The Asymmetric A3(Aldehyde–Alkyne–Amine) Coupling: Highly Enantioselective Access to Propargylamines
Abstract
:1. Introduction
2. AA3 –Coupling Derived from Primary Amine
3. AA3–Coupling Derived from Secondary Amine
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ugi, I.; Dömling, A.; Hörl, W. Multicomponent Reactions in Organic Chemistry. Endeavour 1994, 18, 115–122. [Google Scholar] [CrossRef]
- Yu, J.; Shi, F.; Gong, L.-Z. Brønsted-Acid-Catalyzed Asymmetric Multicomponent Reactions for the Facile Synthesis of Highly Enantioenriched Structurally Diverse Nitrogenous Heterocycles. Acc. Chem. Res. 2011, 44, 1156–1171. [Google Scholar] [CrossRef] [PubMed]
- De Graaff, C.; Ruijter, E.; Orru, R.V.A. Recent Developments in Asymmetric Multicomponent Reactions. Chem. Soc. Rev. 2012, 41, 3969–4009. [Google Scholar] [CrossRef]
- Visbal, R.; Grau, S.; Herrera, R.P.; Gimeno, M.C. Gold Catalyzed Multicomponent Reactions beyond A3 Coupling. Molecules 2018, 23, 2255. [Google Scholar] [CrossRef]
- Touré, B.B.; Hall, D.G. Natural Product Synthesis Using Multicomponent Reaction Strategies. Chem. Rev. 2009, 109, 4439–4486. [Google Scholar] [CrossRef]
- Dömling, A.; Wang, W.; Wang, K. Chemistry and Biology of Multicomponent Reactions. Chem. Rev. 2012, 112, 3083–3135. [Google Scholar] [CrossRef] [PubMed]
- Eckert, H. Diversity Oriented Syntheses of Conventional Heterocycles by Smart Multi Component Reactions (MCRs) of the Last Decade. Molecules 2012, 17, 1074–1102. [Google Scholar] [CrossRef] [Green Version]
- Trost, B.M.; Chung, C.K.; Pinkerton, A.B. Stereocontrolled Total Synthesis of (+)-Streptazolin by a Palladium-Catalyzed Reductive Diyne Cyclization. Angew. Chem. Int. Ed. 2004, 43, 4327–4329. [Google Scholar] [CrossRef]
- Fleming, J.J.; Bois, J.D. A Synthesis of (+)-Saxitoxin. J. Am. Chem. Soc. 2006, 128, 3926–3927. [Google Scholar] [CrossRef]
- Peshkov, V.A.; Pereshivko, O.P.; Van der Eycken, E.V. A Walk around the A3-Coupling. Chem. Soc. Rev. 2012, 41, 3790–3807. [Google Scholar] [CrossRef]
- Yoo, W.-J.; Zhao, L.; Li, C.-J. The A3-Coupling (Aldehyde–Alkyne–Amine) Reaction: A Versatile Method for the Preparation of Propargylamines. Aldrichimica Acta 2011, 44, 43–51. [Google Scholar]
- Gommermann, N.; Knochel, P. Practical Highly Enantioselective Synthesis of Propargylamines through a Copper-Catalyzed One-Pot Three-Component Condensation Reaction. Chem. Eur. J. 2006, 12, 4380–4392. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Li, C.-J. Enantioselective Direct-Addition of Terminal Alkynes to Imines Catalyzed by Copper(I)pybox Complex in Water and in Toluene. J. Am. Chem. Soc. 2002, 124, 5638–5639. [Google Scholar] [CrossRef]
- Wei, C.; Mague, J.T.; Li, C.-J. Cu(I)-Catalyzed Direct Addition and Asymmetric Addition of Terminal Alkynes to Imines. Proc. Natl. Acad. Sci. USA 2004, 101, 5749–5754. [Google Scholar] [CrossRef] [PubMed]
