Antispasmodic Effect of Essential Oils and Their Constituents: A Review
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
3.1. Preclinical Studies Investigating Antispasmodic Effect of Essential Oils
3.2. Clinical Studies Evaluating Antispasmodic Potential of Essential Oils
3.3. Mechanisms of Antispasmodic Effect of Essential Oils and Their Constituents
3.3.1. Inhibition of Voltage-Dependent Calcium Channels
3.3.2. Modulation of Potassium Channels
3.3.3. Antagonism of Cholinergic Receptors
3.3.4. Modulation of Intracellular Cyclic Adenosine Monophosphate (cAMP)
3.4. Chemical Composition of the Essential Oils with Antispasmodic Activity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hicks, G.A. Irritable Bowel Syndrome. In Comprehensive Medicinal Chemistry; Taylor, J.B., Triggle, D.J., Eds.; Elsevier Science: London, UK, 2007; pp. 643–670. ISBN 978-0-08-045044-5. [Google Scholar]
- Annaházi, A.; Róka, R.; Rosztóczy, A.; Wittmann, T. Role of antispasmodics in the treatment of irritable bowel syndrome. World J. Gastroenterol. 2014, 20, 6031–6043. [Google Scholar] [CrossRef] [PubMed]
- Baiu, I.; Hawn, M.T. Gallstones and Biliary Colic. JAMA 2018, 320, 1612. [Google Scholar] [CrossRef]
- Sanagapalli, S.; Agnihotri, K.; Leong, R.; Corte, C.J. Antispasmodic drugs in colonoscopy: A review of their pharmacology, safety and efficacy in improving polyp detection and related outcomes. Therap. Adv. Gastroenterol. 2017, 10, 101–113. [Google Scholar] [CrossRef]
- Can Baser, H.K.; Buchbauer, G. Handbook of Essential Oils: Science, Technology and Applications; CRC Press: Boca Raton, FL, USA, 2010; pp. 3–39. ISBN 9781466590465. [Google Scholar]
- Yarnell, E.; Abascal, K. Spasmolytic botanicals. Altern. Complement. Ther. 2011, 17, 169–172. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Sureda, A.; Tenore, G.C.; Daglia, M.; Sharifi-Rad, M.; Valussi, M.; Tundis, R.; Sharifi-Rad, M.; Loizzo, M.R.; Oluwaseun Ademiluyi, A.; et al. Biological activities of essential oils: From plant chemoecology to traditional healing systems. Molecules 2017, 22, 70. [Google Scholar] [CrossRef]
- De Araújo, D.A.M.; Freitas, C.; Cruz, J.S. Essential oils components as a new path to understand ion channel molecular pharmacology. Life Sci. 2011, 89, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Shirole, R.L.; Shirole, N.L.; Saraf, M.N. In vitro relaxant and spasmolytic effects of essential oil of Pistacia integerrima Stewart ex Brandis Galls. J. Ethnopharmacol. 2015, 168, 61–65. [Google Scholar] [CrossRef]
- Kim, H.J.; Yang, H.M.; Kim, D.H.; Kim, H.G.; Jang, W.C.; Lee, Y. Effects of ylang-ylang essential oil on the relaxation of rat bladder muscle in vitro and white rabbit bladder in vivo. J. Korean Med. Sci. 2003, 18, 409–414. [Google Scholar] [CrossRef]
- de Souza, I.L.L.; de Carvalho Correia, A.C.; da Cunha Araujo, L.C.; Vasconcelos, L.H.C.; Silva, M.D.C.C.; de Oliveira Costa, V.C.; Tavares, J.F.; Paredes-Gamero, E.J.; de Andrade Cavalcante, F.; da Silva, B.A. Essential oil from Xylopia frutescens Aubl. reduces cytosolic calcium levels on guinea pig ileum: Mechanism underlying its spasmolytic potential. BMC Complement. Altern. Med. 2015, 15, 327. [Google Scholar] [CrossRef] [PubMed]
- de C. Correia, A.C.; Ferreira, T.F.; Martins, I.R.R.; Macêdo, C.L.; de S. Monteiro, F.; Costa, V.C.O.; Tavares, J.F.; Silva, M.S.; Paredes-Gamero, E.J.; Buri, M.V.; et al. Essential oil from the leaves of Xylopia langsdorffiana (Annonaceae) as a possible spasmolytic agent. Nat. Prod. Res. 2015, 29, 980–984. [Google Scholar] [CrossRef]
- Gharib Naseri, M.K.; Heidari, A. Antispasmodic effect of Anethum graveolens fruit extract on rat ileum. Int. J. Pharmacol. 2007, 3, 260–264. [Google Scholar] [CrossRef]
- Heinle, H.; Hagelauer, D.; Pascht, U.; Kelber, O.; Weiser, D. Intestinal spasmolytic effects of STW 5 (Iberogast®) and its components. Phytomedicine 2006, 13, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Al-Essa, M.K.; Shafagoj, Y.A.; Mohammed, F.I.; Afifi, F.U. Relaxant effect of ethanol extract of Carum carvi on dispersed intestinal smooth muscle cells of the guinea pig. Pharm. Biol. 2010, 48, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Jabeen, Q.; Bashir, S.; Lyoussi, B.; Gilani, A.H. Coriander fruit exhibits gut modulatory, blood pressure lowering and diuretic activities. J. Ethnopharmacol. 2009, 122, 123–130. [Google Scholar] [CrossRef]
- Pavlović, I.; Petrović, S.; Radenković, M.; Milenković, M.; Couladis, M.; Branković, S.; Drobac, M.P.; Niketić, M. Composition, antimicrobial, antiradical and spasmolytic activity of Ferula heuffelii Griseb. ex Heuffel (Apiaceae) essential oil. Food Chem. 2012, 130, 310–315. [Google Scholar] [CrossRef]
- Ostad, S.N.; Soodi, M.; Shariffzadeh, M.; Khorshidi, N.; Marzban, H. The effect of fennel essential oil on uterine contraction as a model for dysmenorrhea, pharmacology and toxicology study. J. Ethnopharmacol. 2001, 76, 299–304. [Google Scholar] [CrossRef]
- Tirapelli, C.R.; de Andrade, C.R.; Cassano, A.O.; De Souza, F.A.; Ambrosio, S.R.; da Costa, F.B.; de Oliveira, A.M. Antispasmodic and relaxant effects of the hidroalcoholic extract of Pimpinella anisum (Apiaceae) on rat anococcygeus smooth muscle. J. Ethnopharmacol. 2007, 110, 23–29. [Google Scholar] [CrossRef]
- Gilani, A.U.; Shah, A.J.; Ahmad, M.; Shaheen, F. Antispasmodic effect of Acorus calamus Linn. is mediated through calcium channel blockade. Phytother. Res. 2006, 20, 1080–1084. [Google Scholar] [CrossRef]
- Jalilzadeh-Amin, G.; Maham, M.; Dalir-Naghadeh, B.; Kheiri, F. In vitro effects of Artemisia dracunculus essential oil on ruminal and abomasal smooth muscle in sheep. Comp. Clin. Path. 2012, 21, 673–680. [Google Scholar] [CrossRef]
- Sándor, Z.; Mottaghipisheh, J.; Veres, K.; Hohmann, J.; Bencsik, T.; Horváth, A.; Kelemen, D.; Papp, R.; Barthó, L.; Csupor, D. Evidence supports tradition: The in vitro effects of Roman Chamomile on smooth muscles. Front. Pharmacol. 2018, 9, 1–11. [Google Scholar] [CrossRef]
- Zavala-Mendoza, D.; Grasa, L.; Zavala-Sánchez, M.Á.; Pérez-Gutiérrez, S.; Murillo, M.D. Antispasmodic effects and action mechanism of essential oil of Chrysactinia mexicana A. Gray on rabbit ileum. Molecules 2016, 21, 783. [Google Scholar] [CrossRef] [PubMed]
- Perez-Vasquez, A.; Angeles-Lopez, G.; Rivero-Cruz, I.; Flores-Bocanegra, L.; Linares, E.; Bye, R.; Mata, R. Spasmolytic action of preparations and compounds from Hofmeisteria schaffneri. Nat. Prod. Commun. 2017, 12, 475–476. [Google Scholar] [CrossRef]
- Mehmood, M.H.; Munir, S.; Khalid, U.A.; Asrar, M.; Gilani, A.H. Antidiarrhoeal, antisecretory and antispasmodic activities of Matricaria chamomilla are mediated predominantly through K+-channels activation. BMC Complement. Altern. Med. 2015, 15, 75. [Google Scholar] [CrossRef]
- Lis-Balchin, M.; Hart, S.; Roth, G. The spasmolytic activity of the essential oils of scented Pelargoniums (Geraniaceae). Phytother. Res. 1997, 11, 583–584. [Google Scholar] [CrossRef]
- Lis-Balchin, M.; Hart, S. Studies on the mode of action of the essential oil of Lavender (Lavandula angustifolia P. Miller). Phytother. Res. 1999, 13, 540–542. [Google Scholar] [CrossRef]
- Sadraei, H.; Ghannadi, A.; Malekshahi, K. Relaxant effect of essential oil of Melissa officinalis and citral on rat ileum contractions. Fitoterapia 2003, 74, 445–452. [Google Scholar] [CrossRef]
- Aubert, P.; Guinobert, I.; Guilbot, A.; Dubourdeaux, M.; Neunlist, M. Antispasmodic and spamolytic activity of Melissa officinalis EPS upon mice gastrointestinal tract: An ex vivo pilot study. Planta Med. 2016, 82, S1–S381. [Google Scholar]
- Grigoleit, H.G.; Grigoleit, P. Pharmacology and preclinical pharmacokinetics of peppermint oil. Phytomedicine 2005, 12, 612–616. [Google Scholar] [CrossRef] [PubMed]
- Heimes, K.; Hauk, F.; Verspohl, E.J. Mode of action of peppermint oil and (-)-menthol with respect to 5-HT 3 receptor subtypes: Binding studies, cation uptake by receptor channels and contraction of isolated rat ileum. Phytother. Res. 2011, 25, 702–708. [Google Scholar] [CrossRef]
- Souza, F.V.M.; Da Rocha, M.B.; De Souza, D.P.; Marçal, R.M. Carvone: Antispasmodic effect and mode of action. Fitoterapia 2013, 85, 20–24. [Google Scholar] [CrossRef]
- De Sousa, D.P.; Júnior, G.A.S.; Andrade, L.N.; Calasans, F.R.; Nunes, X.P.; Barbosa-Filho, J.M.; Batista, J.S. Structure and Spasmolytic Activity Relationships of Monoterpene Analogues Found in Many Aromatic Plants. Z. Naturforsch. C 2008, 63, 808–812. [Google Scholar] [CrossRef]
- Janbaz, K.H.; Hamid, I.; Gilani, A.-H.; Qadir, M.I. Spasmolytic, Bronchodilator and Vasodilator Activities of Aqueous-methanolic Extract of Ocimum basilicum. Int. J. Agric. Biol. 2014, 16, 321–327. [Google Scholar]
- Souza, S.D.F.; Franca, C.S.L.; Niculau, E.S.; Costa, L.C.B.; Pinto, J.E.B.; Alves, P.B.; Marçal, R.M. Antispasmodic effect of Ocimum selloi essential oil on the guinea-pig ileum. Nat. Prod. Res. 2015, 29, 2125–2128. [Google Scholar] [CrossRef] [PubMed]
- Madeira, S.V.F.; Matos, F.J.A.; Leal-Cardoso, J.H.; Criddle, D.N. Relaxant effects of the essential oil of Ocimum gratissimum on isolated ileum of the guinea pig. J. Ethnopharmacol. 2002, 81, 1–4. [Google Scholar] [CrossRef]
- Makrane, H.; Aziz, M.; Mekhfi, H.; Ziyyat, A.; Bnouham, M.; Abdelkhaleq, L.; Gressier, B.; Eto, B. Antispasmodic and Myorelaxant Activity of Organic Fractions from Origanum majorana L. on Intestinal Smooth Muscle of Rodents. European J. Med. Plants 2018, 23, 1–11. [Google Scholar] [CrossRef]
