Anticancer and Antiviral Properties of Cardiac Glycosides: A Review to Explore the Mechanism of Actions
Abstract
:1. Introduction
1.1. CGs as Therapeutic Candidates to Treat Cancers
1.1.1. Lung Cancer
1.1.2. Breast Cancer
1.1.3. Liver Cancer
1.1.4. Colon Cancer
1.1.5. Gastric Cancer
1.1.6. Glioblastoma
1.1.7. Acute Myeloid Leukemia
1.1.8. Prostate Cancer
1.1.9. Pancreatic Cancer
2. Molecular Targets of Cardiac Glycosides in Cancers
3. Cardiac Glycosides as Immune Modulators
4. Role of Cardiac Glycosides on Signaling Pathways for Their Anticancer Mechanism
4.1. Effect on EMT
4.2. Effects on p38 MAPK/ERK Signaling Pathway
4.3. Effects on Src Kinase Signaling
4.4. Effects on PI3K/Akt/mTOR Pathway
4.5. Effects on Autophagy
5. Effects of Cardiac Glycosides on Gene Expression and Other Pathways
6. Cardiac Glycosides in Clinical Trials for Cancer Therapy
7. Antiviral Activities of Cardiac Glycosides and Their Mechanisms of Action
8. Conclusions and Future Perspectives
9. Highlights of The Review
- Apoptosis is a tightly regulated fundamental process of programmed cell death where the cell finishes its function and automatically undergoes PCD. However, in the case of cancer cells, this mechanism will be disturbed due to the uncontrollable proliferation of cancer cells. Recently, many reports have highlighted that targeting apoptosis through several molecular targets would lead to the discovery of novel anticancer drugs;
- Cardiac glycosides were used since the ancient years to treat congestive heart diseases, but their anticancer and antiviral activity was found to be novel.
- Several CGs perturbing apoptosis and autophagy were used to elucidate the mechanism of cell death and are currently in clinical trials;
- Interestingly CGs act on several targets apart from their primary targets (Na+/k+-ATPase) such as DNA topoisomerase I and II, anoikis prevention and hypoxia-inducible factors to induce apoptosis;
- Na+/k+-ATPase was linked with several signaling pathways such as EMT, Src kinase signaling, p38MAPK or ERK1/2 signaling and PI3K/Akt/mTOR signaling to induce apoptosis and autophagy;
- Antiviral activities of CGs have demonstrated that CGs can effectively suppress the HIV-1 gene expression, viral protein translation and alters viral pre-mRNA splicing to inhibit several viral diseases such as HIV, HMV, HSV, Ebola, chikungunya and coronavirus;
- Ultimately, this review provides insights into systematic targeting strategies with recent advancements by using CGs as therapeutic candidates to treat anticancer and antiviral diseases with better efficiency.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AKT | Protein kinase B (PKB) |
Bcl-2 | B-cell lymphoma 2 |
BAX | BCL2-associated X protein |
CHK1 | Checkpoint kinase 1 |
CHK2 | Checkpoint kinase 2 |
CDK6 | Cyclin-dependent kinase 6 |
CGs | Cardiac glycosides |
DNA | Deoxyribonucleic acid |
EGFR | Epidermal growth factor receptor |
eIF4E | Eukaryotic translation initiation factor 4E |
ERK | Extracellular-signal-regulated kinase |
GSK-3α | Glyceraldehyde 3-phosphate dehydrogenase |
JAK | Janus kinase |
JNK | Jun N-terminal kinase |
LC3 | Light chain 3 |
LRP1 | Low-density lipoprotein receptor-related protein 1 (LRP1) |
mTOR | Mechanistic target of rapamycin |
NFκB | Nuclear factor Κb |
p38 MAPK | p38 mitogen-activated protein kinases |
PI3K | phosphatidylinositol 3-kinase |
PTEN | Phosphatase and tensin |
ROS | Reactive oxygen species |
RNA | Ribonucleic acid |
SAPK | Stress-activated protein kinases |
STAT3 | Signal Transducer Moreover, activator of transcription 3 |
WHO | World Health Organization |
References
- Lichota, A.; Gwozdzinski, K. Anticancer activity of natural compounds from plant and marine environment. Int. J. Mol. Sci. 2018, 19, 3533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran, S.; DeGiovanni, P.J.; Piel, B.; Rai, P. Cancer nanomedicine: A review of recent success in drug delivery. Clin Transl Med. 2017, 6, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amarelle, L.; Lecuona, E. The antiviral effects of na, K-ATPase inhibition: A minireview. Int. J. Mol. Sci. 2018, 19, 2154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iqbal, J.; Abbasi, B.A.; Mahmood, T.; Kanwal, S.; Ali, B.; Shah, S.A.; Khalil, A.T. Plant-derived anticancer agents: A green anticancer approach. Asian Pac. J. Trop Biomed. 2017, 7, 1129–1150. [Google Scholar] [CrossRef]