- Bisai, A.; Singh, V.K. Enantioselective One-Pot Three-Component Synthesis of Propargylamines. Org. Lett. 2006, 8, 2405–2408. [Google Scholar] [CrossRef]
- Córdova, A.; Notz, W.; Zhong, G.; Betancort, J.M.; Barbas, C.F. A Highly Enantioselective Amino Acid-Catalyzed Route to Functionalized α-Amino Acids. J. Am. Chem. Soc. 2002, 124, 1842–1843. [Google Scholar] [PubMed]
- Enders, D.; Grondal, C.; Vrettou, M.; Raabe, G. Asymmetric Synthesis of Selectively Protected Amino Sugars and Derivatives by a Direct Organocatalytic Mannich Reaction. Angew. Chem. Int. Ed. 2005, 44, 4079–4083. [Google Scholar]
- Ginotra, S.K.; Singh, V.K. Studies on Enantioselective Allylic Oxidation of Olefins Using Peresters Catalyzed by Cu(I)-Complexes of Chiral Pybox Ligands. Org. Biomol. Chem. 2006, 4, 4370–4374. [Google Scholar] [CrossRef]
- Ginotra, S.K.; Singh, V.K. Enantioselective Oxidation of Olefins Catalyzed by Chiral Copper Bis(oxazolinyl)pyridine Complexes: A Reassessment. Tetrahedron 2006, 62, 3573–3581. [Google Scholar] [CrossRef]
- Sekar, G.; DattaGupta, A.; Singh, V.K. Asymmetric Kharasch Reaction: Catalytic Enantioselective Allylic Oxidation of Olefins Using Chiral Pyridine Bis(diphenyloxazoline)−Copper Complexes and tert-Butyl Perbenzoate. J. Org. Chem. 1998, 63, 2961–2967. [Google Scholar] [CrossRef]
- DattaGupta, A.; Singh, V.K. Catalytic Enantioselective Allylic Oxidation of Olefins with Copper Complexes of Chiral Nonracemic Bis(oxazolinyl)pyridine Type Ligands. Tetrahedron Lett. 1996, 37, 2633–2636. [Google Scholar]
- Bisai, A.; Singh, V.K. Enantioselective One-Pot Three-Component Synthesis of Propargylamines Catalyzed by Copper(I)-Pyridine Bis-(oxazoline) Complexes. Tetrahedron. 2012, 68, 3480–3486. [Google Scholar]
- Irmak, M.; Groschner, A.; Boysen, M.M.K. glucoBox Ligand—A New Carbohydrate-Based Bis(oxazoline) Ligand.Synthesis and First Application. Chem. Commun. 2007, 2, 177–179. [Google Scholar]
- Irmak, M.; Lehnert, T.; Boysen, M.M.K. First Synthesis of a Carbohydrate-Derived Pyridyl Bis(thiazoline) Ligand. Tetrahedron Lett. 2007, 48, 7890–7893. [Google Scholar] [CrossRef]
- Irmak, M.; Boysen, M.M.K. A New Pyridyl Bis(oxazoline)Ligand Prepared from D-Glucosamine for Asymmetric Alkynylation of Imines. Adv. Synth. Catal. 2008, 350, 403–405. [Google Scholar] [CrossRef]
- Nakamura, S.; Hyodo, K.; Nakamura, Y.; Shibata, N.; Toru, T. Novel Enantiocomplementary C2-Symmetric Chiral Bis(imidazoline) Ligands: Highly Enantioselective Friedel–Crafts Alkylation of Indoles with Ethyl 3,3,3-Trifluoropyruvate. Adv. Synth. Catal. 2008, 350, 1443–1448. [Google Scholar] [CrossRef]
- Hara, N.; Nakamura, S.; Shibata, N.; Toru, T. First Enantioselective Synthesis of (R)-Convolutamydine B and E with N-(Heteroarenesulfonyl)prolinamides. Chem. Eur. J. 2009, 15, 6790–6793. [Google Scholar]