- Câmara, C.C.; Nascimento, N.R.F.; Macêdo-Filho, C.L.; Almeida, F.B.S.; Fonteles, M.C. Antispasmodic Effect of the Essential Oil of Plectranthus barbatus and some Major Constituents on the Guinea-Pig Ileum. Planta Med. 2003, 69, 1080–1085. [Google Scholar] [CrossRef] [PubMed]
- Ventura-Martínez, R.; Rivero-Osorno, O.; Gómez, C.; González-Trujano, M.E. Spasmolytic activity of Rosmarinus officinalis L. involves calcium channels in the guinea pig ileum. J. Ethnopharmacol. 2011, 137, 1528–1532. [Google Scholar] [CrossRef]
- Khan, A.; Najeeb-ur-Rehman; Alkharfy, K.M.; Gilani, A.H. Antidiarrheal and antispasmodic activities of Salvia officinalis are mediated through activation of K + channels. Bangladesh J. Pharmacol. 2011, 6, 111–116. [Google Scholar] [CrossRef]
- Hajhashemi, V.; Sadraei, H.; Ghannadi, A.R.; Mohseni, M. Antispasmodic and anti-diarrhoeal effect of Satureja hortensis L. essential oil. J. Ethnopharmacol. 2000, 71, 187–192. [Google Scholar] [CrossRef]
- Devi, R.C.; Sim, S.M.; Ismail, R. Spasmolytic effect of citral and extracts of Cymbopogon citratus on isolated rabbit ileum. J. Smooth Muscle Res. 2011, 47, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Pavlovic, I.; Omar, E.; Drobac, M.; Radenkovic, M.; Brankovic, S.; Kovacevic, N. Chemical composition and spasmolytic activity of Cymbopogon schoenanthus (L.) Spreng. (Poaceae) essential oil from Sudan. Arch. Biol. Sci. 2017, 69, 409–415. [Google Scholar] [CrossRef]
- Janbaz, K.H.; Qayyum, A.; Saqib, F.; Imran, I.; Zia-Ul-Haq, M.; De Feo, V. Bronchodilator, vasodilator and spasmolytic activities of Cymbopogon martinii. J. Physiol. Pharmacol. 2014, 65, 859–866. [Google Scholar] [PubMed]
- Rasheed, H.M.; Khan, T.; Wahid, F.; Khan, R.; Shah, A.J. Chemical Composition and Vasorelaxant and Antispasmodic Effects of Essential Oil from Rosa indica L. Petals. Evid. Based Complement. Alternat. Med. 2015, 2015, 279247. [Google Scholar] [CrossRef] [PubMed]
- Spadaro, F.; Costa, R.; Circosta, C.; Occhiuto, F. Volatile composition and biological activity of key lime Citrus aurantifolia essential oil. Nat. Prod. Commun. 2012, 7, 1523–1526. [Google Scholar] [CrossRef]
- Sánchez-Recillas, A.; Arroyo-Herrera, A.L.; Araujo-León, J.A.; Hernández Núñez, E.; Ortiz Andrade, R. Spasmolytic and Antibacterial Activity of Two Citrus sinensis Osbeck Varieties Cultivated in Mexico. Evid. Based Complement. Alternat. Med. 2017, 2017, 3960837. [Google Scholar] [CrossRef] [PubMed]
- Blanco, M.A.; Colareda, G.A.; Van Baren, C.; Bandoni, A.L.; Ringuelet, J.; Consolini, A.E. Antispasmodic effects and composition of the essential oils from two South American chemotypes of Lippia alba. J. Ethnopharmacol. 2013, 149, 803–809. [Google Scholar] [CrossRef] [PubMed]
- Menezes, P.M.N.; de Oliveira, H.R.; Brito, M.C.; de Paiva, G.O.; Ribeiro, L.A.D.A.; Lucchese, A.M.; Silva, F.S. Spasmolytic and antidiarrheal activities of Lippia thymoides (Verbenaceae) essential oil. Nat. Prod. Res. 2018, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Gilani, A.H.; Jabeen, Q.; Khan, A.U.; Shah, A.J. Gut modulatory, blood pressure lowering, diuretic and sedative activities of cardamom. J. Ethnopharmacol. 2008, 115, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Pérez, E.F.; Juárez, Z.N.; Hernández, L.R.; Bach, H. Natural Antispasmodics: Source, Stereochemical Configuration, and Biological Activity. Biomed Res. Int. 2018, 3819714, 1–32. [Google Scholar] [CrossRef]
- de Almeida, N.R.; de Fátima Agra, M.; Negromonte Souto Maior, F.; De Sousa, D.P. Essential Oils and Their Constituents: Anticonvulsant Activity. Molecules 2011, 16, 2726–2742. [Google Scholar] [CrossRef]
- Sarmento-Neto, J.F.; Do Nascimento, L.G.; Felipe, C.F.B.; De Sousa, D.P. Analgesic potential of essential oils. Molecules 2016, 21, 20. [Google Scholar] [CrossRef]
- Ielciu, I.; Voştinaru, O.; Oniga, S.; Mogoşan, C.; Vlase, L.; Parnau, A.; Araniciu, C.; Palage, M. Synthesis and effects of some new 2-aryl-thiazole ammonium salts on isolated ileum motility. Dig. J. Nanomater. Bios. 2013, 8, 1089–1099. [Google Scholar]
- Mukai, T.; Yamaguchi, E.; Goto, J.; Takagi, K. Smooth muscle relaxing drugs and guinea pig ileum. Jpn. J. Pharmacol. 1981, 31, 147–157. [Google Scholar] [CrossRef]
- Papathanasopoulos, A.; Rotondo, A.; Janssen, P.; Boesmans, W.; Farré, R.; Vanden Berghe, P.; Tack, J. Effect of acute peppermint oil administration on gastric sensorimotor function and nutrient tolerance in health. Neurogastroenterol. Motil. 2013, 25, e263–e271. [Google Scholar] [CrossRef]
- Inamori, M.; Akiyama, T.; Akimoto, K.; Fujita, K.; Takahashi, H.; Yoneda, M.; Abe, Y.; Kubota, K.; Saito, S.; Ueno, N.; et al. Early effects of peppermint oil on gastric emptying: A crossover study using a continuous real-time 13C breath test (BreathID system). J. Gastroenterol. 2007, 42, 539–542. [Google Scholar] [CrossRef]
- May, B.; Köhler, S.; Schneider, B. Efficacy and tolerability of a fixed combination of peppermint oil and caraway oil in patients suffering from functional dyspepsia. Aliment. Pharmacol. Ther. 2000, 14, 1671–1677. [Google Scholar] [CrossRef]
- Madisch, A.; Heydenreich, C.-J.; Wieland, V.; Hufnagel, R.; Hotz, J. Treatment of Functional Dyspepsia with a Fixed Peppermint Oil and Caraway Oil Combination Preparation as Compared to Cisapride. Arzneimittelforschung 1999, 49, 925–932. [Google Scholar] [CrossRef]
- Cash, B.D.; Epstein, M.S.; Shah, S.M. A Novel Delivery System of Peppermint Oil Is an Effective Therapy for Irritable Bowel Syndrome Symptoms. Dig. Dis. Sci. 2016, 61, 560–571. [Google Scholar] [CrossRef]
- Khanna, R.; MacDonald, J.K.; Levesque, B.G. Peppermint Oil for the Treatment of Irritable Bowel Syndrome. J. Clin. Gastroenterol. 2013, 48, 505–512. [Google Scholar] [CrossRef]
- Merat, S.; Khalili, S.; Mostajabi, P.; Ghorbani, A.; Ansari, R.; Malekzadeh, R. The Effect of Enteric-Coated, Delayed-Release Peppermint Oil on Irritable Bowel Syndrome. Dig. Dis. Sci. 2010, 55, 1385–1390. [Google Scholar] [CrossRef]
- Cappello, G.; Spezzaferro, M.; Grossi, L.; Manzoli, L.; Marzio, L. Peppermint oil (Mintoil®) in the treatment of irritable bowel syndrome: A prospective double blind placebo-controlled randomized trial. Dig. Liver Dis. 2007, 39, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Pittler, M.H.; Ernst, E. Peppermint oil for irritable bowel syndrome: A critical review and metaanalysis. Am. J. Gastroenterol. 1998, 93, 1131–1135. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.H.; Chen, G.H.; Yeh, H.Z.; Huang, C.K.; Poon, S.K. Enteric-coated peppermint-oil capsules in the treatment of irritable bowel syndrome: A prospective, randomized trial. J. Gastroenterol. 1997, 32, 765–768. [Google Scholar] [CrossRef]
- Inoue, K.; Dohi, O.; Gen, Y.; Jo, M.; Mazaki, T.; Tokita, K.; Yoshida, N.; Okayama, T.; Kamada, K.; Katada, K.; et al. L-menthol improves adenoma detection rate during colonoscopy: A randomized trial. Endoscopy 2014, 46, 196–202. [Google Scholar] [CrossRef]
- Hiki, N.; Kaminishi, M.; Yasuda, K.; Uedo, N.; Kobari, M.; Sakai, T.; Hiratsuka, T.; Ohno, K.; Honjo, H.; Nomura, S.; et al. Multicenter phase II randomized study evaluating dose-response of antiperistaltic effect of L-menthol sprayed onto the gastric mucosa for upper gastrointestinal endoscopy. Dig. Endosc. 2012, 24, 79–86. [Google Scholar] [CrossRef]
- Yamamoto, N.; Nakai, Y.; Sasahira, N.; Hirano, K.; Tsujino, T.; Isayama, H.; Komatsu, Y.; Tada, M.; Yoshida, H.; Kawabe, T.; et al. Efficacy of peppermint oil as an antispasmodic during endoscopic retrograde cholangiopancreatography. J. Gastroenterol. Hepatol. 2006, 21, 1394–1398. [Google Scholar] [CrossRef] [PubMed]
- Bezerra Alves, J.G.; de Cássia Coelho Moraes de Brito, R.; Cavalcanti, T.S. Effectiveness of Mentha piperita in the Treatment of Infantile Colic: A Crossover Study. Evid. Based Complement. Alternat. Med. 2012, 2012, 981352. [Google Scholar] [CrossRef]
- Ghodsi, Z.; Asltoghiri, M. The Effect of Fennel on Pain Quality, Symptoms, and Menstrual Duration in Primary Dysmenorrhea. J. Pediatr. Adolesc. Gynecol. 2014, 27, 283–286. [Google Scholar] [CrossRef]
- Chumpitazi, B.P.; Kearns, G.L.; Shulman, R.J. Review article: The physiological effects and safety of peppermint oil and its efficacy in irritable bowel syndrome and other functional disorders. Aliment. Pharmacol. Ther. 2018, 47, 738–752. [Google Scholar] [CrossRef] [PubMed]
- Shams, R.; Copare, J.L.; Johnson, D.A. Peppermint oil: Clinical uses in the treatment of gastrointestinal diseases. JSM Gastroenterol. Hepatol. 2015, 3, 1036. [Google Scholar]
- Kuo, I.Y.; Ehrlich, B.E. Signaling in Muscle Contraction. Cold Spring Harb. Perspect. Biol. 2015, 7, a006023. [Google Scholar] [CrossRef] [PubMed]
- Sanders, K.M. Regulation of smooth muscle excitation and contraction. Neurogastroenterol. Motil. 2008, 20, 39–53. [Google Scholar] [CrossRef]
- Sanders, K.M.; Koh, S.D.; Ro, S.; Ward, S.M. Regulation of gastrointestinal motility—insights from smooth muscle biology. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 633–645. [Google Scholar] [CrossRef] [PubMed]
- Evangelista, S. Quaternary ammonium derivatives as spasmolytics for irritable bowel syndrome. Curr. Pharm. Des. 2004, 10, 3561–3568. [Google Scholar] [CrossRef]
