Preclinical Evaluation of NHS-Activated Gold Nanoparticles Functionalized with Bombesin or Neurotensin-Like Peptides for Targeting Colon and Prostate Tumours
Abstract
:1. Introduction
2. Results
2.1. Peptides Labelling
2.2. Quality Control of 68Ga-Labelled Peptides
2.3. Physicochemical Characterisation of Peptide-Functionalized Gold Nanoparticles
2.3.1. Dynamic Light Scattering (DLS)
2.3.2. FTIR Spectra
2.4. Cytotoxicity Evaluation
2.5. In Vitro Binding Assay
2.5.1. Uptake and Retention
2.5.2. Specific Binding
2.6. Ex Vivo Biodistribution
2.6.1. 68Ga-DOTA-PEG(4)-BBN(7-14)/68Ga-DOTA-PEG(4)-BBN(7-14)-AuNP
2.6.2. 68Ga-DOTA-NMB/68Ga-DOTA-NMB-AuNP
2.6.3. 68Ga-DOTA-NT/68Ga-DOTA-NT-AuNP
2.6.4. 68Ga-DOTA-NMN/68Ga-DOTA-NMN-AuNP
3. Discussion
4. Materials and Methods
4.1. Peptides Labelling
4.2. Quality Control of 68Ga-Labelled Peptides
4.3. Nanoparticles Functionalization
4.4. Physicochemical Characterisation
4.4.1. DLS
4.4.2. FTIR Spectra
4.5. Cell Culture and Petri Dishes Preparation
4.6. Cytotoxicity Investigation
4.7. In Vitro Binding Studies
4.7.1. Uptake and Retention Assay
4.7.2. Specific Binding Assay
4.8. Ex Vivo Biodistribution
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix B
Tissue | 68Ga-DOTA-PEG(4)-BBN(7-14) | 68Ga-DOTA-PEG(4)-BBN(7-14)-AuNP | 68Ga-DOTA-NMB | 68Ga-DOTA-NMB-AuNP | 68Ga-DOTA-NT | 68Ga-DOTA-NT-AuNP | 68Ga-DOTA-NMN | 68Ga-DOTA-NMN-AuNP |
---|---|---|---|---|---|---|---|---|
Blood | 6.42 ± 0.27 | 8.24 ± 0.86 | 4.72 ± 0.43 | 3.64 ± 0.32 | 5.79 ± 0.39 | 8.92 ± 0.17 | 4.59 ± 0.49 | 4.89 ± 0.53 |
Liver | 1.92 ± 0.07 | 2.81 ± 0.57 | 1.82 ± 0.33 | 1.70 ± 0.35 | 1.55 ± 0.29 | 1.27 ± 0.83 | 1.23 ± 0.20 | 1.51 ± 0.80 |
Kidneys | 18.74 ± 0.67 | 14.86 ± 1.32 | 36.23 ± 4.83 | 19.17 ± 5.77 | 24.00 ± 4.37 | 14.13 ± 1.31 | 21.14 ± 1.97 | 35.72 ± 4.83 |
Pancreas | 2.13 ± 0.07 | 7.18 ± 1.63 | 0 | 1.99 ± 0.02 | 0.90 ± 1.05 | 8.34 ± 4.24 | 0 | 0.69 ± 0.11 |
Spleen | 1.31 ± 0.22 | 1.69 ± 0.26 | 0.05 ± 0.01 | 0.56 ± 0.12 | 1.12 ± 0.52 | 3.19 ± 1.39 | 0.35 ± 0.02 | 0 |
Small intestine | 1.70 ± 0.44 | 0.93 ± 0.25 | 0.43 ± 0.30 | 0.99 ± 0.06 | 1.30 ± 0.86 | 0.76 ± 0.25 | 0.43 ± 0.19 | 0.75 ± 0.33 |
Large intestine | 2.63 ± 0.34 | 3.31 ± 0.56 | 0.38 ± 0.14 | 1.84 ± 0.51 | 1.48 ± 0.29 | 3.37 ± 1.66 | 0.84 ± 0.29 | 0.75 ± 0.24 |
Stomach | 2.10 ± 0.50 | 0.98 ± 0.58 | 0.86 ± 0.24 | 0.85 ± 0.65 | 1.67 ± 0.46 | 0.49 ± 0.23 | 0.71 ± 0.17 | 0.94 ± 0.04 |