- Seca, A.M.; Pinto, D.C. Plant secondary metabolites as anticancer agents: Successes in clinical trials and therapeutic application. J. Mol. Sci. 2018, 19, 263. [Google Scholar] [CrossRef] [Green Version]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, J.; Chen, S.; Maniatis, T. Cardiac glycosides are potent inhibitors of interferon-β gene expression. Nat. Chem. Biol. 2011, 7, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaushik, V.; Azad, N.; Yakisich, J.S.; Iyer, A.K.V. Antitumor effects of naturally occurring cardiac glycosides convallatoxin and peruvoside on human ER+ and triple-negative breast cancers. Cell Death Discov. 2017, 3, 17009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slingerland, M.; Cerella, C.; Guchelaar, H.J.; Diederich, M.; Gelderblom, H. Cardiac glycosides in cancer therapy: From preclinical investigations towards clinical trials. Invest. New Drug. 2013, 31, 1087–1094. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Montaño, J.M.; Burgos-Morón, E.; Orta, M.L.; Maldonado-Navas, D.; García-Domínguez, I.; López-Lázaro, M. Evaluating the cancer therapeutic potential of cardiac glycosides. Biomed. Res. Int. 2014, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Reddy, D.; Kumavath, R.; Tan, T.Z.; Ampasala, D.R.; Kumar, A.P. Peruvoside targets apoptosis and autophagy through MAPK Wnt/β-catenin and PI3K/AKT/mTOR signaling pathways in human cancers. Life Sci. 2020, 241, 117147. [Google Scholar] [CrossRef] [PubMed]
- Reddy, D.; Ghosh, P.; Kumavath, R. Strophanthidin attenuates MAPK, PI3K/AKT/mTOR and Wnt/β-catenin signaling pathways in Human Cancers. Front. Oncol. 2019, 9, 1469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, D.; Kumavath, R.; Ghosh, P.; Barh, D. Lanatoside C Induces G2/M Cell Cycle Arrest and Suppresses Cancer Cell Growth by Attenuating MAPK, Wnt, JAK-STAT, and PI3K/AKT/mTOR Signaling Pathways. Biomolecules 2019, 9, 792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, N.F.; Cerella, C.; Lee, J.Y.; Mazumder, A.; Kim, K.R.; De Carvalho, A.; Munkert, J.; Pádua, R.M.; Kreis, W.; Kim, K.W.; et al. Cardiac glycoside glucoevatromonoside induces cancer type-specific cell death. Front. Pharm. 2018, 9, 70. [Google Scholar] [CrossRef]
- Mijatovic, T.; Dufrasne, F.; Kiss, R. Cardiotonic steroids-mediated targeting of the Na+/K+-ATPase to combat chemoresistant cancers. Curr. Med. Chem. 2012, 19, 627–646. [Google Scholar] [CrossRef]
- Kim, N.; Yim, H.Y.; He, N.; Lee, C.J.; Kim, J.H.; Choi, J.S.; Lee, H.S.; Kim, S.; Jeong, E.; Song, M.; et al. Cardiac glycosides display selective efficacy for STK11 mutant lung cancer. Sci. Rep. 2016, 6, 29721. [Google Scholar] [CrossRef]
- Karasneh, R.A.; Murray, L.J.; Cardwell, C.R. Cardiac glycosides and breast cancer risk: A systematic review and meta-analysis of observational studies. Int J. Cancer. 2017, 140, 1035–1041. [Google Scholar] [CrossRef] [Green Version]
- Kaushik, V.; Yakisich, J.S.; Azad, N.; Kulkarni, Y.; Venkatadri, R.; Wleft, C.; Rojanasakul, Y.; Iyer, A.K.V. Anti-tumor effects of cardiac glycosides on human lung cancer cells and lung tumorspheres. J. Cell. Physiol. 2017, 232, 2497–2507. [Google Scholar] [CrossRef]
- Carey, L.A.; Perou, C.M.; Livasy, C.A.; Dressler, L.G.; Cowan, D.; Conway, K.; Karaca, G.; Troester, M.A.; Tse, C.K.; Edmiston, S.; et al. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. Jama 2006, 295, 2492–2502. [Google Scholar] [CrossRef] [Green Version]
- Rajasekaran, S.A.; Hu, J.; Gopal, J.; Gallemore, R.; Ryazantsev, S.; Bok, D.; Rajasekaran, A.K. Na, K-ATPase inhibition alters tight junction structure and permeability in human retinal pigment epithelial cells. Am. J. Physiol. Cell Physiol. 2003, 284, C1497–C1507. [Google Scholar] [CrossRef] [Green Version]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. Ca Cancer J. Clin. 2016, 66, 7–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.Y.; Chen, K.F.; Chen, P.J. Treatment of liver cancer. Cold Spring Harb. Perspect. Med. 2015, 5, a021535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atalay, R.C.; Durmaz, I. Cardiac glycosides and oxidative stress in liver cancer. In The Liver; Academic Press: Cambridge, MA, USA, 2018; pp. 55–61. [Google Scholar]
