Optimization of Spray-Drying Process of Jerusalem artichoke Extract for Inulin Production
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of Spray-Drying Process by Response Surface Methodology
2.2. Comparison between Spray-Drying and Freeze-Drying
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Preparation of Jerusalem artichoke Extract
3.3. Preparation of Inulin Powder
3.4. Characterization and Analysis
3.4.1. Determination of Inulin Yield
3.4.2. Determination of Water Content
3.4.3. Analysis of Particle Size and Surface Structure of Inulin Powder
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Huandong, L.I.; Zhu, H.; Qiao, J.; Junhu, D.U.; Zhang, H.J. Optimization of the main liming process for inulin crude extract from Jerusalem artichoke tubers. Front. Chem. Sci. Eng. 2012, 6, 348–355. [Google Scholar]
- Zhu, Z.; Xiao, L.; Yin, F.; Li, S.; He, J. Clarification of Jerusalem artichoke extract using ultra-filtration: Effect of membrane pore size and operation conditions. Food Bioprocess Technol. 2018, 11, 864–873. [Google Scholar] [CrossRef]
- Beccard, S.; Bernard, J.; Wouters, R.; Gehrich, K.; Zielbauer, B.; Mezger, M.; Vilgis, T.A. Alteration of the structural properties of inulin gels. Food Hydrocoll. 2019, 89, 302–310. [Google Scholar]
- Glibowski, P.; Wasko, A. Effect of thermochemical treatment on the structure of inulin and its gelling properties. Int. J. Food Sci. Technol. 2008, 43, 2075–2082. [Google Scholar] [CrossRef]
- Zhu, Z.; He, J.; Gang, L.; Barba, F.J.; Koubaa, M.; Ding, L.; Bals, O.; Grimi, N.; Vorobiev, E. Recent insights for the green recovery of inulin from plant food materials using non-conventional extraction technologies:A review. Int. J. Food Sci. Technol. 2016, 33, 1–9. [Google Scholar]
- Alvarez-Sabatel, S.; Marañón, I.M.D.; Arboleya, J.C. Impact of oil and inulin content on the stability and rheological properties of mayonnaise-like emulsions processed by rotor-stator homogenisation or high pressure homogenisation (HPH). Innov. Food Sci. Emerg. Technol. 2018, 48, 195–203. [Google Scholar] [CrossRef]
- Chaito, C.; Judprasong, K.; Puwastien, P. Inulin content of fortified food products in Thailand. Food Chem. 2016, 193, 102–105. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Hao, W.; Wang, C. Interactions between whey protein and inulin in a model system. J. Food Sci. Technol. 2018, 55, 4051–4058. [Google Scholar] [CrossRef]
- Barszcz, M.; Taciak, M.; Skomiał, J. The effects of inulin, dried Jerusalem artichoke tuber and a multi species probiotic preparation on microbiota ecology and immune status of the large intestine in young pigs. Arch. Anim. Nutr. 2015, 70, 278. [Google Scholar] [CrossRef]
- Chen, G.-J.; Yang, J.-K.; Peng, X.-B.; He, J.-R. High-level secretory expression of Aspergillus exo-inulinase and its use in the preparation of fructose syrup from inulin. J. Mol. Catal. B Enzym. 2016, 133, S543–S551. [Google Scholar] [CrossRef]
- Terkmane, N.; Krea, M.; Moulai-Mostefa, N. Optimisation of inulin extraction from globe artichoke (Cynara cardunculus L. subsp. scolymus (L.) Hegi.) by electromagnetic induction heating process. Int. J. Food Sci. Technol. 2016, 51, 1997–2008. [Google Scholar] [CrossRef]