Lungs | 4.17 ± 1.37 | 2.65 ± 0.11 | 1.85 ± 0.06 | 2.27 ± 0.04 | 2.63 ± 0.63 | 1.88 ± 0.11 | 2.37 ± 0.77 | 1.32 ± 0.10 |
Muscle | 0.79 ± 0.21 | 1.03 ± 0.41 | 0.34 ± 0.03 | 0.53 ± 0.06 | 0.87 ± 0.27 | 0.93 ± 0.74 | 0.48 ± 0.32 | 0.33 ± 0.16 |
Tumour | 3.31 ± 0.76 | 9.82 ± 2.28 | 1.73 ± 0.08 | 4.75 ± 0.32 | 4.06 ± 0.27 | 9.04 ± 2.29 | 2.02 ± 0.02 | 2.57 ± 0.26 |
Brain | 0.49 ± 0.02 | 0.15 ± 0.03 | 0 | 0 | 0.66 ± 0.12 | 0.35 ± 0.13 | 0.04 ± 0.01 | 0.05 ± 0.01 |
Bone | 0.75 ± 0.06 | 2.21 ± 0.51 | 0.10 ± 0.07 | 0 | 0.84 ± 0.22 | 2.71 ± 0.80 | 0.16 ± 0.02 | 0.13 ± 0.02 |
Lymph Node | 1.10 ± 0.45 | 2.03 ± 1.23 | 0.49 ± 0.17 | 0 | 1.47 ± 0.27 | 0 | 0.39 ± 0.05 | 0 |
Heart | 2.24 ± 0.12 | 1.75 ± 0.07 | 0.91 ± 0.05 | 0.51 ± 0.12 | 1.85 ± 0.24 | 1.56 ± 0.36 | 1.00 ± 0.42 | 0.32 ± 0.09 |
Tissue | 68Ga-DOTA-PEG(4)-BBN(7-14) | 68Ga-DOTA-PEG(4)-BBN(7-14)-AuNP | 68Ga-DOTA-NMB | 68Ga-DOTA-NMB-AuNP | 68Ga-DOTA-NT | 68Ga-DOTA-NT-AuNP | 68Ga-DOTA-NMN | 68Ga-DOTA-NMN-AuNP |
---|---|---|---|---|---|---|---|---|
Blood | 6.48 ± 1.53 | 8.34 ± 0.05 | 7.00 ± 0.24 | 5.06 ± 1.51 | 7.77 ± 0.23 | 8.97 ± 0.79 | 5.85 ± 0.93 | 5.69 ± 0.59 |
Liver | 2.22 ± 0.70 | 3.23 ± 0.39 | 1.53 ± 0.21 | 1.33 ± 0.51 | 1.82 ± 0.34 | 2.19 ± 0.15 | 1.10 ± 0.07 | 2.18 ± 0.76 |
Kidneys | 17.96 ± 3.78 | 25.00 ± 6.87 | 60.28 ± 13.01 | 67.51 ± 4.16 | 24.4 ± 0.18 | 33.26 ± 7.61 | 58.34 ± 9.86 | 37.07 ± 8.11 |
Pancreas | 2.51 ± 0.72 | 1.89 ± 0.63 | 1.36 ± 0.07 | 0 | 1.15 ± 0.63 | 0 | 0.58 ± 0.02 | 0 |
Spleen | 0.57 ± 0.02 | 1.22 ± 0.34 | 0.73 ± 0.29 | 0 | 1.60 ± 0.53 | 1.92 ± 0.11 | 0 | 1.08 ± 0.36 |
Small intestine | 1.13 ± 0.69 | 0.67 ± 0.27 | 1.43 ± 0.08 | 1.40 ± 0.14 | 1.92 ± 0.32 | 1.24 ± 0.17 | 0.26 ± 0.01 | 0.89 ± 0.05 |
Large intestine | 1.30 ± 0.25 | 1.59 ± 1.37 | 0.64 ± 0.91 | 1.41 ± 0.10 | 2.14 ± 0.12 | 2.59 ± 0.44 | 0.13 ± 0.27 | 0.17 ± 0 |
Stomach | 1.87 ± 0.03 | 1.61 ± 0.16 | 1.05 ± 0.25 | 1.42 ± 0.02 | 1.80 ± 1.19 | 3.96 ± 0.61 | 0.40 ± 0.33 | 0.96 ± 0.12 |
Lungs | 4.59 ± 2.25 | 3.24 ± 0.91 | 4.08 ± 1.18 | 2.14 ± 0.79 | 4.51 ± 0.57 | 6.67 ± 0.82 | 2.37 ± 0.50 | 2.52 ± 0.24 |
Muscle | 0.94 ± 0.14 | 0.63 ± 0.33 | 0.84 ± 0.07 | 0.92 ± 0.16 | 1.02 ± 0.20 | 1.78 ± 0.13 | 0.57 ± 0.22 | 0.71 ± 0.23 |
Tumour | 3.78 ± 0.27 | 13.01 ± 2.49 | 2.54 ± 0.42 | 2.79 ± 0.44 | 3.78 ± 0.05 | 11.7 ± 0.59 | 1.77 ± 0.50 | 3.29 ± 0.08 |
Brain | 0.21 ± 0.04 | 0.57 ± 0.09 | 0 | 0.11 ± 0.03 | 0 | 0.64 ± 0.19 | 0 | 0.03 ± 0.01 |