- Qiu, D.Z.; Zhang, Z.J.; Wu, W.Z.; Yang, Y.K. Bufalin, a component in Chansu, inhibits proliferation and invasion of hepatocellular carcinoma cells. BMC Complement. Altern. Med. 2013, 13, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chao, M.W.; Chen, T.H.; Huang, H.L.; Chang, Y.W.; HuangFu, W.C.; Lee, Y.C.; Teng, C.M.; Pan, S.L. Lanatoside C, a cardiac glycoside, acts through protein kinase Cδ to cause apoptosis of human hepatocellular carcinoma cells. Sci. Rep. 2017, 7, 46134. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.W.; Wang, F.M.; Gao, M.J.; Chen, X.Y.; Shan, N.N.; Cheng, S.X.; Mai, X.; Zala, G.H.; Hu, W.L.; Xu, R.C. Cardiotonic steroids attenuate ERK phosphorylation and generate cell cycle arrest to block human hepatoma cell growth. J. Steroid Biochem. Mol. Biol. 2011, 125, 181–191. [Google Scholar] [CrossRef]
- Zhao, Q.; Guo, Y.; Feng, B.; Li, L.; Huang, C.; Jiao, B. Neriifolin from seeds of Cerbera manghas L. induces cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells. Fitoterapia 2011, 82, 735–741. [Google Scholar] [CrossRef]
- Tariq, K.; Ghias, K. Colorectal cancer carcinogenesis: A review of mechanisms. Cancer Biol. Med. 2016, 13, 120. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.F.; Wu, G.; Sun, P.C.; Qiu, D. P53 mutations occur more commonly than KRAS mutations in colorectal adenoma. Int. J. Clin. Exp. Med. 2015, 8, 1370. [Google Scholar]
- Anderson, S.E.; Barton, C.E. The cardiac glycoside convallatoxin inhibits the growth of colorectal cancer cells in a p53-independent manner. Mol. Genet. Metab. Rep. 2017, 13, 42–45. [Google Scholar] [CrossRef]
- Kang, M.A.; Kim, M.S.; Kim, W.; Um, J.H.; Shin, Y.J.; Song, J.Y.; Jeong, J.H. Lanatoside C suppressed colorectal cancer cell growth by inducing mitochondrial dysfunction and increased radiation sensitivity by impairing DNA damage repair. Oncotarget 2016, 7, 6074. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.; Zhang, Y.; Zhao, W.; Zhou, X.; Wang, C.; Deng, F. The cardiac glycoside oleandrin induces apoptosis in human colon cancer cells via the mitochondrial pathway. Cancer Chemother. Pharm. 2017, 80, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.H.; Jernberg, T.; Mattsson, F.; Lagergren, J. Digitalis use and risk of gastrointestinal cancers: A nationwide population-based cohort study. Oncotarget 2017, 8, 34727. [Google Scholar] [CrossRef] [Green Version]
- Qi, X.; Liu, Y.; Wang, W.; Cai, D.; Li, W.; Hui, J.; Liu, C.; Zhao, Y.; Li, G. Management of advanced gastric cancer: An overview of major findings from meta-analysis. Oncotarget 2016, 7, 78180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Zhao, D.; Jin, H.; Li, H.; Yang, X.; Zhuang, L.; Liu, T. Bufalin reverses intrinsic and acquired drug resistance to cisplatin through the AKT signaling pathway in gastric cancer cells. Mol. Med. Rep. 2016, 14, 1817–1822. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Cai, H.; Xia, Y.; Wang, S.; Xing, L.; Chen, C.; Zhang, Y.; Xu, J.; Yin, P.; Jiang, Y.; et al. Bufalin inhibits gastric cancer invasion and metastasis by down-regulating Wnt/ASCL2 expression. Oncotarget 2018, 9, 23320. [Google Scholar] [CrossRef]
- Ohgaki, H.; Dessen, P.; Jourde, B.; Horstmann, S.; Nishikawa, T.; Di Patre, P.L.; Burkhard, C.; Schüler, D.; Probst-Hensch, N.M.; Maiorka, P.C.; et al. Genetic pathways to glioblastoma: A population-based study. Cancer Res. 2004, 64, 6892–6899. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.H.; Oh, S.C.; Giles, A.J.; Jung, J.; Gilbert, M.R.; Park, D.M. Cardiac glycosides suppress the maintenance of stemness and malignancy via inhibiting HIF-1α in human glioma stem cells. Oncotarget 2017, 8, 40233. [Google Scholar] [CrossRef] [Green Version]
- Calabrese, C.; Poppleton, H.; Kocak, M.; Hogg, T.L.; Fuller, C.; Hamner, B.; Oh, E.Y.; Gaber, M.W.; Finklestein, D.; Allen, M.; et al. A perivascular niche for brain tumor stem cells. Cancer cell 2007, 11, 69–82. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Qian, D.Z.; Tan, Y.S.; Lee, K.; Gao, P.; Ren, Y.R.; Rey, S.; Hammers, H.; Chang, D.; Pili, R.; et al. Digoxin and other cardiac glycosides inhibit HIF-1α synthesis and block tumor growth. Proc. Natl. Acad. Sci. USA 2008, 105, 19579–19586. [Google Scholar] [CrossRef] [Green Version]