- Nakamura, S.; Hara, N.; Nakashima, H.; Kubo, K.; Shibata, N.; Toru, T. Enantioselective Synthesis of (R)-Convolutamydine A with New N-Heteroarylsulfonylprolinamides. Chem. Eur. J. 2008, 14, 8079–8081. [Google Scholar] [CrossRef]
- Nakamura, S.; Nakashima, H.; Sugimoto, H.; Sano, H.; Hattori, M.; Shibata, N.; Toru, T. Enantioselective C–C Bond Formation to Sulfonylimines through Use of the 2-Pyridinesulfonyl Group as a Novel Stereocontroller. Chem. Eur. J. 2008, 14, 2145–2152. [Google Scholar] [CrossRef]
- Nakamura, S.; Nakashima, H.; Yamamura, A.; Shibata, N.; Toru, T. Organocatalytic Enantioselective Hydrophosphonylation of Sulfonylimines having a Heteroarenesulfonyl Group as a Novel Stereocontroller. Adv. Synth. Catal. 2008, 350, 1209–1212. [Google Scholar]
- Nakamura, S.; Sakurai, Y.; Nakashima, H.; Shibata, N.; Toru, T. Organocatalytic Enantioselective Aza-Friedel-Crafts Alkylation of Pyrroles with N-(Heteroarenesulfonyl)imines. Synlett 2009, 10, 1639–1642. [Google Scholar] [CrossRef]
- Nakamura, S.; Ohara, M.; Nakamura, Y.; Shibata, N.; Toru, T. Copper-Catalyzed Enantioselective Three-Component Synthesis of Optically Active Propargylamines from Aldehydes, Amines, and Aliphatic Alkynes. Chem. Eur. J. 2010, 16, 2360–2362. [Google Scholar] [CrossRef] [PubMed]
- Shao, Z.; Pu, X.; Li, X.; Fan, B.; Chan, A.S.C. Enantioselective, Copper(I)-Catalyzed Three-Component Reaction for the Synthesis of β, γ-Alkynyl α-Amino Acid Derivatives. Tetrahedron: Asymmetry 2009, 20, 225–229. [Google Scholar] [CrossRef]
- Abdulganeeva, S.A.; Erzhanov, K.B. Acetylenic Amino Acids. Russ. Chem. Rev. 1991, 60, 676–687. [Google Scholar] [CrossRef]
- Angst, C. Stereoselective Synthesis of β, γ-Unsaturated Amino Acids. Pure Appl. Chem. 1987, 59, 373–380. [Google Scholar] [CrossRef]
- Gao, X.-T.; Gan, C.-C.; Liu, S.-Y.; Zhou, F.; Wu, H.-H.; Zhou, J. Utilization of CO2 as a C1 Building Block in a Tandem Asymmetric A3 Coupling-Carboxylative Cyclization Sequence to 2-Oxazolidinones. ACS Catal. 2017, 7, 8588–8593. [Google Scholar] [CrossRef]
- Alcock, N.W.; Brown, J.M.; Hulmes, D.I. Synthesis and Resolution of 1-(2-Diphenylphosphino-1-naphthyl)isoquinoline; a P–N Chelating Ligand for Asymmetric Catalysis. Tetrahedron: Asymmetry 1993, 4, 743–756. [Google Scholar] [CrossRef]
- Gommermann, N.; Koradin, C.; Polborn, K.; Knochel, P. Enantioselective, Copper(I)-Catalyzed Three-Component Reaction for the Preparation of Propargylamines. Angew. Chem. Int. Ed. 2003, 42, 5763–5766. [Google Scholar] [CrossRef]
- Koradin, C.; Polborn, K.; Knochel, P. Enantioselective Synthesis of Propargylamines by Copper-Catalyzed Addition of Alkynes to Enamines. Angew. Chem. Int. Ed. 2002, 41, 2535–2538. [Google Scholar] [CrossRef]