Bone | 0 | 0 | 0 | 0.24 ± 0.02 | 1.03 ± 0.58 | 0.48 ± 0.35 | 0 | 0.13 ± 0.02 |
Lymph Node | 0 | 0 | 1.25 ± 0.69 | 0 | 2.23 ± 0.49 | 3.04 ± 1.13 | 0 | 0.27 ± 0.03 |
Heart | 1.45 ± 0.13 | 1.04 ± 0.48 | 2.22 ± 0.12 | 0.93 ± 0.19 | 3.12 ± 0.64 | 3.13 ± 0.24 | 0.99 ± 0.26 | 0.17 ± 0.09 |
References
- Kong, F.Y.; Zhang, J.W.; Li, R.F.; Wang, Z.X.; Wang, W.J.; Wang, W. Unique Roles of Gold Nanoparticles in Drug Delivery, Targeting and Imaging Applications. Molecules 2017, 22, 1445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devaraj, N.K.; Keliher, E.J.; Thurber, G.M.; Nahrendorf, M.; Weissleder, R. 18F labeled nanoparticles for in vivo PET-CT imaging. Bioconjug. Chem. 2009, 20, 397–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glaus, C.; Rossin, R.; Welch, M.J.; Bao, G. In vivo evaluation of (64)Cu-labeled magnetic nanoparticles as a dual-modality PET/MR imaging agent. Bioconjug. Chem. 2010, 21, 715–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pretze, M.; van der Meulen, N.P.; Wangler, C.; Schibli, R.; Wangler, B. Targeted (64) Cu-labeled gold nanoparticles for dual imaging with positron emission tomography and optical imaging. J. Labelled Comp. Radiopharm. 2019, 62, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Ghiassian, S.; Yu, L.; Gobbo, P.; Nazemi, A.; Romagnoli, T.; Luo, W.; Luyt, L.G.; Workentin, M.S. Nitrone-Modified Gold Nanoparticles: Synthesis, Characterization, and Their Potential as (18)F-Labeled Positron Emission Tomography Probes via I-SPANC. ACS Omega. 2019, 4, 19106–19115. [Google Scholar] [CrossRef]
- Chen, F.; Ma, K.; Zhang, L.; Madajewski, B.; Zanzonico, P.; Sequeira, S.; Gonen, M.; Wiesner, U.; Bradbury, M.S. Target-or-Clear Zirconium-89 Labeled Silica Nanoparticles for Enhanced Cancer-Directed Uptake in Melanoma: A Comparison of Radiolabeling Strategies. Chem Mater. 2017, 29, 8269–8281. [Google Scholar] [CrossRef] [Green Version]
- Chilug, L.E.; Leonte, R.A.; Patrascu, M.E.B.; Ion, A.C.; Tuta, C.S.; Raicu, A.; Manda, G.; Niculae, D. In vitro binding kinetics study of gold nanoparticles functionalized with 68Ga-DOTA conjugated peptides. J. Radioanal. Nucl. Chem. 2016, 311, 1485–1493. [Google Scholar] [CrossRef]
- Yu, M.; Zheng, J. Clearance Pathways and Tumor Targeting of Imaging Nanoparticles. ACS Nano 2015, 9, 6655–6674. [Google Scholar] [CrossRef] [Green Version]