- Berges, R.; Denicolai, E.; Tchoghandjian, A.; Baeza-Kallee, N.; Honore, S.; Figarella-Branger, D.; Braguer, D. Proscillaridin A exerts anti-tumor effects through GSK3β activation and alteration of microtubule dynamics in glioblastoma. Cell Death Dis. 2018, 9, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Krivtsov, A.V.; Twomey, D.; Feng, Z.; Stubbs, M.C.; Wang, Y.; Faber, J.; Levine, J.E.; Wang, J.; Hahn, W.C.; Gilliland, D.G.; et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL–AF9. Nature 2006, 442, 818–822. [Google Scholar] [CrossRef] [PubMed]
- Renneville, A.; Roumier, C.; Biggio, V.; Nibourel, O.; Boissel, N.; Fenaux, P.; Preudhomme, C. Cooperating gene mutations in acute myeloid leukemia: A review of the literature. Leukemia 2008, 22, 915–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Q.; Leong, W.S.; Liu, L.; Chan, W.I. Peruvoside, a cardiac glycoside, induces primitive myeloid leukemia cell death. Molecules 2016, 21, 534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tailler, M.; Senovilla, L.; Lainey, E.; Thepot, S.; Metivier, D.; Sebert, M.; Baud, V.; Billot, K.; Fenaux, P.; Galluzzi, L.; et al. Antineoplastic activity of ouabain and pyrithione zinc in acute myeloid leukemia. Oncogene 2012, 31, 3536–3546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallböök, H.; Felth, J.; Eriksson, A.; Fryknäs, M.; Bohlin, L.; Larsson, R.; Gullbo, J. Ex vivo activity of cardiac glycosides in acute leukaemia. PLoS ONE 2011, 6, e15718. [Google Scholar] [CrossRef] [Green Version]
- McConkey, D.J.; Lin, Y.; Nutt, L.K.; Ozel, H.Z.; Newman, R.A. Cardiac glycosides stimulate Ca2+ increases and apoptosis in androgen-independent, metastatic human prostate adenocarcinoma cells. Cancer Res. 2000, 60, 3807–3812. [Google Scholar] [PubMed]
- Winnicka, K.; Bielawski, K.; Bielawska, A. Cardiac glycosides in cancer research and cancer therapy. Acta. Pol. Pharm. 2006, 63, 109–115. [Google Scholar] [PubMed]
- Johnson, P.H.; Walker, R.P.; Jones, S.W.; Stephens, K.; Meurer, J.; Zajchowski, D.A.; Luke, M.M.; Eeckman, F.; Tan, Y.; Wong, L.; et al. Multiplex Gene Expression Analysis for High-Throughput Drug Discovery: Screening and Analysis of Compounds Affecting Genes Overexpressed in Cancer Cells 1 Supplementary material for this article is available at Molecular Cancer Therapeutics Online (http://mct. aacrjournals. org). Mol. Cancer 2002, 1, 1293–1304. [Google Scholar]
- Yeh, J.Y.; Huang, W.J.; Kan, S.F.; Wang, P.S. Inhibitory effects of digitalis on the proliferation of androgen dependent and independent prostate cancer cells. J. Urol. 2001, 166, 1937–1942. [Google Scholar] [CrossRef]
- Huang, Y.T.; Chueh, S.C.; Teng, C.M.; Guh, J.H. Investigation of ouabain-induced anticancer effect in human androgen-independent prostate cancer PC-3 cells. Biochem. Pharm. 2004, 67, 727–733. [Google Scholar] [CrossRef]
- Pathak, S.; Multani, A.S.; Narayan, S.; Kumar, V.; Newman, R.A. AnvirzelTM, an extract of Nerium oleander, induces cell death in human but not murine cancer cells. Anti-Cancer Drug. 2000, 11, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.A.; Madden, T.; Vijjeswarapu, M.; Newman, R.A. Inhibition of export of fibroblast growth factor-2 (FGF-2) from the prostate cancer cell lines PC3 and DU145 by Anvirzel and its cardiac glycoside component, oleandrin. Biochem. Pharm. 2001, 62, 469–472. [Google Scholar] [CrossRef]
- Manna, S.K.; Sah, N.K.; Newman, R.A.; Cisneros, A.; Aggarwal, B.B. Oleandrin suppresses activation of nuclear transcription factor-κB, activator protein-1, and c-Jun NH2-terminal kinase. Cancer Res. 2000, 60, 3838–3847. [Google Scholar] [PubMed]
- Juang, H.H.; Lin, Y.F.; Chang, P.L.; Tsui, K.H. Cardiac glycosides decrease prostate specific antigen expression by down-regulation of prostate derived Ets factor. J. Urol. 2010, 184, 2158–2164. [Google Scholar] [CrossRef]
- Simpson, C.D.; Mawji, I.A.; Anyiwe, K.; Williams, M.A.; Wang, X.; Venugopal, A.L.; Gronda, M.; Hurren, R.; Cheng, S.; Serra, S.; et al. Inhibition of the sodium potassium adenosine triphosphatase pump sensitizes cancer cells to anoikis and prevents distant tumor formation. Cancer Res. 2009, 69, 2739–2747. [Google Scholar] [CrossRef] [Green Version]
- Lin, Q.J.; Yang, F.; Jin, C.; Fu, D.L. Current status and progress of pancreatic cancer in China. World J. Gastroenterol. 2015, 21, 7988. [Google Scholar] [CrossRef]