- Amato, A.; Liotta, R.; Mulè, F. Effects of menthol on circular smooth muscle of human colon: Analysis of the mechanism of action. Eur. J. Pharmacol. 2014, 740, 295–301. [Google Scholar] [CrossRef]
- Ramos-Filho, A.C.S.; Shah, A.; Augusto, T.M.; Barbosa, G.O.; Leiria, L.O.; de Carvalho, H.F.; Antunes, E.; Grant, A.D. Menthol Inhibits Detrusor Contractility Independently of TRPM8 Activation. PLoS ONE 2014, 9, e111616. [Google Scholar] [CrossRef]
- Oz, M.; El Nebrisi, E.G.; Yang, K.-H.S.; Howarth, F.C.; Al Kury, L.T. Cellular and Molecular Targets of Menthol Actions. Front. Pharmacol. 2017, 8, 472. [Google Scholar] [CrossRef]
- Tian, C.; Zhu, R.; Zhu, L.; Qiu, T.; Cao, Z.; Kang, T. Potassium Channels: Structures, Diseases, and Modulators. Chem. Biol. Drug Des. 2014, 83, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.F.; Araújo, I.G.A.; Albuquerque, J.G.F.; Porto, D.L.; Dias, K.L.G.; Cavalcante, K.V.M.; Veras, R.C.; Nunes, X.P.; Barbosa-Filho, J.M.; Araújo, D.A.M.; et al. Rotundifolone-Induced Relaxation is Mediated by BKCa Channel Activation and Cav Channel Inactivation. Basic Clin. Pharmacol. Toxicol. 2011, 109, 465–475. [Google Scholar] [CrossRef]
- Amato, A.; Serio, R.; Mulè, F. Involvement of cholinergic nicotinic receptors in the menthol-induced gastric relaxation. Eur. J. Pharmacol. 2014, 745, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Lozon, Y.; Sultan, A.; Lansdell, S.J.; Prytkova, T.; Sadek, B.; Yang, K.-H.S.; Howarth, F.C.; Millar, N.S.; Oz, M. Inhibition of human α7 nicotinic acetylcholine receptors by cyclic monoterpene carveol. Eur. J. Pharmacol. 2016, 776, 44–51. [Google Scholar] [CrossRef]
- Leal-Cardoso, J.H.; Lahlou, S.; Coelho-de-Souza, A.N.; Criddle, D.N.; Pinto Duarte, G.I.B.; Santos, M.A.V.; Magalhães, P.J.C. Inhibitory actions of eugenol on rat isolated ileum. Can. J. Physiol. Pharmacol. 2002, 80, 901–906. [Google Scholar] [CrossRef]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W.; Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef] [PubMed]
- Price, S.; Price, L. Aromatherapy for Health Professionals, 3rd ed.; Churchill Livingstone: London, UK, 2007; pp. 385–478. ISBN 10: 0-443-10134-5. [Google Scholar]
- Pelkonen, O.; Abass, K.; Wiesner, J. Thujone and thujone-containing herbal medicinal and botanical products: Toxicological assessment. Regul. Toxicol. Pharmacol. 2013, 65, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Aprotosoaie, A.C.; Hăncianu, M.; Costache, I.-I.; Miron, A. Linalool: A review on a key odorant molecule with valuable biological properties. Flavour Fragr. J. 2014, 29, 193–219. [Google Scholar] [CrossRef]
- Caputo, L.; Souza, L.F.; Alloisio, S.; Cornara, L.; De Feo, V. Coriandrum sativum and Lavandula angustifolia essential oils: Chemical composition and activity on central nervous system. Int. J. Mol. Sci. 2016, 17, 1999. [Google Scholar] [CrossRef]
- Lima, C.C.; Criddle, D.N.; Coelho-de-Souza, A.N.; Monte, F.J.Q.; Jaffar, M.; Leal-Cardoso, J.H. Relaxant and Antispasmodic Actions of Methyleugenol on Guinea-Pig Isolated Ileum. Planta Med. 2000, 66, 408–411. [Google Scholar] [CrossRef]
- Sousa, P.J.C.; Linard, C.F.B.M.; Azevedo-Batista, D.; Oliveira, A.C.; Coelho-de-Souza, A.N.; Leal-Cardoso, J.H. Antinociceptive effects of the essential oil of Mentha x villosa leaf and its major constituent piperitenone oxide in mice. Brazilian J. Med. Biol. Res. 2009, 42, 655–659. [Google Scholar] [CrossRef]
- Bowles, E.J. The Chemistry of Aromatherapeutic Oils, 3rd ed.; Allen & Unwin: Crows Nest, Australia, 2003; pp. 1–256. ISBN 10:174114051X. [Google Scholar]
- Ansari, S.H.; Ali, M.; Qadry, J.S. Essential oils of Pistacia integerrima galls and their effect on the central nervous system. Pharm. Biol. 1993, 31, 89–95. [Google Scholar] [CrossRef]
- Shirole, R.L.; Shirole, N.L.; Kshatriya, A.A.; Kulkarni, R.; Saraf, M.N. Investigation into the mechanism of action of essential oil of Pistacia integerrima for its antiasthmatic activity. J. Ethnopharmacol. 2014, 153, 541–551. [Google Scholar] [CrossRef]
- Rauf, A. Chemical composition and biological screening of essential oils from Pistacia integerrima. African J. Pharm. Pharmacol. 2014, 7, 1220–1224. [Google Scholar] [CrossRef]
- Benini, C.; Mahy, G.; Bizoux, J.-P.; Wathelet, J.-P.; du Jardin, P.; Brostaux, Y.; Fauconnier, M.-L. Comparative Chemical and Molecular Variability of Cananga odorata (Lam.) Hook.f. & Thomson forma genuina (Ylang-Ylang) in the Western Indian Ocean Islands: Implication for Valorization. Chem. Biodivers. 2012, 9, 1389–1402. [Google Scholar] [CrossRef]
- Brokl, M.; Fauconnier, M.-L.; Benini, C.; Lognay, G.; Jardin, P.; Focant, J.-F. Improvement of Ylang-Ylang Essential Oil Characterization by GC×GC-TOFMS. Molecules 2013, 18, 1783–1797. [Google Scholar] [CrossRef]
- Tan, L.T.H.; Lee, L.H.; Yin, W.F.; Chan, C.K.; Abdul Kadir, H.; Chan, K.G.; Goh, B.H. Traditional Uses, Phytochemistry, and Bioactivities of Cananga odorata (Ylang-Ylang). Evid. Based Complement. Alternat. Med. 2015, 896314, 1–30. [Google Scholar] [CrossRef]
- Preedy, V.R. Essential oils in food preservation, flavor and safety; Elsevier: New York, USA, 2016; p. 895. ISBN 978-0-12-416641-7. [Google Scholar]
- Moura, A.P.G.; Beltrão, D.M.; Pita, J.C.L.R.; Xavier, A.L.; Brito, M.T.; de Sousa, T.K.G.; Batista, L.M.; de Carvalho, J.E.; Ruiz, A.L.T.G.; Della Torre, A.; et al. Essential oil from fruit of Xylopia langsdorffiana: Antitumour activity and toxicity. Pharm. Biol. 2016, 54, 3093–3102. [Google Scholar] [CrossRef]
- Rana, V.S.; Blazquez, M.A. Chemical Composition of the Essential Oil of Anethum graveolens Aerial Parts. J. Essent. Oil Bear. Plants 2014, 17, 1219–1223. [Google Scholar] [CrossRef]
- Kazemi, M.; Abdossi, V. Chemical composition of the essential oils of Anethum graveolens L. Bangladesh J. Bot. 2015, 44, 159–161. [Google Scholar] [CrossRef]
- Stanojević, L.P.; Stanković, M.Z.; Cvetković, D.J.; Danilović, B.R.; Stanojević, J.S. Dill (Anethum graveolens L) seeds essential oil as a potential natural antioxidant and antimicrobial agent. Biol. Nyssana 2016, 7, 31–39. [Google Scholar] [CrossRef]
- Rãdulescu, V.; Popescu, M.L.; Ilieş, D.C. Chemical composition of the volatile oil from different plant parts of Anethum graveolens L. (Umbelliferae) cultivated in Romania. Farmacia 2010, 58, 594–600. [Google Scholar]
- Mahran, G.H.; Kadry, H.A.; Thabet, C.K.; El-Olemy, M.M.; Al-Azizi, M.M.; Schiff, P.L.; Wong, L.K.; Liv, N. GC/MS Analysis of Volatile Oil of Fruits of Anethum graveolens. Int. J. Pharmacogn. 1992, 30, 139–144. [Google Scholar] [CrossRef]
- Charles, D.J.; Simon, J.E.; Widrlechner, M.P. Characterization of Essential Oil of Dill (Anethum graveolens L.). J. Essent. Oil Res. 1995, 7, 11–20. [Google Scholar] [CrossRef]
- Chahal, K.K.; Kumar, A.; Bhardwaj, U.; Kaur, R. Chemistry and biological activities of Anethum graveolens L. ( dill ) essential oil: A review. J. Pharmacogn. Phytochem. 2017, 6, 295–306. [Google Scholar]
- Ahl, H.A.H.S.; Sarhan, A.M.; Dahab, A.; Dahab, M.A. Essential Oils of Anethum graveolens L.: Chemical Composition and Their Antimicrobial Activities at Vegetative, Flowering and Fruiting Stages of Essential Oils of Anethum graveolens L.: Chemical Composition and Their Antimicrobial Activities at Vegetat. Int. J. Plant Res. 2015, 1, 98–102. [Google Scholar]
- Meshkatalsadat, M.H.; Salahvarzi, S.; Aminiradpoor, R.; Abdollahi, A. Identification of essential oil constituents of caraway (Carum carvi) using ultrasonic assist with headspace solid phase microextraction (UA-HS-SPME). Dig. J. Nanomater. Bios. 2012, 7, 637–640. [Google Scholar]
- Raal, A.; Arak, E.; Orav, A. The content and composition of the essential oil found in Carum carvi L. commercial fruits obtained from different countries. J. Essent. Oil Res. 2012, 24, 53–59. [Google Scholar] [CrossRef]
- Sedláková, J.; Kocourková, B.; Lojková, L.; Kubáň, V. The essential oil content in caraway species (Carum carvi L.). Hortic. Sci. 2018, 30, 73–79. [Google Scholar] [CrossRef]
- Orav, A.; Arak, E.; Raal, A. Essential Oil Composition of Coriandrum sativum L. Fruits from Different Countries. J. Essent. Oil-Bear. Plants 2011, 14, 118–123. [Google Scholar] [CrossRef]
- Mandal, S.; Mandal, M. Coriander (Coriandrum sativum L.) essential oil: Chemistry and biological activity. Asian Pac. J. Trop. Biomed. 2015, 5, 421–428. [Google Scholar] [CrossRef]
- Stefanini; Ming, L.C.; Marques, M.; Meireles, M.A.A.; Moura, L.S. Marchese Seed productivity, yield and composition of the essential oil of fennel Foeniculum vulgare var. dulcis in the season of the year. A Rev. Bras. Plantas Med. 2006, 8, 86–90. [Google Scholar]
- Hammouda, F.; Saleh, M.; Abdel-Azim, N.; Shams, K.; Ismail, S.; Shahat, A.; Saleh, I. Evaluation Of The Essential Oil Of Foeniculum Vulgare Mill (Fennel) Fruits Extracted By Three Different Extraction Methods By GC/MS. African J. Tradit. Complement. Altern. Med. 2014, 11, 277–279. [Google Scholar] [CrossRef]
- Miguel, M.G.; Cruz, C.; Faleiro, L.; Simões, M.T.F.; Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G. Foeniculum vulgare essential oils: Chemical composition, antioxidant and antimicrobial activities. Nat. Prod. Commun. 2010, 5, 319–328. [Google Scholar] [CrossRef]
- Marín, I.; Sayas-Barberá, E.; Viuda-Martos, M.; Navarro, C.; Sendra, E. Chemical Composition, Antioxidant and Antimicrobial Activity of Essential Oils from Organic Fennel, Parsley, and Lavender from Spain. Foods 2016, 5, 18. [Google Scholar] [CrossRef]