- Liu, J.; Luo, D.; Xuan, L.; Xu, B.; Zhang, X.; Liu, J. Effects of inulin on the structure and emulsifying properties of protein components in dough. Food Chem. 2016, 210, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Bals, O.; Grimi, N.; Ding, L.; Vorobiev, E. Qualitative characteristics and dead-end ultrafiltration of chicory juice obtained from pulsed electric field treated chicories. Ind. Crop. Prod. 2013, 46, 8–14. [Google Scholar] [CrossRef]
- Toneli, J.; Park, K.; Negreiros, A.; Murr, F. Spray-drying process optimization of chicory root inulin. Dry. Technol. 2010, 28, 369–379. [Google Scholar] [CrossRef]
- Ahmad, S.; Nema, P.K.; Bashir, K. Effect of different drying techniques on physicochemical, thermal, and functional properties of seera. Dry. Technol. 2018, 36, 1284–1291. [Google Scholar] [CrossRef]
- Hang, H.; Li, Y.; Zhao, M.; Jiang, B.; Miao, M.; Mu, W.; Zhang, T. Dry powder preparation of inulin fructo transferase from Arthrobacter aurescens SK8.001 fermented liquor. Carbohydr. Polym. 2013, 95, 654–656. [Google Scholar] [CrossRef] [PubMed]
- Hibler, S.; Gieseler, H. Heat transfer characteristics of current primary packaging systems for pharmaceutical freeze-drying. J. Pharm. Sci. 2012, 101, 4025–4031. [Google Scholar] [CrossRef]
- Litvin, S.; Mannheim, C.H.; Miltz, J. Dehydration of carrots by a combination of freeze drying, microwave heating and air or vacuum drying. J. Food Eng. 1998, 36, 103–111. [Google Scholar] [CrossRef]
- Moayyedi, M.; Eskandari, M.H.; Rad, A.H.E.; Ziaee, E.; Khodaparast, M.H.H.; Golmakani, M.-T. Effect of drying methods (electrospraying, freeze drying and spray drying) on survival and viability of microencapsulated Lactobacillus rhamnosus ATCC7469. J. Funct. Foods 2018, 40, 391–399. [Google Scholar] [CrossRef]
- Walz, M.; Hirth, T.; Weber, A. Investigation of chemically modified inulin as encapsulation material for pharmaceutical substances by spray-drying. Colloids Surf. A Phys. Eng. Asp. 2018, 536, 47–52. [Google Scholar] [CrossRef]
- Liu, S.; Shi, X.; Xu, L. Optimization of pectin extraction and antioxidant activities from Jerusalem artichoke. Chin. J. Oceanol. Limnol. 2016, 34, 372–381. [Google Scholar] [CrossRef]
- You, L.; Zhao, M.; Joe, R.; Ren, J.; Ruan, W. Influence of processing and storage conditions on antioxidant activity of loach peptide. J. Jiangsu Univ. (Nat. Sci. Ed.) 2009, 30, 549–553. (In Chinese) [Google Scholar]
- Li, S.; Wu, Q.; Yin, F.; Zhu, Z.; He, J.; Barba, F. Development of a combined trifluoroacetic acid hydrolysis and HPLC-ELSD method to identify and quantify inulin recovered from Jerusalem artichoke assisted by ultrasound extraction. Appl. Sci. 2018, 8, 710. [Google Scholar] [CrossRef]
- Da Cruz Almeida, E.T.; daSilva, M.C.D.; Oliveira, J.; Kamiya, R.U.; Arruda, R.; Vieira, D.A.; Silva, V.D.C.; Escodro, P.B.; Basilio-Junior, I.D.; doNascimento, T.G. Chemical and microbiological characterization of tinctures and microcapsules loaded with Brazilian red propolis extract. J. Pharm. Anal. 2017, 7, 280–287. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Not available. |