- Longmire, M.; Choyke, P.L.; Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: Considerations and caveats. Nanomedicine 2008, 3, 703–717. [Google Scholar] [CrossRef] [Green Version]
- Nie, S. Understanding and overcoming major barriers in cancer nanomedicine. Nanomedicine 2010, 5, 523–528. [Google Scholar] [CrossRef] [Green Version]
- Leonte, R.A.; Niculae, D.; Craciun, L.S.; Cata-Danil, G. Medical radioisotopes production at TR-19 cyclotron from IFIN-HH. U.P.B. Sci. Bull. Ser. A 2017, 79, 223–236. [Google Scholar]
- Moody, T.W.; Berna, M.J.; Mantey, S.; Sancho, V.; Ridnour, L.; Wink, D.A.; Chan, D.; Giaccone, G.; Jensen, R.T. Neuromedin B receptors regulate EGF receptor tyrosine phosphorylation in lung cancer cells. Eur. J. Pharmacol. 2010, 637, 38–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitabgi, P. Neurotensin and neuromedin N are differentially processed from a common precursor by prohormone convertases in tissues and cell lines. In Cellular Peptide Hormone Synthesis and Secretory Pathways; Springer: Berlin, Germany, 2009; pp. 85–96. [Google Scholar] [CrossRef]
- Jamous, M.; Tamma, M.L.; Gourni, E.; Waser, B.; Reubi, J.C.; Maecke, H.R.; Mansi, R. PEG spacers of different length influence the biological profile of bombesin-based radiolabeled antagonists. Nucl. Med. Biol. 2014, 41, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Falciani, C.; Lelli, B.; Brunetti, J.; Pileri, S.; Cappelli, A.; Pini, A.; Pagliuca, C.; Ravenni, N.; Bencini, L.; Menichetti, S.; et al. Modular Branched Neurotensin Peptides for Tumor Target Tracing and Receptor-Mediated Therapy: A Proof-of-Concept. Curr. Cancer Drug Targets 2010, 10, 695–704. [Google Scholar] [CrossRef]
- Falciani, C.; Brunetti, J.; Lelli, B.; Accardo, A.; Tesauro, D.; Morelli, G.; Bracci, L. Nanoparticles exposing neurotensin tumor-specific drivers. J. Pept. Sci. 2013, 19, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Huai, Y.; Zhang, Y.; Xiong, X.; Das, S.; Bhattacharya, R.; Mukherjee, P. Gold Nanoparticles sensitize pancreatic cancer cells to gemcitabine. Cell Stress 2019, 3, 267–279. [Google Scholar] [CrossRef] [Green Version]
- Hein, P.; Michel, M.C.; Leineweber, K.; Wieland, T.; Wettschureck, N.; Offermanns, S. Receptor and Binding Studies. In Practical Methods in Cardiovascular Research; Dhein, S., Mohr, F.W., Delmar, M., Eds.; Springer: Berlin, Germany, 2005; pp. 723–783. [Google Scholar]