- Aprotosoaie, A.C.; Spac, A.; Hancianu, M.; Miron, A.; Tanasescu, V.F.; Dorneanu, V.; Stanescu, U. The chemical profile of essential oils obtained from fennel fruits (Foeniculum vulgare Mill.). Farmacia 2010, 58, 46–53. [Google Scholar]
- Orav, A.; Raal, A.; Arak, E. Essential oil composition of Pimpinella anisum L. fruits from various European countries. Nat. Prod. Res. 2008, 22, 227–232. [Google Scholar] [CrossRef]
- Özcan, M.M.; Chalchat, J.C. Chemical composition and antifungal effect of anise (Pimpinella anisum L.) fruit oil at ripening stage. Ann. Microbiol. 2006, 56, 353–358. [Google Scholar] [CrossRef]
- Saibi, S.; Belhadj, M.; Benyoussef, E.-H. Essential Oil Composition of Pimpinella anisum from Algeria. Anal. Chem. Lett. 2012, 2, 401–404. [Google Scholar] [CrossRef]
- Punetha, V.D. Essential oil composition of Acorus calamus from district - Pithoragarh, Uttarakhad, India. World J. Pharm. Res. 2015, 4, 1158–1166. [Google Scholar]
- Raina, V.K.; Srivastava, S.K.; Syamasunder, K.V. Essential oil composition of Acorus calamus L. from the lower region of the Himalayas. Flavour Fragr. J. 2003, 18, 18–20. [Google Scholar] [CrossRef]
- Liu, X.C.; Zhou, L.G.; Liu, Z.L.; Du, S.S. Identification of insecticidal constituents of the essential oil of Acorus calamus rhizomes against Liposcelis bostrychophila badonnel. Molecules 2013, 18, 5684–5696. [Google Scholar] [CrossRef]
- Verma, R.S.; Padalia, R.C.; Chauhan, A. Chemical Composition of Root Essential Oil of Acorus calamus L. Natl. Acad. Sci. Lett. 2015, 38, 121–125. [Google Scholar] [CrossRef]
- Lohani, H.; Andola, H.C.; Chauhan, N.; Bhandari, U. Variations of Essential oil composition of Acorus calamus from Uttarakhand Himalaya. J. Pharm. Res. 2012, 5, 1246–1247. [Google Scholar]
- Ayoughi, F.; Barzegar, M.; Sahari, M.A.; Naghdibadi, H. Chemical compositions of essential oils of Artemisia dracunculus L. and endemic Matricaria chamomilla L. and an evaluation of their antioxidative effects. J. Agric. Sci. Technol. 2011, 13, 79–88. [Google Scholar]
- Verma, M.K.; Anand, R.; Chisti, A.M.; Kitchlu, S.; Chandra, S.; Shawl, A.S.; Khajuria, R.K. Essential oil composition of Artemisia dracunculus L. (tarragon) growing in Kashmir -India. J. Essent. Oil-Bear. Plants 2010, 13, 331–335. [Google Scholar] [CrossRef]
- Asili, J.; Rajabian, A.; Tayarani-Najaran, Z.; Rahimzadeh Oskooie, R.; Emami, S.A.; Hassanzadeh Khayyat, M. Phytochemical Evaluation and Antioxidant Activity of Essential Oil, and Aqueous and Organic Extracts of Artemisia dracunculus. Jundishapur J. Nat. Pharm. Prod. 2017, 12, e32325. [Google Scholar] [CrossRef]
- Sayyah, M.; Nadjafnia, L.; Kamalinejad, M. Anticonvulsant activity and chemical composition of Artemisia dracunculus L. essential oil. J. Ethnopharmacol. 2004, 94, 283–287. [Google Scholar] [CrossRef]
- Obolskiy, D.; Pischel, I.; Feistel, B.; Glotov, N.; Heinrich, M. Artemisia dracunculus L. (Tarragon): A Critical Review of Its Traditional Use, Chemical Composition, Pharmacology, and Safety. J Agric Food Chem. 2011, 59, 11367–11384. [Google Scholar] [CrossRef] [PubMed]
- Irfan-ur-Rauf, T.; Dawood, M.; Ganai, B.A.; Chishti, M.Z.; Fayaz, A.; Jehangir, S.D. Phytochemical studies on the extract and essential oils of Artemisia dracunculus L. (Tarragon). African J. Plant Sci. 2014, 8, 72–75. [Google Scholar] [CrossRef]
- Srivastava, J.K.; Shankar, E.; Gupta, S. Chamomile: A herbal medicine of the past with bright future. Mol. Med. Rep. 2010, 3, 895–901. [Google Scholar] [CrossRef] [PubMed]
- Gardiner, P. Complementary, holistic, and integrative medicine: Chamomile. Pediatr. Rev. 2007, 28, e16-8. [Google Scholar] [CrossRef] [PubMed]
- Sharafzadeh, S.; Alizadeh, O. German and roman chamomile. J. Appl. Pharm. Sci. 2011, 1, 1–5. [Google Scholar]
- Aremu, O.O.; Tata, C.M.; Sewani-rusike, C.R. Phytochemical composition, and analgesic and anti- inflammatory properties of essential oil of Chamaemelum nobile (Asteraceae L All) in rodents. Trop. J. Pharm. Res. 2018, 17, 1939–1945. [Google Scholar] [CrossRef]
- De Groot, A.C.; Schmidt, E. Essential Oils, Part III: Chemical Composition. Dermatitis 2016, 27, 161–169. [Google Scholar] [CrossRef]
- Al-snafi, A.E. Medical importance of Anthemis nobilis (Chamaemelum nobile)—A review. Asian J. Pharm. Sci. Technol. 2016, 6, 89–95. [Google Scholar]
- Cárdenas-Ortega, N.C.; Zavala-Sánchez, M.A.; Aguirre-Rivera, J.R.; Pérez-González, C.; Pérez-Gutiérrez, S. Chemical Composition and Antifungal Activity of Essential Oil of Chrysactinia mexicana Gray. J. Agric. Food Chem. 2005, 53, 4347–4349. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Vásquez, A.; Capella, S.; Linares, E.; Bye, R.; Angeles-López, G.; Mata, R. Antimicrobial activity and chemical composition of the essential oil of Hofmeisteria schaffneri. J. Pharm. Pharmacol. 2011, 63, 579–586. [Google Scholar] [CrossRef]
- Mousavi, E.S.; Dehghanzadeh, H.; Abdali, A. Chemical Composition and Essential Oils of Pelargonium graveolens (Geraniaceae) By Gas Chromatography—Mass Spectrometry (GC/MS). Bull. Env. Pharmacol. Life Sci. 2014, 3, 182–184. [Google Scholar]
- Boukhris, M.; Simmonds, M.S.J.; Sayadi, S.; Bouaziz, M. Chemical Composition and Biological Activities of Polar Extracts and Essential Oil of Rose-scented Geranium, Pelargonium graveolens. Phytother. Res. 2013, 27, 1206–1213. [Google Scholar] [CrossRef]
- Rana, V.S.; Juyal, J.P.; Amparo Blazquez, M. Chemical constituents of essential oil of Pelargonium graveolens leaves. Int. J. Aromather. 2002, 12, 216–218. [Google Scholar] [CrossRef]
- Sharopov, F.S.; Zhang, H.; Setzer, W.N. Composition of geranium (Pelargonium graveolens) essential oil from Tajikistan. Am. J. Essent. Oils Nat. Prod. 2014, 2, 13–16. [Google Scholar]
- Tarakemeh, A.; Rowshan, V.; Najafian, S. Essential Oil Content and Composition of Lavandula Angustifolia Mill. as Affected by Drying Method and Extraction Time. Anal. Chem. Lett. 2013, 2, 244–249. [Google Scholar] [CrossRef]
- Mirensha; Wang, X.; Zhi, L.; Cong, Y.; Abulizi, P. Chemical composition of the essential oil of Lavandula angustifolia from Xinjiang, China. Chem. Nat. Compd. 2009, 44, 810. [Google Scholar] [CrossRef]
- Smigielski, K.; Prusinowska, R.; Stobiecka, A.; Kunicka-Styczyñska, A.; Gruska, R. Biological Properties and Chemical Composition of Essential Oils from Flowers and Aerial Parts of Lavender (Lavandula angustifolia). J. Essent. Oil-Bear. Plants 2018, 21, 1303–1314. [Google Scholar] [CrossRef]
- Şerban, E.S.; Socaci, S.A.; Tofană, M.; Maier, S.C.; Bojiţă, M.T. Chemical composition of some essential oils of Lamiaceae family. Clujul Med. 2010, LXXXIII, 286–289. [Google Scholar]
- Abdellatif, F.; Hassani, A. Chemical composition of the essential oils from leaves of Melissa officinalis extracted by hydrodistillation, steam distillation, organic solvent and microwave hydrodistillation. J. Mater. Environ. Sci. 2015, 6, 207–213. [Google Scholar]
- Verma, R.S.; Padalia, R.C.; Chauhan, A. Evaluation of essential oil quality of lemon balm ( Melissa officinalis L.) grown in two locations of northern India. J. Essent. Oil Res. 2015, 27, 412–416. [Google Scholar] [CrossRef]
- Chizzola, R.; Lohwasser, U.; Franz, C. Biodiversity within Melissa officinalis: Variability of Bioactive Compounds in a Cultivated Collection. Molecules 2018, 23, 294. [Google Scholar] [CrossRef] [PubMed]
- Efremov, A.A.; Zykova, I.D.; Gorbachev, A.E. Composition of the essential oil from the lemon balm growing in the neighborhood of Krasnoyarsk as indicated by gas chromatography–mass spectrometry data. Russ. J. Bioorganic Chem. 2017, 42, 726–729. [Google Scholar] [CrossRef]
- Taherpour, A.A.; Khaef, S.; Yari, A.; Nikeafshar, S.; Fathi, M.; Ghambari, S. Chemical composition analysis of the essential oil of Mentha piperita L. from Kermanshah, Iran by hydrodistillation and HS/SPME methods. J. Anal. Sci. Technol. 2017, 8, 11. [Google Scholar] [CrossRef]
- Moghaddam, M.; Pourbaige, M.; Tabar, H.K.; Farhadi, N.; Hosseini, S.M.A. Composition and Antifungal Activity of Peppermint (Mentha piperita) Essential Oil from Iran. J. Essent. Oil-Bear. Plants 2013, 16, 506–512. [Google Scholar] [CrossRef]
- Shahi, A.K.; Chandra, S.; Dutt, P.; Kaul, B.L.; Tava, A.; Avato, P. Essential oil composition of Mentha x piperita L. from different environments of north India. Flavour Fragr. J. 1999, 14, 5–8. [Google Scholar] [CrossRef]
- Ainane, A. Chemical Study by GC-MS of the Essential Oils of Certain Mints Grown In the Region of Settat (Morocco): Mentha Piperita, Mentha Pulegium and Mentha Spicata. Drug Des. Intellect. Prop. Int. J. 2018, 1, 124–127. [Google Scholar] [CrossRef]
- Hussain, A.I.; Anwar, F.; Shahid, M.; Ashraf, M.; Przybylski, R. Chemical Composition, and Antioxidant and Antimicrobial Activities of Essential Oil of Spearmint ( Mentha spicata L.) From Pakistan. J. Essent. Oil Res. 2010, 22, 78–84. [Google Scholar] [CrossRef]
- Snoussi, M.; Noumi, E.; Trabelsi, N.; Flamini, G.; Papetti, A.; De Feo, V. Mentha spicata essential oil: Chemical composition, antioxidant and antibacterial activities against planktonic and biofilm cultures of vibrio spp. strains. Molecules 2015, 20, 14402–14424. [Google Scholar] [CrossRef] [PubMed]