- Silvestris, N.; Gnoni, A.; Elisabetta Brunetti, A.; Vincenti, L.; Santini, D.; Tonini, G.; Merchionne, F.; Maiello, E.; Lorusso, V.; Nardulli, P.; et al. Target therapies in pancreatic carcinoma. Curr. Med. Chem. 2014, 21, 948–965. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xiao, X.Y.; Shou, Q.Y.; Yan, J.F.; Chen, L.; Fu, H.Y.; Wang, J.C. Bufalin inhibits pancreatic cancer by inducing cell cycle arrest via the c-Myc/NF-κB pathway. J. Ethnopharmacol. 2016, 193, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Upadhyay, G.; Srivastava, R.K.; Shankar, S. Recent advances in pancreatic cancer: Biology, treatment, and prevention. Biochim. Biophys. Acta. Rev. Cancer. 2015, 1856, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Newman, R.A.; Kondo, Y.; Yokoyama, T.; Dixon, S.; Cartwright, C.; Chan, D.; Johansen, M.; Yang, P. Autophagic cell death of human pancreatic tumor cells mediated by oleandrin, a lipid-soluble cardiac glycoside. Integr. Cancer 2007, 6, 354–364. [Google Scholar] [CrossRef]
- Perne, A.; Muellner, M.K.; Steinrueck, M.; Craig-Mueller, N.; Mayerhofer, J.; Schwarzinger, I.; Sloane, M.; Uras, I.Z.; Hoermann, G.; Nijman, S.M.; et al. Cardiac glycosides induce cell death in human cells by inhibiting general protein synthesis. PLoS ONE 2009, 4, e8292. [Google Scholar] [CrossRef] [PubMed]
- Nesher, M.; Shpolansky, U.; Rosen, H.; Lichtstein, D. The digitalis-like steroid hormones: New mechanisms of action and biological significance. Life Sci. 2007, 80, 2093–2107. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.Q.; Contreras, R.G.; Wang, R.; Fernandez, S.V.; Shoshani, L.; Russo, I.H.; Cereijido, M.; Russo, J. Sodium/potasium ATPase (Na+, K+-ATPase) and ouabain/related cardiac glycosides: A new paradigm for development of anti-breast cancer drugs? Reast Cancer Res. Treat. 2006, 96, 1–15. [Google Scholar] [CrossRef]
- Kulikov, A.; Eva, A.; Kirch, U.; Boldyrev, A.; Scheiner-Bobis, G. Ouabain activates signaling pathways associated with cell death in human neuroblastoma. Biochim. Biophys. Acta. Biomembr. 2007, 1768, 1691–1702. [Google Scholar] [CrossRef] [Green Version]
- López-Lázaro, M.; Pastor, N.; Azrak, S.S.; Ayuso, M.J.; Austin, C.A.; Cortés, F. Digitoxin inhibits the growth of cancer cell lines at concentrations commonly found in cardiac patients. J. Nat. Prod. 2005, 68, 1642–1645. [Google Scholar] [CrossRef] [PubMed]
- López-Lázaro, M. Digitoxin as an anticancer agent with selectivity for cancer cells: Possible mechanisms involved. Expert Opin. 2007, 11, 1043–1053. [Google Scholar] [CrossRef]
- Factor, P.; Senne, C.; Dumasius, V.; Ridge, K.; Ari Jaffe, H.; Uhal, B.; Gao, Z.; Iasha Sznajder, J. Overexpression of the Na+, K+-ATPase α1 subunit increases Na+, K+-ATPase function in A549 cells. Am. J. Respir. Cell Mol. Biol. 1998, 18, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Iyer, A.K.V.; Zhou, M.; Azad, N.; Elbaz, H.; Wang, L.; Rogalsky, D.K.; Rojanasakul, Y.; O’Doherty, G.A.; Langenhan, J.M. A direct comparison of the anticancer activities of digitoxin MeON-neoglycosides and O-glycosides. Acs Med. Chem. Lett. 2010, 1, 326–330. [Google Scholar] [CrossRef]
- Bielawski, K.; Winnicka, K.; Bielawska, A. Inhibition of DNA topoisomerases I and II, and growth inhibition of breast cancer MCF-7 cells by ouabain, digoxin and proscillaridin A. Biol. Pharm. Bull. 2006, 29, 1493–1497. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zheng, M.; Li, Z.; Li, R.; Jia, L.; Xiong, X.; Southall, N.; Wang, S.; Xia, M.; Austin, C.P.; et al. Cardiac glycosides inhibit p53 synthesis by a mechanism relieved by Src or MAPK inhibition. Cancer Res. 2009, 69, 6556–6564. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.Y.; Chang, H.H.; Lai, Y.H.; Lin, C.H.; Chen, M.H.; Chang, G.C.; Tsai, M.F.; Chen, J.J. Digoxin suppresses tumor malignancy through inhibiting multiple Src-related signaling pathways in non-small cell lung cancer. PLoS ONE 2015, 10, e0123305. [Google Scholar] [CrossRef]