- Schlegel, W. Peptide-Receptor Interaction: An Introduction; Elsevier: Ljubljana-Yugoslavia, Oxford, UK, 1980; p. 792. [Google Scholar] [CrossRef]
- Quirion, R.; Gaudreau, P.; St-Pierre, S.; Rioux, F. Localization of neurotensin binding sites in rat kidney. Peptides 1982, 3, 765–769. [Google Scholar] [CrossRef]
- Zong, J.; Cobb, S.L.; Cameron, N.R. Peptide-functionalized gold nanoparticles: Versatile biomaterials for diagnostic and therapeutic applications. Biomater. Sci. 2017, 5, 872–886. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Huang, L. Nanoparticles Escaping RES and Endosome: Challenges for siRNA Delivery for Cancer Therapy. J. Nanomater. 2011, 2011, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Cassano, D.; Mapanao, A.-K.; Summa, M.; Vlamidis, Y.; Giannone, G.; Santi, M.; Guzzolino, E.; Pitto, L.; Poliseno, L.; Bertorelli, R.; et al. Biosafety and Biokinetics of Noble Metals: The Impact of Their Chemical Nature. ACS Appl. Bio Mater. 2019, 2, 4464–4470. [Google Scholar] [CrossRef]
- García-Garayoa, E.; Bläuenstein, P.; Bruehlmeier, M.; Blanc, A.; Iterbeke, K.; Conrath, P.; Tourwé, D.; Schubiger, P.A. Preclinical Evaluation of a New Stabilized Neurotensin(8–13) Pseudopeptide Radiolabeled with 99mTc. J. Nucl. Med. 2002, 43, 374–383. [Google Scholar] [PubMed]
- Li, X.F.; Du, Y.; Ma, Y.; Postel, G.C.; Civelek, A.C. (18)F-fluorodeoxyglucose uptake and tumor hypoxia: Revisit (18)f-fluorodeoxyglucose in oncology application. Transl. Oncol. 2014, 7, 240–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.F.; Ma, Y.; Sun, X.; Humm, J.L.; Ling, C.C.; O’Donoghue, J.A. High 18F-FDG uptake in microscopic peritoneal tumors requires physiologic hypoxia. J. Nucl. Med. 2010, 51, 632–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeGrado, T.R.; Reiman, R.E.; Price, D.T.; Wang, S.; Coleman, R.E. Pharmacokinetics and Radiation Dosimetry of 18F-Fluorocholine. J. Nucl. Med. 2002, 43, 92–96. [Google Scholar] [PubMed]
- Patrascu, I.; Niculae, D.; Lungu, V.; Ursu, I.; Iliescu, M.; Tuta, C.; Antohe, A. The purification and the quality control of 68Ga eluates from Ge/68Ga generator. Rom. Rep. Phys. 2011, 63, 988–996. [Google Scholar]
- Cytodiagnostic. Available online: http://portal.cytodocs.com:8008/documents/Product-Sheets/Product-Sheet-NHS-Activated-Gold-Nanoparticles.pdf (accessed on 27 May 2020).