- Lahlou, S.; Carneiro-Leão, R.F.L.; Leal-Cardoso, J.H.; Toscano, C.F. Cardiovascular Effects of the Essential Oil of Mentha x villosa and its Main Constituent, Piperitenone Oxide, in Normotensive Anaesthetised Rats: Role of the Autonomic Nervous System. Planta Med. 2001, 67, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Lima, T.C.; da Silva, T.K.M.; Silva, F.L.; Barbosa-Filho, J.M.; Marques, M.O.M.; Santos, R.L.C.; de Holanda Cavalcanti, S.C.; de Sousa, D.P. Larvicidal activity of Mentha x villosa Hudson essential oil, rotundifolone and derivatives. Chemosphere 2014, 104, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Fogaca, R.T.H.; Cavalcante, A.D.A.; Serpa, A.K.L.; Sousa, P.J.C.; Coelho-de-Souza, A.N.; Leal-Cardoso, J.H. The effects of essential oil of Mentha x villosa on skeletal muscle of the toad. Phytother. Res. 1997, 11, 552–557. [Google Scholar] [CrossRef]
- Pandey, A.K.; Singh, P.; Tripathi, N.N. Chemistry and bioactivities of essential oils of some Ocimum species: An overview. Asian Pac. J. Trop. Biomed. 2014, 4, 682–694. [Google Scholar] [CrossRef]
- Costa, L.C.B.; Pinto, J.E.B.P.; Castro, E.M.; Alves, E.; Rosal, L.F.; Bertolucci, S.K.V.; Alves, P.B.; Evangelino, T.S. Yield and Composition of the Essential Oil of Ocimum selloi Benth. Cultivated Under Colored Netting. J. Essent. Oil Res. 2010, 22, 34–39. [Google Scholar] [CrossRef]
- Moraes, L.A.S.; Facanali, R.; Marques, M.O.M.; Lin, C.M.; Meireles, M.A.A. Phytochemical characterization of essential oil from Ocimum selloi. An. Acad. Bras. Cienc. 2002, 74, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Chimnoi, N.; Reuk-ngam, N.; Chuysinuan, P.; Khlaychan, P.; Khunnawutmanotham, N.; Chokchaichamnankit, D.; Thamniyom, W.; Klayraung, S.; Mahidol, C.; Techasakul, S. Characterization of essential oil from Ocimum gratissimum leaves: Antibacterial and mode of action against selected gastroenteritis pathogens. Microb. Pathog. 2018, 118, 290–300. [Google Scholar] [CrossRef]
- Madeira, S.V.F.; Rabelo, M.; Soares, P.M.G.; Souza, E.P.; Meireles, A.V.P.; Montenegro, C.; Lima, R.F.; Assreuy, A.M.S.; Criddle, D.N. Temporal variation of chemical composition and relaxant action of the essential oil of Ocimum gratissimum L. (Labiatae) on guinea-pig ileum. Phytomedicine 2005, 12, 506–509. [Google Scholar] [CrossRef] [PubMed]
- Rus, C.; POP, G.; Alexa, E.; Renata, M.S.; Dana, M.C. Antifungal activity and chemical composition of Origanum majorana L. essential oil. Res. J. Agric. Sci. 2015, 47, 179–185. [Google Scholar]
- Komaitis, M.E.; Ifanti-Papatragianni, N.; Melissari-Panagiotou, E. Composition of the essential oil of marjoram (Origanum majorana L.). Food Chem. 1992, 45, 117–118. [Google Scholar] [CrossRef]
- Brada, M.; Saadi, A.; Wathelet, J.P.; Lognay, G. The essential oils of Origanum majorana l. and Origanum floribundum munby in Algeria. J. Essent. Oil-Bear. Plants 2012, 15, 497–502. [Google Scholar] [CrossRef]
- Raina, A.P.; Negi, K.S. Essential oil composition of Origanum majorana and Origanum vulgare ssp. hirtum growing in India. Chem. Nat. Compd. 2012, 47, 1015–1017. [Google Scholar] [CrossRef]
- Bağci, Y.; Kan, Y.; Doğu, S.; Çelik, S.A. The essential oil compositions of Origanum majorana L. cultivated in Konya and collected from Mersin-Turkey. Indian J. Pharm. Educ. Res. 2017, 51, S463–S469. [Google Scholar] [CrossRef]
- Alasbahi, R.; Melzig, M. Plectranthus barbatus: A Review of Phytochemistry, Ethnobotanical Uses and Pharmacology – Part 1. Planta Med. 2010, 76, 653–661. [Google Scholar] [CrossRef]
- Kerntopf, M.R.; de Albuquerque, R.L.; Machado, M.I.L.; Matos, F.J.A.; Craveiro, A.A. Essential Oils from Leaves, Stems and Roots of Plectranthus barbatus Andr. (Labiatae) Grown in Brazil. J. Essent. Oil Res. 2002, 14, 101–102. [Google Scholar] [CrossRef]
- Galvão Rodrigues, F.F.; Costa, J.G.M.; Rodrigues, F.F.G.; Campos, A.R. Study of the Interference between Plectranthus Species Essential Oils from Brazil and Aminoglycosides. Evid. Based. Complement. Alternat. Med. 2013, 724161, 1–7. [Google Scholar] [CrossRef]
- Adel, K.; Zied, Z.; Ben Choba, I.; Bekir, A.; Gharsallah, N.; Damak, M.; Gdoura, R. Chemical constituents and antioxidant properties of Rosmarinus officinalis L. essential oil cultivated from the South-Western of Tunisia. J. Med. Plants Res. 2011, 5, 5999–6004. [Google Scholar] [CrossRef]
- Belkhodja, H.; Meddah, B.; Touil, A.T.; Şekeroğlu, N.; Sonnet, P. Chemical Composition and Properties of Essential Oil of Rosmarinus Officinalis and Populus Alba. World J. Pharm. Pharm. Sci. 2016, 5041, 108–119. [Google Scholar] [CrossRef]
- Satyal, P.; Jones, T.H.; Lopez, E.M.; McFeeters, R.L.; Ali, N.A.A.; Mansi, I.; Al-Kaf, A.G.; Setzer, W.N. Chemotypic Characterization and Biological Activity of Rosmarinus officinalis. Foods 2017, 6, 20. [Google Scholar] [CrossRef]
- Gezici, S.; Karik, U.; Sekeroglu, N.; Tuncturk, M.; Cinar, O. Essential Oil Composition of Some Sage (Salvia spp.) Species Cultivated in İzmir (Turkey) Ecological Conditions. Indian J. Pharm. Educ. Res. 2018, 52, s102–s107. [Google Scholar] [CrossRef]
- Khedher, M.R.B.; Khedher, S.B.; Chaieb, I.; Tounsi, S.; Hammami, M. Chemical composition and biological activities of Salvia officinalis essential oil from Tunisia. EXCLI J. 2017, 16, 160–173. [Google Scholar] [CrossRef]
- Mohammadhosseini, M.; Beiranvand, M. Chemical Composition of the Essential Oil from the Aerial Parts of Satureja hortensis As a Potent Medical Plant Using Traditional Hydrodistillation. J. Chem. Health Risks 2013, 3, 49–60. [Google Scholar]
- Mihajilov-Krstev, T.; Radnović, D.; Kitić, D.; Zlatković, B.; Ristić, M.; Branković, S. Chemical composition and antimicrobial activity of Satureja hortensis L. essential oil. Open Life Sci. 2009, 4, 411–416. [Google Scholar] [CrossRef]
- Matasyoh, J.; Wagara, I.; Nakavuma, J.; Kiburai, A. Chemical composition of Cymbopogon citratus essential oil and its effect on mycotoxigenic Aspergillus species. African J. Food Sci. 2011, 5, 138–142. [Google Scholar]
- Mohamed Hanaa, A.R.; Sallam, Y.I.; El-Leithy, A.S.; Aly, S.E. Lemongrass (Cymbopogon citratus) essential oil as affected by drying methods. Ann. Agric. Sci. 2012, 57, 113–116. [Google Scholar] [CrossRef]
- Machraoui, M.; Kthiri, Z.; Ben Jabeur, M.; Hamada, W. Ethnobotanical and phytopharmacological notes on Cymbopogon citratus ( DC.) Stapf. J. New Sci. Agric. Biotechnol. 2018, 55, 3642–3652. [Google Scholar]
- Akhila, A. Essential Oil-Bearing Grasses: The genus Cymbopogon; CRC Press: Boca Raton, FL, USA, 2010; p. 284. ISBN 978-0-8493-7857-7. [Google Scholar]
- Raina, V.K.; Srivastava, S.K.; Aggarwal, K.K.; Syamasundar, K.V.; Khanuja, S.P.S. Essential oil composition of Cymbopogon martinii from different places in India. Flavour Fragr. J. 2003, 18, 312–315. [Google Scholar] [CrossRef]
- Gupta, R.; Mallavarapu, G.R.; Ramesh, S.; Kumar, S. Composition of flower essential oils of Rosa damascena and Rosa indica grown in Lucknow. J. Med. Aromat. Plant Sci. 2000, 22, 9–12. [Google Scholar]
- Dugo, G.; Mondello, L. Citrus oils: Composition, advanced analytical techniques, contaminants, and biological activity; CRC Press: Boca Raton, FL, USA, 2011; p. 642. ISBN 0415-28491-0. [Google Scholar]
- Garza-González, E.; Alvarez, L.; Sandoval-Montemayor, N.E.; del Rayo Camacho-Corona, M.; García, A.; Elizondo-Treviño, E. Chemical Composition of Hexane Extract of Citrus aurantifolia and Anti-Mycobacterium tuberculosis Activity of Some of Its Constituents. Molecules 2012, 17, 11173–11184. [Google Scholar] [CrossRef]
- Azar, P.A.; Nekoei, M.; Larijani, K.; Bahraminasab, S. Chemical composition of the essential oils of Citrus sinensis cv. Valencia and a quantitative structure-retention relationship study for the prediction of retention indices by multiple linear regression. J. Serbian Chem. Soc. 2011, 76, 1627–1637. [Google Scholar] [CrossRef]
- Njoroge, S.M.; Phi, N.T.L.; Sawamura, M. Chemical Composition of Peel Essential Oils of Sweet Oranges (Citrus sinensis) from Uganda and Rwanda. J. Essent. Oil-Bear. Plants 2009, 12, 26–33. [Google Scholar] [CrossRef]
- Mamun-Or-Rashid, A.N.M.; Sen, M.K.; Jamal, M.A.H.M.; Nasrin, S. A Comprehensive Ethnopharmacological Review on Lippia Alba M. Int. J. Biomed. Mater. Res. 2014, 1, 14–20. [Google Scholar] [CrossRef]
- Juiz, P.J.L.; Lucchese, A.M.; Gambari, R.; Piva, R.; Penolazzi, L.; Di Ciano, M.; Uetanabaro, A.P.T.; Silva, F.; Avila-Campos, M.J. Essential oils and isolated compounds from Lippia alba leaves and flowers: Antimicrobial activity and osteoclast apoptosis. Int. J. Mol. Med. 2015, 35, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Machado, T.F.; Nogueira, N.A.P.; de Cássia Alves Pereira, R.; de Sousa, C.T.; Batista, V.C.V. The antimicrobial efficacy of Lippia alba essential oil and its interaction with food ingredients. Braz. J. Microbiol. 2014, 45, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Glamočlija, J.; Soković, M.; Tešević, V.; Linde, G.A.; Colauto, N.B. Chemical characterization of Lippia alba essential oil: An alternative to control green molds. Braz. J. Microbiol. 2011, 42, 1537–1546. [Google Scholar] [CrossRef]
- Silva, S.G.; da Costa, R.A.; de Oliveira, M.S.; da Cruz, J.N.; Figueiredo, P.L.B.; Brasil, D.D.S.B.; Nascimento, L.D.; Chaves Neto, A.M.D.J.; de Carvalho Junior, R.N.; Andrade, E.H.D.A. Chemical profile of Lippia thymoides, evaluation of the acetylcholinesterase inhibitory activity of its essential oil, and molecular docking and molecular dynamics simulations. PLoS ONE 2019, 14, e0213393. [Google Scholar] [CrossRef]