- Koradin, C.; Gommermann, N.; Polborn, K.; Knochel, P. Synthesis of Enantiomerically Enriched Propargylamines by Copper-Catalyzed Addition of Alkynes to Enamines. Chem. Eur. J. 2003, 9, 2797–2811. [Google Scholar] [CrossRef]
- Gommermann, N.; Knochel, P. Practical Highly Enantioselective Synthesis of Terminal Propargylamines. An Expeditious Synthesis of (S)-(+)-Coniine. Chem. Commun. 2004, 2324–2325. [Google Scholar] [CrossRef] [PubMed]
- Gommermann, N.; Knochel, P. Preparation of Functionalized Primary Chiral Amines and Amides via an Enantioselective Three-Component Synthesis of Propargylamines. Tetrahedron 2005, 61, 11418–11426. [Google Scholar] [CrossRef]
- Dube, H.; Gommermann, N.; Knochel, P. Synthesis of Chiral α-Aminoalkylpyrimidines Using an Enantioselective Three-Component Reaction. Synthesis 2004, 12, 2015–2025. [Google Scholar] [CrossRef]
- Gommermann, N.; Gehrig, A.; Knochel, P. Enantioselective Synthesis of Chiral a-Aminoalkyl-1,2,3-triazoles Using α-Three-Component Reaction. Synlett 2005, 18, 2796–2798. [Google Scholar] [CrossRef]
- Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed. 2001, 40, 2004–2021. [Google Scholar] [CrossRef] [Green Version]
- Kolb, H.C.; Sharpless, K.B. The Growing Impact of Click Chemistry on Drug Discovery. Drug. Discov. Today 2003, 8, 1128–1137. [Google Scholar] [CrossRef]
- Fürstner, A.; Szillat, H.; Gabor, B.; Mynott, R. Platinum- and Acid-Catalyzed Enyne Metathesis Reactions: Mechanistic Studies and Applications to the Syntheses of Streptorubin B and Metacycloprodigiosin. J. Am. Chem. Soc. 1998, 120, 8305–8314. [Google Scholar] [CrossRef]
- Karpov, A.S.; Müller, T.J.J. New Entry to a Three-Component Pyrimidine Synthesis by TMS−Ynones via Sonogashira Coupling. Org. Lett. 2003, 5, 3451–3454. [Google Scholar] [CrossRef]
- Adlington, R.M.; Baldwin, J.E.; Catterick, D.; Pritchard, G.J. A Versatile Approach to Pyrimidin-4-yl Substituted α-Aminoacids from Alkynyl Ketones; the Total Synthesis of L-Lathyrine. Chem. Commun. 1997, 1757–1758. [Google Scholar] [CrossRef]
- Adlington, R.M.; Baldwin, J.E.; Catterick, D.; Pritchard, G.J. The Synthesis of Pyrimidin-4-yl Pubstituted α-Amino Acids. Aversatile Approach from Alkynyl Ketones. J. Chem. Soc., Perkin Trans. 1 1999, 855–866. [Google Scholar] [CrossRef]
- Adlington, R.M.; Baldwin, J.E.; Pritchard, G.J.; Spencer, K.C. Synthesis of Novel C-Nucleosides with Potential Applications in Combinatorial and Parallel Synthesis. Tetrahedron Lett. 2000, 41, 575–578. [Google Scholar] [CrossRef]
- Bois, F.; Gardette, D.; Gramain, J.-C. A New Asymmetric Synthesis of (S)-(+)-Pipecoline and (S)-(+)- and (R)-(−)-Coniine by Reductive Photocyclization of Dienamides. Tetrahedron Lett. 2000, 41, 8769–8772. [Google Scholar]