- Yang, X.S.; Xu, Z.W.; Yi, T.L.; Xu, R.C.; Li, J.; Zhang, W.B.; Zhang, S.; Sun, H.T.; Yu, Z.Q.; Xu, H.X.; et al. Ouabain suppresses the growth and migration abilities of glioma U-87MG cells through inhibiting the Akt/mTOR signaling pathway and downregulating the expression of HIF-1α. Mol. Med. Rep. 2018, 17, 5595–5600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trenti, A.; Grumati, P.; Cusinato, F.; Orso, G.; Bonaldo, P.; Trevisi, L. Cardiac glycoside ouabain induces autophagic cell death in non-small cell lung cancer cells via a JNK-dependent decrease of Bcl-2. Biochem. Pharm. 2014, 89, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhu, B.; Liu, X.; Yu, H.; Yong, L.; Liu, X.; Shao, J.; Liu, Z. Inhibition of oleandrin on the proliferation and invasion of osteosarcoma cells in vitro by suppressing Wnt/β-catenin signaling pathway. J. Exp. Clin. Cancer Res. 2015, 34, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sreenivasan, Y.; Sarkar, A.; Manna, S.K. Oleandrin suppresses activation of nuclear transcription factor-κB and activator protein-1 and potentiates apoptosis induced by ceramide. Biochem. Pharm. 2003, 66, 2223–2239. [Google Scholar] [CrossRef]
- Afaq, F.; Saleem, M.; Aziz, M.H.; Mukhtar, H. Inhibition of 12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion markers in CD-1 mouse skin by oleandrin. Toxicol. Appl. Pharm. 2004, 195, 361–369. [Google Scholar] [CrossRef]
- Hejazi, R.F.; Husain, T.; Khan, F.I. Landfarming operation of oily sludge in arid region—human health risk assessment. J. Hazard. Mater. 2003, 99, 287–302. [Google Scholar] [CrossRef]
- He, Y.; Khan, M.; Yang, J.; Yao, M.; Yu, S.; Gao, H. Proscillaridin A induces apoptosis, inhibits STAT3 activation and augments doxorubicin toxicity in prostate cancer cells. Int. J. Med. Sci. 2018, 15, 832. [Google Scholar] [CrossRef] [Green Version]
- Da Costa, E.M.; Armaos, G.; McInnes, G.; Beaudry, A.; Moquin-Beaudry, G.; Bertrand-Lehouillier, V.; Caron, M.; Richer, C.; St-Onge, P.; Johnson, J.R.; et al. Heart failure drug proscillaridin A targets MYC overexpressing leukemia through global loss of lysine acetylation. J. Exp. Clin. Cancer Res. 2019, 38, 251. [Google Scholar] [CrossRef]
- Li, R.Z.; Fan, X.X.; Duan, F.G.; Jiang, Z.B.; Pan, H.D.; Luo, L.X.; Zhou, Y.L.; Li, Y.; Yao, Y.J.; Yao, X.J.; et al. Proscillaridin A induces apoptosis and suppresses non-small-cell lung cancer tumor growth via calcium-induced DR4 upregulation. Cell Death Dis. 2018, 9, 1–14. [Google Scholar] [CrossRef]
- Fang, S.; Tao, H.; Xia, K.; Guo, W. Proscillaridin A induces apoptosis and inhibits the metastasis of osteosarcoma in vitro and in vivo. Biochem. Biophys. Res. Commun. 2020, 521, 880–886. [Google Scholar] [CrossRef]
- Yang, S.Y.; Kim, N.H.; Cho, Y.S.; Lee, H.; Kwon, H.J. Convallatoxin, a dual inducer of autophagy and apoptosis, inhibits angiogenesis in vitro and in vivo. PLoS ONE 2014, 9, e91094. [Google Scholar] [CrossRef]
- Mijatovic, T.; De Beeck, A.O.; Van Quaquebeke, E.; Dewelle, J.; Darro, F.; De Launoit, Y.; Kiss, R. The cardenolide UNBS1450 is able to deactivate nuclear factor κB–mediated cytoprotective effects in human non–small cell lung cancer cells. Mol. Cancer 2006, 5, 391–399. [Google Scholar] [CrossRef] [Green Version]
- Mijatovic, T.; Mathieu, V.; Gaussin, J.F.; De Nève, N.; Ribaucour, F.; Van Quaquebeke, E.; Dumont, P.; Darro, F.; Kis, R. Cardenolide-induced lysosomal membrane permeabilization demonstrates therapeutic benefits in experimental human non-small cell lung cancers. Neoplasia 2006, 8, 402–412. [Google Scholar] [CrossRef]
- Durmaz, I.; Guven, E.B.; Ersahin, T.; Ozturk, M.; Calis, I.; Cetin-Atalay, R. Liver cancer cells are sensitive to Lanatoside C induced cell death independent of their PTEN status. Phytomedicine 2016, 23, 42–51. [Google Scholar] [CrossRef]
- Hu, Y.; Yu, K.; Wang, G.; Zhang, D.; Shi, C.; Ding, Y.; Hong, D.; Zhang, D.; He, H.; Sun, L.; et al. Lanatoside C inhibits cell proliferation and induces apoptosis through attenuating Wnt/β-catenin/c-Myc signaling pathway in human gastric cancer cell. Biochem Pharm. 2018, 150, 280–292. [Google Scholar] [CrossRef]
- Hashimoto, S.; Jing, Y.; Kawazoe, N.; Masuda, Y.; Nakajo, S.; Yoshida, T.; Kuroiwa, Y.; Nakaya, K. Bufalin reduces the level of topoisomerase II in human leukemia cells and affects the cytotoxicity of anticancer drugs. Leuk. Res. 1997, 21, 875–883. [Google Scholar] [CrossRef]