- Silva, F.S.; Menezes, P.M.N.; de Sá, P.G.S.; Oliveira, A.L.D.S.; Souza, E.A.A.; Almeida, J.R.G.D.S.; de Lima, J.T.; Uetanabaro, A.P.T.; Silva, T.R.D.S.; Peralta, E.D.; et al. Chemical composition and pharmacological properties of the essential oils obtained seasonally from Lippia thymoides. Pharm. Biol. 2016, 54, 25–34. [Google Scholar] [CrossRef]
- Mahmud, S. Composition of essential oil of Elettaria cardamomum Maton leaves. Pak. J. Sci. 2008, 60, 111–114. [Google Scholar]
- Leela, N.K.; Prasath, D.; Venugopal, M.N. Essential oil composition of selected cardamom genotypes at different maturity levels. Indian J. Hortic. 2008, 65, 366–369. [Google Scholar]
- Masoumi-Ardakani, Y.; Mandegary, A.; Esmaeilpour, K.; Najafipour, H.; Sharififar, F.; Pakravanan, M.; Ghazvini, H. Chemical Composition, Anticonvulsant Activity, and Toxicity of Essential Oil and Methanolic Extract of Elettaria cardamomum. Planta Med. 2016, 82, 1482–1486. [Google Scholar] [CrossRef] [PubMed]
- Noumi, E.; Snoussi, M.; Alreshidi, M.M.; Rekha, P.-D.; Saptami, K.; Caputo, L.; De Martino, L.; Souza, L.F.; Msaada, K.; Mancini, E.; et al. Chemical and Biological Evaluation of Essential Oils from Cardamom Species. Molecules 2018, 23, 2818. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Tandon, S.; Ahmad, J.; Yadav, A.; Kahol, A.P. Essential Oil Composition of Seed and Fruit Coat of Elettaria cardamomum from South India. J. Essent. Oil-Bear. Plants 2005, 8, 204–207. [Google Scholar] [CrossRef]
No. | Plant Species with Essential Oils | Experimental Model/Concentration of EO in Organ Bath | Mechanism of Antispasmodic Effect | Reference |
---|---|---|---|---|
Anacardiaceae | ||||
1. | Pistacia integerrima—zebrawood | Isolated guinea pig ileum/50 μg/mL | Inhibition of Ca2+ channels | Shirole et al., 2015 [9] |
Annonaceae | ||||
2. | Cananga odorata var. genuina—ylang ylang | Isolated rat bladder/0.05 mL/20 mL; white rabbit bladder in vivo/0.01–0.05 mL/rabbit ∗ | Increase of cAMP | Kim et al., 2003 [10] |
3. | Xylopia frutescens | Isolated guinea pig ileum/3–729 μg/mL | Inhibition of Ca2+channels; antagonism of histaminergic receptors | Souza et al., 2015 [11] |
4. | Xylopia langsdorffiana | Isolated guinea pig ileum; isolated rat uterus/243–729 μg/mL | Decrease in cytosolic calcium concentration | Correia et al., 2015 [12] |
Apiaceae | ||||
5. | Anethum graveolens—dill | Isolated rat ileum/0.5–2 mg/mL | Inhibition of Ca2+ channels | Gharib Naseri et al., 2007 [13] |
6. | Carum carvi—caraway | Isolated guinea pig ileum/2.20–6.63 mg/mL; Dispersed smooth muscle cells of guinea pigs/2.5 mg/mL | Not available | Heinle et al., 2006 [14]; Al-Essa et al., 2010 [15] |
7. | Coriandrum sativum—coriander | Isolated rabbit jejunum/ 1–30 mg/mL | Inhibition of Ca2+ channels | Jabeen at al., 2009 [16] |
8. | Ferula heuffelii Griseb. | Isolated rat ileum/ 75–250 μg/mL | Not available | Pavlovic et al., 2012 [17] |
9. | Foeniculum vulgare—fennel | Isolated rat uterus/10–40 mg/mL | Not available | Ostad et al., 2001 [18] |
10. | Pimpinella anisum—aniseed | Isolated rat anococcygeus muscle/5–50 μg/mL | Activation of NO-cGMP pathway | Tirapelli et al., 2007 [19] |
Araceae | ||||
11. | Acorus calamus—sweet flag, calamus | Isolated rabbit jejunum/ 0.3–1 mg/mL | Inhibition of Ca2+ channels | Gilani et al., 2006 [20] |
Asteraceae | ||||
12. | Artemisia dracunculus—tarragon | Isolated sheep ruminal and abomasal smooth muscles/0.1–100 μg/mL | Not available | Jalilzadeh-Amin et al., 2012 [21] |
13. | Chamaemelum nobile—roman chamomile | Isolated guinea pig ileum/60 μg/mL | Direct smooth muscle relaxation | Sandor et al., 2018 [22] |
14. | Chrysactinia mexicana—damianita daisy | Isolated rabbit ileum/30 μg/mL | Inhibition of Ca2+ channels; increase of cAMP | Zavala-Mendoza et al., 2016 [23] |
15. | Hofmeisteria schaffneri | Gastrointestinal transit test in mouse (in vivo)/316 mg/kg ∗ | Not available | Perez-Vasquez et al., 2017 [24] |
16. | Matricaria recutita (chamomila)—German chamomile | Isolated rabbit jejunum/0.3–3 mg/mL | K+ channels activation | Mehmood et al., 2015 [25] |
Geraniaceae | ||||
17. | Pelargonium graveolens—geranium | Isolated guinea pig ileum/ 4.8–6 μg/mL | Reduction of calcium flux into the intestinal smooth muscles | Lis-Balchin et al., 1997 [26] |
Lamiaceae | ||||
18. | Lavandula angustifolia—true lavender | Isolated guinea pig ileum, isolated rat uterus/6 μg/mL | Increase of cAMP | Lis-Balchin and Hart, 1999 [27] |
19. | Melissa officinalis—melissa | Isolated rat ileum/20 μg/mL; isolated mouse jejunum/1–50 mg/mL | Inhibition of Ca2+ channels; Not available | Sadraei et al., 2003 [28]; Aubert et al., 2016 [29] |
20. | Mentha x piperita—peppermint | Isolated guinea pig ileum; isolated rat ileum/10–320 μL/mL | Inhibition of Ca2+ channels; Inhibition of 5HT3 receptor channels | Grigoleit et al., 2005 [30]; Heimes et al., 2011 [31] |
21. | Mentha spicata—spearmint | Isolated guinea pig ileum/0.1 nM–10 μM | Inhibition of Ca2+channels | Souza et al., 2013 [32] |
22. | Mentha x villosa—mojito mint | Isolated guinea pig ileum/0.9 μM–2.5 μM | Not available | De Sousa et al., 2008 [33] |
23. | Ocimum basilicum—basil | Isolated guinea pig ileum/3–10 mg/mL | Inhibition of Ca2+ channels | Janbaz et al., 2014 [34] |
24. | Ocimum selloi—green pepperbasil | Isolated guinea pig ileum/250 μg/mL–1 mg/mL | Inhibition of Ca2+ channels | Souza et al., 2015 [35] |
25. | Ocimum gratissimum—African basil | Isolated guinea pig ileum/0.1–1000 μg/mL | Not available | Madeira et al., 2002 [36] |
26. | Origanum majorana—sweet marjoram | Isolated rabbit jejunum, isolated rat jejunum/0.01–0.3 mg/mL | Inhibition of Ca2+ channels | Makrane et al., 2018 [37] |
27. | Plectranthus barbatus synonym Coleus forskohlii—Indian coleus | Isolated guinea pig ileum/1–300 μg/mL | Direct smooth muscle relaxation | Camara et al., 2003 [38] |
28. | Rosmarinus officinalis —rosemary | Isolated guinea pig ileum/150–1200 μg/mL | Inhibition of Ca2+ channels | Ventura-Martinez et al., 2011 [39] |
29. | Salvia officinalis—sage | Isolated rabbit jejunum/0.1–3 mg/mL | K+ channels activation | Khan et al., 2011 [40] |
30. | Satureja hortensis—summer savory | Isolated rat ileum/1.55 μg/mL | Not available | Hajhashemi et al., 2000 [41] |
Poaceae | ||||
31. | Cymbopogon citratus—lemongrass | Isolated rabbit ileum/0.001–1 mg/mL | Inhibition of Ca2+ channels | Devi et al., 2011 [42] |
32. | Cymbopogon schoenantus (L.) Spreng.—camelgrass | Isolated rat ileum/30–120 μg/mL | Not available | Pavlovic et al., 2017 [43] |
33. | Cymbopogon martinii —palmarosa | Isolated rabbit jejunum/0.01–3 mg/mL | Inhibition of Ca2+ channels | Janbaz et al., 2014 [44] |
Rosaceae | ||||
34. | Rosa indica (L.) | Isolated rabbit jejunum/0.01–1 mg/mL | Inhibition of Ca2+ channels | Rasheed et al., 2015 [45] |
Rutaceae | ||||
35. | Citrus aurantifolia var. acida—lime | Isolated rabbit jejunum/Not available | Not available | Spadaro et al., 2012 [46] |
36. | Citrus aurantium var. sinensis—sweet orange | Isolated rat ileum/9.7–1000 μg/mL | Not available | Sanchez-Recillas et al., 2017 [47] |
Verbenaceae | ||||
37. | Lippia alba | Isolated rat ileum/7–37 mg/mL | Reduction of calcium influx, stimulation of NO production | Blanco et al., 2013 [48] |
38. | Lippia thymoides | Isolated guinea pig ileum/11.56–48.83 μg/mL | Not available | Menezes et al., 2018 [49] |
Zingiberaceae | ||||
39. | Elettaria cardamomum—cardamom | Isolated rabbit jejunum/3–10 mg/mL | Inhibition of Ca2+ channels | Gilani et al., 2008 [50] |
Area of Interest | Authors | Type of Clinical Study | Number of Patients | Treatment | Results |
---|---|---|---|---|---|
Functional dyspepsia | Papathanasopoulos et al., 2013 [56] | Randomized, crossover study | 13 healthy volunteers | Peppermint oil 182 mg p.o., single dose | Decreased intragastric pressure and gastric motility |
Functional dyspepsia | Inamori et al., 2007 [57] | Randomized control study | 10 healthy volunteers | Peppermint oil 0.64 mL p.o., single dose | Enhancement of gastric emptying without altering gastric emptying coefficient |
Functional dyspepsia | May et al., 2000 [58] | Randomized control study | 96 patients with functional dyspepsia | Peppermint oil and caraway oil combination 90 mg + 50 mg p.o., 4 weeks | Reduction of symptoms (pain, fulness, heaviness) |
Functional dyspepsia | Madisch et al., 1999 [59] | Randomized control study | 118 patients with functional dyspepsia | Peppermint oil and caraway oil combination 90 mg + 50 mg p.o., 4 weeks | Reduction of dyspeptic symptoms |
Irritable bowel syndrome (IBS) | Cash et al., 2016 [60] | Randomized control study | 72 patients with IBS | Peppermint oil 180 mg p.o., 4 weeks | Reduction of symptoms |
IBS | Khanna et al., 2014 [61] | Meta-analysis | 9 studies with 726 patients with IBS | Peppermint oil 200 mg | Global improvement of IBS symptoms (RR 2.23, 95% CI 1.78–2.81) |
IBS | Merat et al., 2010 [62] | Randomized control study | 90 patients with IBS | Peppermint oil 187 mg p.o., 8 weeks | Reduction of abdominal pain and discomfort |
IBS | Cappello et al., 2007 [63] | Randomized control study | 57 patients with IBS | Peppermint oil 225 mg p.o., 4 weeks | Reduction of total IBS symptoms |
IBS | Pittler and Ernst 1998 [64] | Meta-analysis | 8 randomized control studies | Peppermint oil | Reduction of IBS symptoms not established beyond reasonable doubt |
IBS | Liu et al., 1997 [65] | Randomized control study | 110 patients with IBS | Peppermint oil 187 mg p.o., 4 weeks | Improvement of pain and other IBS symptoms |