- Bjorke, H.; Andersson, K. Automated, high-resolution cellular retention and uptake studies in vitro. Appl. Radiat. Isot. 2006, 64, 901–905. [Google Scholar] [CrossRef] [PubMed]
- Moody, T.W.; Mantey, S.A.; Moreno, P.; Nakamura, T.; Lacivita, E.; Leopoldo, M.; Jensen, R.T. ML-18 is a non-peptide bombesin receptor subtype-3 antagonist which inhibits lung cancer growth. Peptides 2015, 64, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Schepetkin, I.A.; Kirpotina, L.N.; Khlebnikov, A.I.; Jutila, M.A.; Quinn, M.T. Gastrin-releasing peptide/neuromedin B receptor antagonists PD176252, PD168368, and related analogs are potent agonists of human formyl-peptide receptors. Mol. Pharmacol. 2011, 79, 77–90. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Samples of the compounds are not available from the authors. |
Peptide | Preparation Yield (%) |
---|---|
68Ga-DOTA-NT | 82.12 ± 3.43 |
68Ga-DOTA-NMN | 81.14 ± 3.35 |
68Ga-DOTA-PEG(4)-BBN(7-14) | 80.70 ± 3.10 |
68Ga-DOTA-NMB | 80.60 ± 0.46 |
Nanostructure | Hydrodynamic Diameter | Zeta Potential |
---|---|---|
DOTA-PEG(4)-BBN(7-14)-AuNP | 71.05 nm | −44.7 mV |
DOTA-NMB-AuNP | 72.18 nm | −47.3 mV |
DOTA-NT-AuNP | 72.36 nm | −44.4 mV |
DOTA-NMN-AuNP | 73.29 nm | −49.6 mV |
Antagonist | Target Receptors | Kd | Incubation Quantity | Incubation Time |
---|---|---|---|---|
PD 176252 | BBRS1, BBRS2 | 1 nM | 1 nM | 1 h |
ML 18 | BBRS3 | - | 1 nM | 1 h |
SR 48692 | NTRS1, NTRS2 | 15 nM | 30 nM | 1.5 h |
NTRC 824 | NTRS1, NTRS2 | 38 nM | 70 nM | 1.5 h |
SR 14294 | NTRS1, NTRS2, NTRS3 | 10 nM | 10 nM | 1.5 h |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chilug, L.E.; Niculae, D.; Leonte, R.A.; Nan, A.; Turcu, R.; Mustaciosu, C.; Serban, R.M.; Lavric, V.; Manda, G. Preclinical Evaluation of NHS-Activated Gold Nanoparticles Functionalized with Bombesin or Neurotensin-Like Peptides for Targeting Colon and Prostate Tumours. Molecules 2020, 25, 3363. https://doi.org/10.3390/molecules25153363
Chilug LE, Niculae D, Leonte RA, Nan A, Turcu R, Mustaciosu C, Serban RM, Lavric V, Manda G. Preclinical Evaluation of NHS-Activated Gold Nanoparticles Functionalized with Bombesin or Neurotensin-Like Peptides for Targeting Colon and Prostate Tumours. Molecules. 2020; 25(15):3363. https://doi.org/10.3390/molecules25153363
Chicago/Turabian StyleChilug, Livia Elena, Dana Niculae, Radu Anton Leonte, Alexandrina Nan, Rodica Turcu, Cosmin Mustaciosu, Radu Marian Serban, Vasile Lavric, and Gina Manda. 2020. "Preclinical Evaluation of NHS-Activated Gold Nanoparticles Functionalized with Bombesin or Neurotensin-Like Peptides for Targeting Colon and Prostate Tumours" Molecules 25, no. 15: 3363. https://doi.org/10.3390/molecules25153363
APA StyleChilug, L. E., Niculae, D., Leonte, R. A., Nan, A., Turcu, R., Mustaciosu, C., Serban, R. M., Lavric, V., & Manda, G. (2020). Preclinical Evaluation of NHS-Activated Gold Nanoparticles Functionalized with Bombesin or Neurotensin-Like Peptides for Targeting Colon and Prostate Tumours. Molecules, 25(15), 3363. https://doi.org/10.3390/molecules25153363