- Kawazoe, N.; Watabe, M.; Masuda, Y.; Nakajo, S.; Nakaya, K. Tiam1 is involved in the regulation of bufalin-induced apoptosis in human leukemia cells. Oncogene 1999, 18, 2413–2421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Sha, J.; Zhou, Y.; Han, K.; Wang, Y.; Su, Y.; Yin, X.; Hu, H.; Yao, Y. Bufalin inhibits proliferation and induces apoptosis in osteosarcoma cells by downregulating MicroRNA-221. Evid. Based Complementary Altern. Med. 2016, 1–10. [Google Scholar] [CrossRef]
- Liu, X.; Shi, Y.; Deng, Y.; Dai, R. Using molecular docking analysis to discovery dregea sinensis hemsl. potential mechanism of anticancer, antidepression, and immunoregulation. Pharm. Mag. 2017, 13, 358. [Google Scholar]
- Zhao, L.; Liu, S.; Che, X.; Hou, K.; Ma, Y.; Li, C.; Wen, T.; Fan, Y.; Hu, X.; Liu, Y.; et al. Bufalin inhibits TGF-β-induced epithelial-to-mesenchymal transition and migration in human lung cancer A549 cells by downregulating TGF-β receptors. Int. J. Mol. Med. 2015, 36, 645–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Chen, C.; Wang, S.; Zhang, Y.; Yin, P.; Gao, Z.; Xu, J.; Feng, D.; Zuo, Q.; Zhao, R.; et al. Bufalin inhibits HCT116 colon cancer cells and its orthotopic xenograft tumor in mice model through genes related to apoptotic and PTEN/AKT pathways. Gastroenterol Res. Pr. 2015, 457193. [Google Scholar] [CrossRef] [Green Version]
- Hossan, M.S.; Chan, Z.Y.; Collins, H.M.; Shipton, F.N.; Butler, M.S.; Rahmatullah, M.; Lee, J.B.; Gershkovich, P.; Kagan, L.; Khoo, T.J.; et al. Cardiac glycoside cerberin exerts anticancer activity through PI3K/AKT/mTOR signal transduction inhibition. Cancer Lett. 2019, 453, 57–73. [Google Scholar] [CrossRef] [PubMed]
- Schneider, N.F.; Geller, F.C.; Persich, L.; Marostica, L.L.; Pádua, R.M.; Kreis, W.; Braga, F.C.; Simões, C.M. Inhibition of cell proliferation, invasion and migration by the cardenolides digitoxigenin monodigitoxoside and convallatoxin in human lung cancer cell line. Nat. Prod. Res. 2016, 30, 1327–1331. [Google Scholar] [CrossRef] [PubMed]
- Jesse, P.; Mottke, G.; Eberle, J.; Seifert, G.; Henze, G.; Prokop, A. Apoptosis-inducing activity of Helleborus niger in ALL and AML. Pediatr Blood Cancer 2009, 52, 464–469. [Google Scholar] [CrossRef]
- Lu, Z.; Song, Q.; Yang, J.; Zhao, X.; Zhang, X.; Yang, P.; Kang, J. Comparative proteomic analysis of anti-cancer mechanism by periplocin treatment in lung cancer cells. Cell Physiol Biochem. 2014, 33, 859–868. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.J.; Zhou, Y.; Song, Q.; Qin, Z.; Zhang, H.; Zhou, Y.J.; Gou, L.T.; Yang, J.L.; Luo, F. Periplocin inhibits growth of lung cancer in vitro and in vivo by blocking AKT/ERK signaling pathways. Cell Physiol Biochem. 2010, 26, 609–618. [Google Scholar] [CrossRef]
- Park, H.Y.; Toume, K.; Arai, M.A.; Sadhu, S.K.; Ahmed, F.; Ishibashi, M. Calotropin: A cardenolide from Calotropis gigantea that inhibits Wnt signaling by increasing casein kinase 1α in colon cancer cells. Chembiochem 2014, 15, 872–878. [Google Scholar] [CrossRef]
- Kepp, O.; Menger, L.; Vacchelli, E.; Adjemian, S.; Martins, I.; Ma, Y.; Sukkurwala, A.Q.; Michaud, M.; Galluzzi, L.; Zitvogel, L.; et al. Anticancer activity of cardiac glycosides: At the frontier between cell-autonomous and immunological effects. Oncoimmunology 2012, 1, 1640–1642. [Google Scholar] [CrossRef] [Green Version]
- Menger, L.; Vacchelli, E.; Adjemian, S.; Martins, I.; Ma, Y.; Shen, S.; Yamazaki, T.; Sukkurwala, A.Q.; Michaud, M.; Mignot, G.; et al. Cardiac glycosides exert anticancer effects by inducing immunogenic cell death. Sci. Transl. Med. 2012, 4, ra99–ra143. [Google Scholar] [CrossRef] [Green Version]
- Scheiner-Bobis, G.; Schoner, W. A fresh facet for ouabain action. Nat. Med. 2001, 7, 1288–1289. [Google Scholar] [CrossRef] [PubMed]
- Durlacher, C.T.; Chow, K.; Chen, X.W.; He, Z.X.; Zhang, X.; Yang, T.; Zhou, S.F. Targeting Na+/K+-translocating adenosine triphosphatase in cancer treatment. Clin Exp Pharm. 2015, 42, 427–443. [Google Scholar] [CrossRef] [PubMed]
- Selvakumar, P.; Owens, T.A.; David, J.M.; Petrelli, N.J.; Christensen, B.C.; Lakshmikuttyamma, A.; Rajasekaran, A.K. Epigenetic silencing of Na, K-atpase β1 subunit gene atp1b1 by methylation in clear cell renal cell carcinoma. Epigenetics 2014, 9, 579–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamouille, S.; Xu, J.; Derynck, R. Molecular mechanisms of epithelial–mesenchymal transition. Nat. Rev. Mol. Cell Biol. 2014, 15, 178. [Google Scholar] [CrossRef] [Green Version]