Endoscopic procedures | Inoue et al., 2014 [66] | Randomized control study | 226 patients with colonoscopy | L-menthol applied on the mucosa | Reduction of discomfort |
Endoscopic procedures | Hiki et al., 2012 [67] | Randomized control study | 131 patients with gastric endoscopy | L-menthol applied on the mucosa | Reduction of peristalsis |
Endoscopic procedures | Yamamoto et al., 2006 [68] | Randomized, control study | 40 patients with endoscopic cholangiopancreatography | Peppermint oil applied to papilla | Non-significant reduction of duodenal contractions |
Infantile colic | Bezerra Alves et al., 2012 [69] | Randomized crossover study | 30 infants | Mentha piperita liquid drops, 1 drop/kg | Decreased frequency and duration of infantile colic |
Primary dysmenorrhea | Ghodsi and Asltoghiri, 2014 [70] | Randomized control study | 80 female students | Fennel capsules 180 mg/day, 3 months | Reduction of dysmenorrhea symptoms |
Plant Species | Part Use | Representative Compounds | Reference |
---|---|---|---|
Pistacia integerrima, (Anacardiaceae)-zebrawood | Galls | Hydrocarbons: monoterpenes: α-pinene 21.81%, β-pinene 16.18, α-terpinene 1.37%, carene 11.09%, limonene 6.35%, α-phellandrene 15.48%, β-phellandrene 5.72%, cis-ß-ocimene 4.13%, trans-ß-ocimene 4.25%; sesquiterpenes: β-caryophyllene 3.88–5.33%, β-farnesene 7.88%; aromatic: p-cymene 11.54% Alcohols: terpinen-4-ol 11.93–28.82%, 4-carvomenthenol 17.06%, p-meth-1-en-8-ol 43.38%, borneol 8.90%, spathulenol 6.35% Ketones: tetrahydrocarvone 10.27% Esters: bornyl acetate 13.99% | [93,94,95] |
Cananga odorata var. genuina, (Annonaceae)—ylang ylang | Flowers | Major components differ significantly depending on the fraction of essential oil, origin of the plant material and harvesting time Hydrocarbons: sesquiterpenes: ß-caryophyllene 15–26.8%, germacrene D 8.1–25.13%, δ-cadinene 2–4.7%, α-humulene 0.9–7.1%, α-farnesene 0.3–23.75% Alcohols: linalool 8.7–30%, farnesol 5.6% Ethers: p-methyl anisole 0.39–16.5% Esters: geranyl acetate 5–10%, farnesyl acetate 1–7%, methyl salicylate 1–10%, benzyl benzoate 3.8–27.48%, benzyl acetate 3–8%, methyl benzoate 1–6.05% | [86,96,97,98,99] |
Xylopia frutescens, (Annonaceae) | Leaves | Hydrocarbons:monoterpenes: α-pinene 2.30%,β-ocimene 8.19%; sesquiterpenes: caryophyllene 23.91%, γ-cadinene 12.48%, γ-elemene 4.55%, β-elemene 4.31%, α-selinene 4.29%, δ-cadinene 3.02%, α-humulene 2.48%, γ-muurolene 2.23%, β-selinene 2.11% Alcohols: cadin-4-en-10-ol 5.78%, viridiflorol 4.83%, sphatulenol 3.97% | [11] |
Xylopia langsdorfiana, (Annonaceae) | Fruits | Hydrocarbons:monoterpenes: α-pinene 37.73%, camphene 11.50%, β-pinene 4.04%, limonene 31.75%; sesquiterpenes: sclarene 10.38% Alcohols: α-terpineol 1.08%, spathulenol 1.74% Oxides: 1,8-cineol 1.15%, caryophyllene oxide 3.79% | [100] |
Anethum graveolens, (Apiaceae)—dill | Seeds | Hydrocarbons: monoterpenes: limonene 1.11–83%, α-phellandrene trace–25%, β-phellandrene 0–3.38% Phenols: carveol 2%, eugenol Ketones: carvone (28–62.48%), cis-dihydrocarvone 0–5.87%, trans-dihydrocarvone 0–11.7%, piperitone 0–8.2% Ethers: apiole 0–16.79%, dillapiole 0–26.8 | [86,101,102,103,104,105,106,107,108] |
Carum carvi, (Apiaceae)—caraway | Fruits | Hydrocarbons: monoterpenes: limonene 1.5–51.3%, carvene 30% Alcohols: cis-carveol 5.5% Ketones: carvone 44.5–95.9% Ethers: trans-anethole 0–2.2%, apiole 12.3% | [86,109,110,111] |
Coriandrum sativum, (Apiaceae)—coriander | Fruits | Hydrocarbons: monoterpenes: γ-terpinene 1–8%, limonene 0.1–4%, α-pinene 0–10.9%, ß-myrcene 0.2–2%; aromatic p-cymene trace–8.1% Alcohols: linalool 60–87%, geraniol 1.2–3.6%, terpinen-4-ol trace–3% Ketones: camphor 0.9–5.3% Esters: geranyl acetate 0.1–5.4%,linalyl acetate 0–2.7% | [86,89,112,113] |
Ferula heuffelii Griseb., (Apiaceae) | Hydrocarbons: monoterpenes: α-pinene 4%, γ-terpinene 1.2%; sesquiterpenes: α-cadinene 3.4%, aromadendrene 1.8%, viridiflorene 2.1%, α-muurolene 1.7% Alcohols: viridoflorol 1.0%, cedrol 5.1% Ethers: myristicin 20.6%, elemicin 35.4% Esters: bornyl acetate 1.9% | [17] | |
Foeniculum vulgare var. dulce, (Apiaceae)—sweet fennel | Fruits | Hydrocarbons: monoterpenes α-pinene 0.4–10%, limonene 1.4–26.44%, α-phellandrene 0.2–9.26%, ß-myrcene 0.5–3%, ß-phellandrene 0.4–2.6%, γ-terpinene 10.5%, cis-ß ocimene 1.6–12%, α-terpinolene trace–3.3%; aromatic: p-cymene 0.1–4.7% Alcohols: fenchol trace–4% Ketones: fenchone trace–22% Ethers: methyl chavicol trace–17%, cis-anethole trace–1.7%, trans-anethole 50–90% Oxides: 1,8-cineole 1–6% | [86,114,115,116,117,118] |
Pimpinella anisum, (Apiaceae) - aniseed | Fruits | Hydrocarbons: sesquiterpenes: γ-himachalene 0.4–8.2% Alcohols: anisol 0.5–4% Ethers: cis-anethole 0–1%, trans-anethole 90–93.7%, methyl chavicol 0–2.3% Aldehydes: anisaldehyde 0–5.4% | [86,119,120,121] |
Acorus calamus, (Araceae)—sweet flag, calamus | Rhizomes | Hydrocarbons: monoterpenes: α-pinene 2.96%, limonene 0.1–2.8%; sesquiterpenes: ß-gurjunene 0.2–28.0%, calamenene 0.1–9.75%, δ-cadinene 0.5–2.1%, α-cedrene 3.09% Alcohols: linalool 0.3–12% Phenols: cis-isoeugenol 2.5–25%, trans-isoeugenol 0.5–2% Aldehydes: asaronal 0.2–6%, citronellal 2.82%, neral 2.57% Ketones: shyobunone trace–13.3%, epishyobunone 0.1–4.8%, isoshyobunone 0.6–13.0%, camphor 2.42% Ethers: methyl eugenol trace–8.59%, cis-methyl isoeugenol 2.4–49%, trans-methyl isoeugenol 1.1–7.9%, α-asarone 1–50.09%, ß-asarone 2.22–83.2% | [86,122,123,124,125,126] |
Artemisia dracunculus, (Asteraceae)—tarragon | Flowering tops and leaves | Major components differ significantly depending on the origin of the plant material and harvesting time Hydrocarbons: monoterpenes: α-pinene 5.1%, limonene 2.40–12.4%, trans-ocimene 2.99–20.6%, α-terpinolene 0.5–25.4%, cis-ocimene 2.65 –22.2% sabinene 14.28–39.44% Ethers: trans-anethole 10–21.2%, cis-anethole 53.37–81.0%, methyl eugenol 2.2–39.35%, methyl isoeugenol 1.8–35.8%, methyl chavicol 1.09–74.46% Others: asarone 21.69–40.36 | [127,128,129,130,131,132] |
Chamaemelum nobile (Asteraceae)—roman chamomile | Flowers | Hydrocarbons: monoterpenes: α-terpinene 0–10%, α-pinene 0–10%, ß-pinene 0–10%, sabinene 0–10%; sesquiterpenes: caryophyllene 0–10% Alcohols: trans-pinocarveol 5% Aldehydes: myrtenal 0–10% Ketones: pinocarvone 13% Oxides: 1,8-cineole 0–25% Ethers: methyl chavicol 5% Esters: 2-methylbutyl 2-methyl propionate 0.5–25%, 2-methylpropyl butanoate 0.5–10%, 2-methylbutyl, 2-methylbutanoate 0.5–25%, 2-methylpropyl 3-methylbutanoate 0–10%, propyl angelate 0.5–10%, 2-methylpropyl angelate 0.5–25%, butyl angelate 0.5–10%, 3-methylpentyl angelate 0–10%, isobutyl angelate 36–40%, isobutyl isobutanoate 4%, 2-methylbutyl methyl-2-butanoate 3%, isoamyl methyl-2 butanoate 3%, hexyl acetate 0.5–10% | [86,133,134,135,136,137,138] |
Chrysactinia mexicana, (Asteraceae)—damianita daisy | Leaves | Hydrocarbons: monoterpenes: α-myrcene 1.20% Alcohols: linalool 1.39% Ketones: α-thujone 1.17%, piperitone 37.74% Oxides: 1,8-cineole 41.3% Esters: linalyl acetate 9.08% | [139] |
Hofmeisteria schaffneri (Asteraceae) | Aerial parts | Major components differ depending on the harvesting time Alcohols: linalool 0.25–1.38% Esters: thymyl isobutyrate 1.54–3-41%, thymyl isovalerate 14.12–30.97%, 9-acetoxy-8,9-dehydrothymyl angelate 2.36–5.23%, 8,9-epoxy-10-acetoxythymyl angelate 0.41–15% Others: hofmeisterin III 24.12–34.85% | [140] |
Matricaria recutita (Asteraceae)—german chamomile | Flowers | Hydrocarbons: sesquiterpenes chamazulene 1–35%, trans-ß-farnesene 2–13%, trans-α-farnesene 27%, δ-cadinene 5.2%, γ-muurolene 1.3%, α-muurolene 3.4% Alcohols: sesquiterpenols: α-bisabolol 2–67% Oxides:α-bisabol oxide A 0–55%, α-bisabolol oxide B 4.3–19%, bisabolone oxide A 0–64% | [127,133,134,135] |
Pelargonium graveolens, (Geraniaceae)—geranium | Aerial parts | Hydrocarbons: monoterpenes:α-pinene 22.47%; sesquiterpenes: guai-6,9-diene 3.9–5.3%, β-bourbonene 2.7–3.14%, germacrene D 2.92–4.33%, γ-cadinene 2.38% Alcohols: citronellol 15.2–48.44%, geraniol 6–25%, linalool 1–13.79%, octen-1-ol 18.61% Aldehydes:geranial 0–9% Ketones: menthone 0.6–6.96%, isomenthone 4–8.4% Oxides: cis-rose oxide 0.69–25%, trans-rose oxide 0.31–2.01%, cariopyllene oxide 2.52–3.7% Esters: citronellyl formate 8–24.4%, geranyl formate 1–6.22%, citronellyl propionate 1–3%, geranyl angelate 1–2%, citronellyl butanoate 1.3%, geranyl butanoate 1.3% | [86,99,141,142,143,144] |
Lavandula angustifolia (Lamiaceae)—true lavender | Flowers | Hydrocarbons: monoterpenes:cis-ß-ocimene 1.3–10.9%, trans-ß-ocimene 0.8–5.8%, limonene 0.2–7%; sesquiterpenes: ß-caryophyllene 2.6–7.6% Alcohols: linalool 26–49%, terpinen-4-ol 0.03–6.4%, α-terpineol 0.1–1.4%, borneol 0.8–1.4%, lavandulol 0.5–1.5% Oxides: 1,8-cineole 0.5–2.5% Esters: linalyl acetate 35–55%, lavandulyl acetate 0.2–5.9% | [33,89,99,137,145,146,147,148] |
Melissa officinalis (Lamiaceae)—melissa | Aerial parts | Major components differ significantly depending on the origin of the plant material Hydrocarbons: sesquiterpenes: ß-caryophyllene 8–10%, α-copaene 4–5% Alcohols: linalool 0.4–2.74%, nerol 1.4%, geraniol 0.20-27.22%, citronelol 0-36.71% Aldehydes: neral 3.28–31.5%, geranial 0-38.13%, citronellal 1.48–39.6% Oxides: caryophyllene oxide 0.2–10.26% | [149,150,151,152] |
