97 | 3.4 | 4.8 | 95.7 | 4.6 | 5.9 | 95.2 | 4.1 | 5.2 | 94.3 | 4.8 | 5.9 | 95.7 | 5.1 | 5.8 | 95.5 | 4.9 | 5.8 |
1 | 97.8 | 3 | 4.1 | 96.2 | 4.5 | 5.6 | 96.6 | 3.9 | 5.1 | 95.4 | 4.2 | 5.3 | 96.1 | 4.2 | 5.1 | 95.5 | 4.4 | 5.4 | |
10 | 98.2 | 2.6 | 3.6 | 97.2 | 3.6 | 4.8 | 97.2 | 2.7 | 3.9 | 96.8 | 3.5 | 4.6 | 96.8 | 3.6 | 4.8 | 96.1 | 3.7 | 4.8 | |
100 | 98.8 | 2.4 | 3.3 | 98.8 | 2.9 | 4.1 | 98.7 | 2.3 | 3.5 | 97.3 | 2.8 | 3.7 | 97.2 | 2.5 | 3.6 | 97.6 | 3.1 | 4.1 |
Sl. No. | Analyte | Matrix | Extraction Method | Chromatographic Technique | Linearity (ng/mL) | LOD (ng/mL) | RSD % | Reference |
---|---|---|---|---|---|---|---|---|
1 | 8 OCPs | water | graphene SPE | GC-MS | 0.1–10 | 0.0019–0.0093 | <7.4 | [14] |
2 | 10 OCPs | Strawberry, strawberry jam, soil | SDME | GC-MS/MS | 0.5–50 | 0.002–0.150 | <15 | [16] |
3 | 9 OCPs | water | µ-SPE | GC-ECD | 0.1–100 | 0.0076–0.016 | <10 | [19] |
4 | 14 OCPs | water | HS-SBSE | GC-MS | 5–17 | 0.01–1.59 | <14.8 | [20] |
5 | 19 OCPs | water and juice samples | FPSE | GC-MS | 0.1–500 | 0.007–0.032 | <5 | Present work |
Peak No. | OCP | Molecular Weight | CAS Number | Log Kow | Retention Time (min) | Qualitative Ion |
---|---|---|---|---|---|---|
1 | α-Benzenehexachloride (α-BHC) | 290.83 | 319-84-6 | 3.81 | 8.43 | 183 *, 219, 109 |
2 | β-Benzenehexachloride (β-BHC) | 290.83 | 31-85-7 | 3.78 | 8.79 | 183 *, 219, 109 |
3 | γ-Benzenehexachloride (γ-BHC) | 290.83 | 58-89-9 | 3.72 | 8.94 | 183 *, 145, 109 |
4 | δ-Benzenehexachloride (δ-BHC) | 290.83 | 319-86-8 | 4.14 | 9.35 | 183 *, 219, 109 |
5 | Heptachlor | 373.32 | 76-44-8 | 6.10 | 10.17 | 100 *, 272, 237 |
6 | Aldrin | 364.90 | 309-00-2 | 6.50 | 10.92 | 66 *, 101, 263 |
7 | Heptachlorepoxide | 389.30 | 1024-57-3 | 5.40 | 11.83 | 53, 81 *, 353 |
8 | Trans Chlordane | 409.75 | 5103-74-2 | 6.16 | 12.49 | 176, 212 *, 375 |
9 | Cis Chlordane | 4.9.75 | 5103-71-9 | 6.16 | 12.90 | 237 *, 272, 373 |
10 | p,p Dichlorodiphenyldichlo roethylene (p,p’ DDE) | 318.02 | 72-55-9 | 6.51 | 13.56 | 176, 246 *, 318 |
11 | Dieldrin | 380.91 | 60-57-1 | 5.40 | 13.78 | 79 *, 263, 108 |
12 | Endrin | 380.90 | 72-80-8 | 5.20 | 14.42 | 81 *, 67, 263 |
13 | β-Endosulfan | 406.90 | 33213-65-9 | 3.62 | 14.72 | 207, 195 *, 159 |
14 | p,p Dichlorodiphenyldichlo roethane (p,p’ DDD) | 320.03 | 72-54-8 | 6.02 | 14.85 | 199, 235 *, 165 |
15 | Endrin Aldehyde | 380.89 | 7421-93-4 | 4.80 | 15.15 | 67 *, 250, 345 |
16 | Endosulfan sulfate | 422.90 | 1031-07-8 | 3.66 | 15.82 | 193, 207 *, 129 |
17 | p,p Dichlorodiphenyltrichlo roethane (p,p’ DDT) | 354.48 | 50-29-3 | 6.91 | 15.94 | 235 *, 165, 199 |
18 | Endrin ketone | 380.89 | 53494-70-5 | 17.08 | 67 *, 281, 221 | |
19 | Methoxychlor | 345.65 | 72-43-5 | 5.08 | 17.42 | 227 *, 169, 197 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaur, R.; Kaur, R.; Rani, S.; Malik, A.K.; Kabir, A.; Furton, K.G.; Samanidou, V.F. Rapid Monitoring of Organochlorine Pesticide Residues in Various Fruit Juices and Water Samples Using Fabric Phase Sorptive Extraction and Gas Chromatography-Mass Spectrometry. Molecules 2019, 24, 1013. https://doi.org/10.3390/molecules24061013
Kaur R, Kaur R, Rani S, Malik AK, Kabir A, Furton KG, Samanidou VF. Rapid Monitoring of Organochlorine Pesticide Residues in Various Fruit Juices and Water Samples Using Fabric Phase Sorptive Extraction and Gas Chromatography-Mass Spectrometry. Molecules. 2019; 24(6):1013. https://doi.org/10.3390/molecules24061013
Chicago/Turabian StyleKaur, Ramandeep, Ripneel Kaur, Susheela Rani, Ashok Kumar Malik, Abuzar Kabir, Kenneth G. Furton, and Victoria F. Samanidou. 2019. "Rapid Monitoring of Organochlorine Pesticide Residues in Various Fruit Juices and Water Samples Using Fabric Phase Sorptive Extraction and Gas Chromatography-Mass Spectrometry" Molecules 24, no. 6: 1013. https://doi.org/10.3390/molecules24061013
APA StyleKaur, R., Kaur, R., Rani, S., Malik, A. K., Kabir, A., Furton, K. G., & Samanidou, V. F. (2019). Rapid Monitoring of Organochlorine Pesticide Residues in Various Fruit Juices and Water Samples Using Fabric Phase Sorptive Extraction and Gas Chromatography-Mass Spectrometry. Molecules, 24(6), 1013. https://doi.org/10.3390/molecules24061013