- Chippindale, A.M.; Davies, S.G.; Iwamoto, K.; Parkin, R.M.; Smethurst, C.A.P.; Smith, A.D.; Rodriguez-Solla, H. Asymmetric Synthesis of Cyclic β-Amino Acids and Cyclic Amines via Sequential Diastereoselective Conjugate Addition and Ring Closing Metathesis. Tetrahedron 2003, 59, 3253–3265. [Google Scholar] [CrossRef]
- Hayes, J.F.; Shipman, M.; Twin, H. Asymmetric Synthesis of 2-Substituted Piperidines Using a Multi-Component Coupling Reaction: Rapid Assembly of (S)-Coniine from (S)-1-(1-phenylethyl)-2-Methyleneaziridine. Chem. Commun. 2001, 1784–1785. [Google Scholar] [CrossRef]
- Gommermann, N.; Knochel, P. 2-Phenallyl as a Versatile Protecting Group for the Asymmetric One-Pot Three-Component Synthesis of Propargylamines. Chem. Commun. 2005, 4175–4177. [Google Scholar] [CrossRef]
- Gommermann, N.; Knochel, P. Highly Enantioselective Synthesis of Propargylamines Using (Mesitylmethyl)benzylamine. Synlett 2005, 18, 2799–2801. [Google Scholar] [CrossRef]
- Knöpfel, T.F.; Aschwanden, P.; Ichikawa, T.; Watanabe, T.; Carreira, E.M. Readily Available Biaryl P,N Ligands for Asymmetric Catalysis. Angew. Chem. Int. Ed. 2004, 43, 5971–5973. [Google Scholar] [CrossRef] [Green Version]
- Aschwanden, P.; Stephenson, C.R.J.; Carreira, E.M. Highly Enantioselective Access to Primary Propargylamines: 4-Piperidinone as a Convenient Protecting Group. Org. Lett. 2006, 8, 2437–2440. [Google Scholar] [CrossRef]
- Fan, W.; Ma, S. An Easily Removable Stereo-dictating Group for Enantioselective Synthesis of Propargylic Amines. Chem. Commun. 2013, 49, 10175–10177. [Google Scholar] [CrossRef]
- Neenan, T.X.; Whitesides, G.M. Synthesis of High Carbon Materials from Acetylenic Precursors. Preparation of Aromatic Monomers Bearing Multiple Ethynyl Groups. J. Org. Chem. 1988, 53, 2489–2496. [Google Scholar]
- Schmittel, M.; Ammon, H. Preparation of a Rigid Macrocycle with Two Exotopic Phenanthroline Binding Sites. Synlett 1999, 6, 750–752. [Google Scholar] [CrossRef]
- Tykwinski, R.R. Evolution in the Palladium-Catalyzed Cross-Coupling of sp- and sp2-Hybridized Carbon Atoms. Angew. Chem. Int. Ed. 2004, 42, 1566–1568. [Google Scholar] [CrossRef]
- Heuft, M.A.; Collins, S.K.; Yep, G.P.A.; Fallis, A.G. Synthesis of Diynes and Tetraynes from in Situ Desilylation/Dimerization of Acetylenes. Org. Lett. 2001, 3, 2883–2886. [Google Scholar] [CrossRef]
- Fan, W.; Yuan, W.; Ma, S. Unexpected E-stereoselective Reductive A3-Coupling Reaction of Terminal Alkynes with Aldehydes and Amines. Nat. Commun. 2014, 5, 3884–3892. [Google Scholar] [CrossRef]
- Cardoso, F.S.P.; Abboud, K.A.; Aponick, A. Design, Preparation, and Implementation of an Imidazole-Based Chiral Biaryl P,N-Ligand for Asymmetric Catalysis. J. Am. Chem. Soc. 2013, 135, 14548–14551. [Google Scholar] [CrossRef]
- Paioti, P.H.S.; Abboud, K.A.; Aponick, A. Incorporation of Axial Chirality into Phosphino-Imidazoline Ligands for Enantioselective Catalysis. ACS Catal. 2017, 7, 2133–2138. [Google Scholar] [CrossRef]