Mentha × piperita (Lamiaceae)—peppermint | Aerial parts | Hydrocarbons: monoterpenes: α-pinene 0.2–2%, ß-pinene 0.3–4%, limonene 0.6–6%; sesquiterpenes: germacrene D 1.75–4.3% Alcohols: menthol 25.16–48%, neomenthol 2–7.7%, α-terpineol 0.1–1.9%, cis-carveol 3.35%, terpinen-4-ol 0–2.4%, cis-thujan-4-ol 0.2–1.4%, viridiflorol 0.5–1.3%, Ketones: menthone 16–42.97%, isomenthone 4–10.4%, neomenthone 2–3%, piperitone 0.5–1.2%, pulegone 4.39% Oxides: 1,8-cineole 2.15–7.4%, transpiperitonoxide 0.5–3.1% Esters: menthyl acetate 1.6–10% Benzofurans: menthofuran 0.1–5.7% | [153,154,155,156] |
Mentha spicata (Lamiaceae)—spearmint | Aerial parts | Hydrocarbons: monoterpenes: ß-pinene 0.3–2.3%, ß-myrcene 1.2–5.5, limonene 2–25%; sesquiterpenes: ß-caryophyllene 0.3–4.41%, β –farnesene 1.71%, ß-bourbonene trace–2.14%, germacrene D 0–3.14% Alcohols: cis-carveol 5.30%, menthol 0.5–2%, terpinen-4-ol trace–6.1%, α-terpineol 0–2.7% Ketones: carvone 39–70%, menthone trace–5.2%, cis-dihydrocarvone 3.1–21.6%, trans-dihydrocarvone 0–21%, isomenthone 3.33% Oxides: 1,8-cineole 0.5–17.0%, piperetenone oxide trace—79.2% Esters: dihydrocarvyl acetate 1.2–24.8%, cis-carvyl acetate 0.2–5.5%, trans-carvyl acetate 0.7–5.9%, neoisodihydrocarveol acetate 0–21%, menthyl acetate 2% Benzofurans: menthofuran 2% | [86,99,156,157,158] |
Mentha x vilosa Huds.(Lamiaceae)—mojito mint | Aerial parts | Hydrocarbons: monoterpenes:ß-pinene 1.42–4.04%, myrcene 3.10–3.66%, limonene 2.38–8.75%; sesquiterpenes: ß-caryophyllene 2.82–5.16%,δ-cardinene 9.69%, γ-muurolene 2.18–16.02%, germacrene-D 3.81% Oxides: 1,8-cineole 1.58–3.93%, piperitenone oxide 58.74–79.03%, cariophyllene oxide 2.82% | [33,91,159,160,161] |
Ocimum basilicum (Lamiaceae)—basil | Aerial parts | Hydrocarbons: sesquiterpenes:ß-caryophyllene 2–3% Alcohols: linalool 40–55%, α-fenchyl alcohol 3–12%, terpinen-4-ol 1.6%, α-terpineol 2% Phenols: eugenol 1–19%, iso-eugenol 2% Oxides: 1,8-cineole 2–8% Ethers: methyl chavicol 3–31%, methyl eugenol 1–9% Esters: methyl cinnamate 0.1–7% | [86,162] |
Ocimum selloi (Lamiaceae) —green pepper basil | Aerial parts | Hydrocarbons: sesquiterpenes:ß-caryophyllene 2.2–3%, germacrene D 0–3.14% Alcohols: linalool 20.6%, spathulenol 1.3% Ethers: trans-anethole 45.42%, cis-anethole 3.95%, methyl chavicol 24.14–93.2%, methyl eugenol 2.2-39.35% | [35,162,163,164] |
Ocimum gratissimum (Lamiaceae)—african basil | Aerial parts | Hydrocarbons: monoterpenes:β-pinene 6.2%, cis-ocimene 13.9–23.97%, trans-ocimene 19.60–48.28%, γ-terpinene 0.20–28.10%, limonene 11.40%; sesquiterpenes: ß-caryophyllene 2.7–3.06%, β-phellandrene (21.10), germacrene D 7.30-10.36%, α-trans-bergamotene 4.1%, γ- muurolene 9.32–11.6%; aromatic: p-cymene 4.40–19.90% Phenols: eugenol 10.70–74.80%, thymol 13.10–46.60% Oxides: 1,8-cineole 0–54.94% | [36,162,165,166] |
Origanum majorana, (Lamiaceae)—sweet marjoram | Aerial parts | Major components differ significantly depending on chemotype and the origin of the plant material Hydrocarbons: monoterpenes: sabinene 1.45–10%, ß-myrcene 1–9%, α-terpinolene 1–7%, α-pinene 1–5%, cis-/trans-ß-ocimenes 6.4%, 3-carene 6.2%, myrcene 1.12-4.7%, α-terpinene 3.9–8%, γ-terpinene 11.16–20%; sesquiterpenes: ß-caryophyllene 2–7.44%, δ-cadinene 4.2%, α-farnesene 4.58%, germacrene D 9.2%; aromatic: benzene 13.34%, p-cymene 7.0–12.05% Alcohols: terpinen-4-ol 14–38.4%, cis-thujan-4-ol 0.11–44%, trans-thujan-4-ol 1–5%, linalool 2–31.68%, α-terpineol 7–27% Phenols: carvacrol 0–83.47% Esters: terpenyl acetate 0–3%, geranyl acetate 1–7.8%, linalyl acetate 2.41–17.4% | [86,167,168,169,170,171] |
Plectranthus barbatus synonym Coleus forskohlii, (Lamiaceae)—Iindian coleus | Aerial parts | Hydrocarbons: monoterpenes: α-pinene 12–67%,β-pinene 0.1-22%, β-myrcene 1.8%, cis-β-ocimene 1.9%, trans-β-ocimene 1.2%; sesquiterpenes: β-caryophyllene 7-12%, α-copaene 8.9%, β-cubebene 3.7% Alcohols: oct-1-en-3-ol traces–28% Phenols: thymol 15.3%, carvacrol 12.1%, eugenol 25.1% | [38,172,173,174] |
Rosmarinus officinalis ct. verbenone, (Lamiaceae)—rosemary | Aerial parts | Hydrocarbons: monoterpenes: α-pinene 15–34% Alcohols: borneol trace–16.63% Ketones: verbenone 15–37%, camphor 1–22.35% Oxides: 1,8-cineole trace–20% Esters: bornyl acetate 12% | [86,175,176,177] |
Salvia officinalis (Lamiaceae)—sage | Aerial parts | Hydrocarbons: monoterpenes: α-pinene 2.02–6.4%, ß-pinene 1.9–8.20%, camphene 1–8.49%, ß-myrcene 0.4–5.66%, limonene 0.9–4%; sesquiterpenes: ß-caryophyllene 1–7%, α-humulene 1.6–5% Alcohols: linalool 0.4–12%, terpinen-4-ol 0.2–4%, α-terpineol trace–9%, borneol 1.5–14%, viridiflorol 0–10% Ketones:α-thujone1.1–35.7%,ß-thujone 1.71–33%, camphor 4.1–43.83% Oxides: 1,8-cineole 5–57.18%, caryophyllene oxide 0.4–2.1% Esters: bornyl acetate 0.1–5.59%, linalyl acetate 1–2% | [40,86,178,179] |
Satureja hortensis (Lamiaceae)—summer savory | Aerial parts | Hydrocarbons: monoterpenes: α-terpinene 1.29-3.1%, γ-terpinene 12.8-24%, β-myrcene 1–2.8%; sesquiterpenes: ß-caryophyllene 1.2–4%, δ-cadinene 3%; aromatic: p-cymene 3.7–20% Alcohols: linalool 9–54%, terpinen-4-ol trace–7%, α-terpineol 6–9% Phenols: carvacrol 59.70–67.00%, eugenol 1–1.7%, thymol 0-29.0% Oxides: 1,8-cineole 0-37.82% | [86,99,180,181] |
Cymbopogon citratusStapf(Poaceae)—West Indian lemongrass | Aerial parts | Hydrocarbons: monoterpenes: limonene 2.4–2.6%, β-myrcene 2.34–21% Alcohols: α-terpineol 0.2–2.3%, linalool 1.2–3.4%, geraniol 2.6–40%, nerol 0.8–4.5%, citronellol 0.1–8%, farnesol 12.8% Aldehydes: neral 3–43%, geranial 4.5–58%, citronellal 0.1–9% Esters: geranyl acetate 0.1–3.0% | [42,86,182,183,184,185] |
Cymbopogon schoenantus (L.) Spreng (Poaceae)—camelgrass | Aerial parts | Hydrocarbons: monoterpenes: limonene 1.5–3.12%; sesquiterpenes: β-elemene 11.6%, δ-2-carene 10% Alcohols: α-eudesmol 11.5%, elemol 10.8%, β-eudesmol 8.5%, γ- eudesmol 4.2%, intermedeol 6.1–17.3%, linalool 21.6% Aldehydes: neral 3.3%, geranial 2.4% Ketones: piperitone 47.7–71.5% | [43,185] |
Cymbopogon martini (Poaceae)—palmarosa | Aerial parts | Alcohols: linalool 1.6–3.4%, geraniol 67.6–83.6%, citronellol 1.6–2.1% Aldehydes: geranial 1–8.8% Esters: geranyl acetate 2.2–24.6% | [185,186] |
Rosa indica L, (Rosaceae) | Hydrocarbons: nonadecane 3.4%, (Z)-9-nonadecene 3.3%, heneicosane 6.7%, tricosane 5.6%, pentacosane 4.9% Alcohols: citronellol 11.7%, nerol 8.0%, geraniol 24.8%, farnesol 2.0% | [45,187] | |
Citrus aurantifolia/Citrus medica var. acida (Rutaceae)—lime | Pericarps | Hydrocarbons: monoterpenes: limonene 36–60%, γ-terpinene 6–17.6%, α-pinene 0.2–5.03%, ß-pinene 4.9–19.5%, ß-myrcene 1–2.6%; sesquiterpenes: ß-caryophyllene 1.3–3.4%, α-bisabolene 2.3%; aromatic p-cymene 0.1–6.8% Alcohols: linalool 1.4–16.9%, α-terpineol 13–23% Aldehydes: citronellal 0–5.3%, neral 0.7–4.7%, geranial 1.81–6.4% Esters: linalyl acetate 26–27% | [46,86,99,188,189] |
Citrus aurantium var. sinensis (Rutaceae)—sweet orange | Pericarps | Hydrocarbons: limonene 87.9–96.8%, ß-myrcene 1.37–2.5%, ß-phellandrene 0–1.5% Alcohols: linalool 0.5–2.4% Ketones: carvone 1.8% | [86,99,190,191] |
Lippia alba, (Verbenaceae) | Leaves | The plant presents a great morphological and chemical variability with a predominance of monoterpene type compounds such as citral, β-myrcene, limonene and carvone, based on which several chemotyps have been described. Hydrocarbons: monoterpenes: limonene 8.2–15.7%, γ-terpinene 4.09%, myrcene 6.6–8.3%; sesquiterpenes: β-caryophyllene 2.7–3.07%, germacrene D 3.0–5.47% Alcohols: β-elemol 5.37%, nerol 2.2%, geraniol 2.9%, linalool 0.8–64.2% Aldehydes: geranial 6.5–50.94%, neral 11.5–33.32% Ketones: carvone 16.7–33.7% Oxides: cariopyllene oxide 0–2.64% | [48,192,193,194,195] |
Lippia thymoides, (Verbenaceae) | Leaves | Hydrocarbons: monoterpenes: α-pinene 0.94–2.38%, camphene 2.64–5.66%, limonene 1.67–3.75%,; sesquiterpenes: copaene 2.42–3.38%, β-caryophyllene 5.32–26.27%, α-caryophyllene 3.06-5.48%, germacrene D 4.72–6.18% Alcohols: borneol 4.45–7.36% Phenols: thymol trace–66.33% Ketones: camphor 3.22–8.61% Oxides: cariopyllene oxide 0.9–2.7% Ethers: 1,8-cineole 1.86–4.5% Esters: thymol acetate 0-7.49% | [49,196,197] |
Elettaria cardamomum, (Zingiberaceae)—cardomom | Fruits | Hydrocarbons: monoterpenes: limonene 1.7–14%, sabinene 1.3–5%, ß-myrcene 0.2–2.2% Alcohols: linalool 0.4–6.9%, terpinen-4-ol 0.1–3.2%, α-terpineol 0.8–5.25%, geraniol 0.2–1.6%, trans-nerolidol 0.1–2.7%, cis-nerolidol 0.2–1.6% Oxides: 1,8-cineole 15.13–50% Esters: α-terpinyl acetate 29–56.87%, linalyl acetate 0.2–7.7% | [86,198,199,200,201,202] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heghes, S.C.; Vostinaru, O.; Rus, L.M.; Mogosan, C.; Iuga, C.A.; Filip, L. Antispasmodic Effect of Essential Oils and Their Constituents: A Review. Molecules 2019, 24, 1675. https://doi.org/10.3390/molecules24091675
Heghes SC, Vostinaru O, Rus LM, Mogosan C, Iuga CA, Filip L. Antispasmodic Effect of Essential Oils and Their Constituents: A Review. Molecules. 2019; 24(9):1675. https://doi.org/10.3390/molecules24091675
Chicago/Turabian StyleHeghes, Simona Codruta, Oliviu Vostinaru, Lucia Maria Rus, Cristina Mogosan, Cristina Adela Iuga, and Lorena Filip. 2019. "Antispasmodic Effect of Essential Oils and Their Constituents: A Review" Molecules 24, no. 9: 1675. https://doi.org/10.3390/molecules24091675
APA StyleHeghes, S. C., Vostinaru, O., Rus, L. M., Mogosan, C., Iuga, C. A., & Filip, L. (2019). Antispasmodic Effect of Essential Oils and Their Constituents: A Review. Molecules, 24(9), 1675. https://doi.org/10.3390/molecules24091675