Run | Coded Variables | Actual Variables | Yield (%) | ||||
---|---|---|---|---|---|---|---|
A | B | C | X1 | X2 | X3 | ||
1 | 0 | 1 | −1 | 115 | 22 | 0.02 | 6.86 ± 0.03 |
2 | 0 | 0 | 0 | 115 | 20 | 0.03 | 7.49 ± 0.13 |
3 | 1 | 1 | 0 | 120 | 22 | 0.03 | 6.23 ± 0.06 |
4 | −1 | 0 | 1 | 110 | 20 | 0.04 | 5.77 ± 0.02 |
5 | −1 | 0 | −1 | 110 | 20 | 0.02 | 7.35 ± 0.02 |
6 | 1 | 0 | 1 | 120 | 20 | 0.04 | 5.65 ± 0.04 |
7 | 0 | 1 | 1 | 115 | 22 | 0.04 | 5.31 ± 0.07 |
8 | 0 | −1 | 1 | 115 | 18 | 0.04 | 5.97 ± 0.05 |
9 | 1 | 0 | −1 | 120 | 20 | 0.02 | 6.58 ± 0.17 |
10 | 0 | 0 | 0 | 115 | 20 | 0.03 | 8.31 ± 0.11 |
11 | 0 | −1 | −1 | 115 | 18 | 0.02 | 6.48 ± 0.01 |
12 | −1 | 1 | 0 | 110 | 22 | 0.03 | 6.56 ± 0.08 |
13 | 0 | 0 | 0 | 115 | 20 | 0.03 | 7.96 ± 0.10 |
14 | 0 | 0 | 0 | 115 | 20 | 0.03 | 8.03 ± 0.11 |
15 | 1 | −1 | 0 | 120 | 18 | 0.03 | 7.03 ± 0.01 |
16 | 0 | 0 | 0 | 115 | 20 | 0.03 | 8.13 ± 0.15 |
17 | −1 | −1 | 0 | 110 | 18 | 0.03 | 6.13 ± 0.04 |
Source | Sum of Squares | DF | Mean Square | F-Value | p-Value Prob > F | Significance |
---|---|---|---|---|---|---|
Model | 13.35 | 9 | 1.48 | 15.56 | 0.0008 | ** |
A | 0.013 | 1 | 0.013 | 0.13 | 0.7248 | N |
B | 0.053 | 1 | 0.053 | 0.55 | 0.4809 | N |
C | 2.61 | 1 | 2.61 | 27.39 | 0.0012 | ** |
AB | 0.38 | 1 | 0.38 | 3.97 | 0.0866 | N |
AC | 0.11 | 1 | 0.11 | 1.11 | 0.3274 | N |
BC | 0.27 | 1 | 0.27 | 2.84 | 0.1360 | N |
A2 | 1.82 | 1 | 1.82 | 19.07 | 0.0033 | ** |
B2 | 2.97 | 1 | 2.97 | 31.14 | 0.0008 | ** |
C2 | 4.12 | 1 | 4.12 | 43.26 | 0.0003 | ** |
Residual | 0.67 | 5 | 0.095 | |||
Lack of Fit | 0.29 | 3 | 0.098 | 1.04 | 0.4645 | N |
Pure Error | 0.37 | 4 | 0.094 | |||
Cor Total | 14.01 | 16 | ||||
R2 | 0.9524 | |||||
AdjustedR2 | 0.8912 |
Method | Yield (%) | Water Content (%) | Particle Size (nm) |
---|---|---|---|
Freeze-drying | 7.02 ± 0.56 | 4.34 ± 0.21 | 790.9 ± 80 |
Spray-drying | 8.65 ± 0.69 | 3.49 ± 0.67 | 567.7 ± 37 |
Variables | Code Level | ||
---|---|---|---|
−1 | 0 | 1 | |
Heating temperature (A) °C | 110 | 115 | 120 |
Creep speed (B) rpm | 18 | 20 | 22 |
Pressure (C) MPa | 0.02 | 0.03 | 0.04 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Z.; Wu, M.; Cai, J.; Li, S.; Marszałek, K.; Lorenzo, J.M.; Barba, F.J. Optimization of Spray-Drying Process of Jerusalem artichoke Extract for Inulin Production. Molecules 2019, 24, 1674. https://doi.org/10.3390/molecules24091674
Zhu Z, Wu M, Cai J, Li S, Marszałek K, Lorenzo JM, Barba FJ. Optimization of Spray-Drying Process of Jerusalem artichoke Extract for Inulin Production. Molecules. 2019; 24(9):1674. https://doi.org/10.3390/molecules24091674
Chicago/Turabian StyleZhu, Zhenzhou, Mailing Wu, Jie Cai, Shuyi Li, Krystian Marszałek, Jose M. Lorenzo, and Francisco J. Barba. 2019. "Optimization of Spray-Drying Process of Jerusalem artichoke Extract for Inulin Production" Molecules 24, no. 9: 1674. https://doi.org/10.3390/molecules24091674
APA StyleZhu, Z., Wu, M., Cai, J., Li, S., Marszałek, K., Lorenzo, J. M., & Barba, F. J. (2019). Optimization of Spray-Drying Process of Jerusalem artichoke Extract for Inulin Production. Molecules, 24(9), 1674. https://doi.org/10.3390/molecules24091674