- Aponick, A.; Li, C.-Y.; Malinge, J.; Marques, E.F. An Extremely Facile Synthesis of Furans, Pyrroles, and Thiophenes by the Dehydrative Cyclization of Propargyl Alcohols. Org. Lett. 2009, 11, 4624–4627. [Google Scholar] [CrossRef]
- Naeimi, H.; Moradian, M. Thioether-based Copper(I) Schiff Base Complex as a Catalyst for a Direct and Asymmetric A3-coupling Reaction. Tetrahedron: Asymmetry 2014, 25, 429–434. [Google Scholar] [CrossRef]
- Zhao, C.; Seidel, D. Enantioselective A3 Reactions of Secondary Amines with a Cu(I)/Acid−Thiourea Catalyst Combination. J. Am. Chem. Soc. 2015, 137, 4650–4653. [Google Scholar] [CrossRef]
- Periasamy, M.; Sanjeevakumar, N.; Dalai, M.; Gurubrahamam, R.; Reddy, P.O. Highly Enantioselective Synthesis of Chiral Allenes by Sequential Creation of Stereogenic Center and Chirality Transfer in a Single Pot Operation. Org. Lett. 2012, 14, 2932–2935. [Google Scholar] [CrossRef]
Entry | Pybox | Time | Yield a (%) | ee (%) |
---|---|---|---|---|
1 | i-Pr-pybox-diPh (L7) | 16 h | 98 | 90 |
2 | s-Bu-pybox-diPh (L8) | 18 h | 97 | 93 |
3 | i-Bu-pybox-diPh (L9) | 4 days | 56 | 63 |
4 | t-Bu-pybox-diPh (L10) | 22 h | 90 | 68 |
5 | Bn-pybox-diPh (L11) | 5 days | 45 | 64 |
6 | Me-pybox-diPh (L12) | 4 days | 51 | 53 |
7 | Ph-pybox-diPh (L13) | 28 h | 96 | 75(S) b |
Run | Yield (%) a | ee (%) b |
---|---|---|
1 | 99 | 98 |
2 | 87 | 97 |
3 | 89 | 98 |
R1 | R2 | Ligand | Yield [%] | Ee [%] | Quinap [% ee] |
---|---|---|---|---|---|
i-Pr | Me3Si | L20 | 84 | 98 (R) | 92 |
L21 | 82 | 99 (S) | |||
i-Pr | Ph | L20 | 88 | 90 (R) | 84 |
L21 | 82 | 95 (S) | |||
i-Bu | i-Bu | L20 | 74 | 91 (R) | 82 |
L21 | 72 | 94 (S) |
Entry | Ligand | Product | Yield 26/26′ | Yield 27/ent-27 | ee |
---|---|---|---|---|---|
1 | L22 | 86% | 80% | 66% | |
2 | L23 | 64% | 75% | 82% | |
3 | L24 | 74% | 81% | −94% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mo, J.-N.; Su, J.; Zhao, J. The Asymmetric A3(Aldehyde–Alkyne–Amine) Coupling: Highly Enantioselective Access to Propargylamines. Molecules 2019, 24, 1216. https://doi.org/10.3390/molecules24071216
Mo J-N, Su J, Zhao J. The Asymmetric A3(Aldehyde–Alkyne–Amine) Coupling: Highly Enantioselective Access to Propargylamines. Molecules. 2019; 24(7):1216. https://doi.org/10.3390/molecules24071216
Chicago/Turabian StyleMo, Jia-Nan, Junqi Su, and Jiannan Zhao. 2019. "The Asymmetric A3(Aldehyde–Alkyne–Amine) Coupling: Highly Enantioselective Access to Propargylamines" Molecules 24, no. 7: 1216. https://doi.org/10.3390/molecules24071216
APA StyleMo, J. -N., Su, J., & Zhao, J. (2019). The Asymmetric A3(Aldehyde–Alkyne–Amine) Coupling: Highly Enantioselective Access to Propargylamines. Molecules, 24(7), 1216. https://doi.org/10.3390/molecules24071216