- De Souza, W.F.; Barbosa, L.A.; Liu, L.; de Araujo, W.M.; de-Freitas-Junior, J.C.M.; Fortunato-Miranda, N.; Fontes, C.F.L.; Morgado-Díaz, J.A. Ouabain-induced alterations of the apical junctional complex involve α1 and β1 Na, K-ATPase downregulation and ERK1/2 activation independent of caveolae in colorectal cancer cells. J. Membr. Biol. 2014, 247, 23–33. [Google Scholar] [CrossRef]
- Espineda, C.E.; Chang, J.H.; Twiss, J.; Rajasekaran, S.A.; Rajasekaran, A.K. Repression of Na, K-ATPase β1-subunit by the transcription factor snail in carcinoma. Mol. Biol. Cell 2001, 15, 1364–1373. [Google Scholar] [CrossRef] [Green Version]
- Wagner, E.F.; Nebreda, Á.R. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat. Rev. Cancer. 2009, 9, 537–549. [Google Scholar] [CrossRef]
- Davis, R.J. Signal transduction by the JNK group of MAP kinases. In Inflammatory Processes; Birkhäuser: Basel, Switzerland, 2000; pp. 13–21. [Google Scholar]
- Ye, Q.; Lai, F.; Banerjee, M.; Duan, Q.; Li, Z.; Si, S.; Xie, Z. Expression of mutant α1 Na/K-ATPase defective in conformational transition attenuates Src-mediated signal transduction. J. Biol. 2013, 288, 5803–5814. [Google Scholar] [CrossRef] [Green Version]
- Weigand, K.M.; Swarts, H.G.; Fedosova, N.U.; Russel, F.G.; Koenderink, J.B. Na, K-ATPase activity modulates Src activation: A role for ATP/ADP ratio. Biochim. Biophys. Acta. Biomembr. 2012, 1818, 1269–1273. [Google Scholar] [CrossRef] [Green Version]
- Schlessinger, J. New roles for Src kinases in control of cell survival and angiogenesis. Cell 2000, 100, 293–296. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Wu, R.C.; O’malley, B.W. Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family. Nat. Rev. Cancer. 2009, 9, 615–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, J.; Ingbar, D.H. Src kinase integrates PI3K/Akt and MAPK/ERK1/2 pathways in T3-induced Na-K-ATPase activity in adult rat alveolar cells. Am. J. Physiol. Lung Cell Mol. Physiol. 2011, 301, 765–L771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barwe, S.P.; Anilkumar, G.; Moon, S.Y.; Zheng, Y.; Whitelegge, J.P.; Rajasekaran, S.A.; Rajasekaran, A.K. Novel role for Na, K-ATPase in phosphatidylinositol 3-kinase signaling and suppression of cell motility. Mol. Biol. Cell. 2005, 16, 1082–1094. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Song, D.; Xu, J.; Li, B.; Hertz, L.; Peng, L. Ammonia-induced Na, K-ATPase/ouabain-mediated EGF receptor transactivation, MAPK/ERK and PI3K/AKT signaling and ROS formation cause astrocyte swelling. Neurochem. Int. 2013, 63, 610–625. [Google Scholar] [CrossRef]
- Laplante, M.; Sabatini, D.M. mTOR signaling in growth control and disease. Cell 2012, 149, 274–293. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Qiu, Q.; Shen, J.J.; Li, D.D.; Jiang, X.J.; Si, S.Y.; Shao, R.G.; Wang, Z. Cardiac glycosides induce autophagy in human non-small cell lung cancer cells through regulation of dual signaling pathways. Int. J. Biochem. Cell Biol. 2012, 44, 1813–1824. [Google Scholar] [CrossRef]
- Liu, Y.; Shoji-Kawata, S.; Sumpter, R.M.; Wei, Y.; Ginet, V.; Zhang, L.; Posner, B.; Tran, K.A.; Green, D.R.; Xavier, R.J.; et al. Autosis is a Na+, K+-ATPase–regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia–ischemia. Proc. Natl. Acad. Sci. USA 2013, 110, 20364–20371. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Song, M.; Mohamad, O.; Yu, S.P. Inhibition of Na+/K+-ATPase induces hybrid cell death and enhanced sensitivity to chemotherapy in human glioblastoma cells. BMC cancer 2014, 14, 716. [Google Scholar] [CrossRef] [Green Version]
- Leu, W.J.; Chang, H.S.; Chan, S.H.; Hsu, J.L.; Yu, C.C.; Hsu, L.C.; Chen, I.S.; Guh, J.H. Reevesioside A, a cardenolide glycoside, induces anticancer activity against human hormone-refractory prostate cancers through suppression of c-myc expression and induction of G1 arrest of the cell cycle. PLoS ONE 2014, 9, e87323. [Google Scholar] [CrossRef]
- Mijatovic, T.; Kiss, R. Cardiotonic steroids-mediated Na+/K+-ATPase targeting could circumvent various chemoresistance pathways. Planta Med. 2013, 79, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Shiratori, O. Growth inhibitory effect of cardiac glycosides and aglycones on neoplastic cells. JPN J. Cancer Res. 1967, 58, 521–528. [Google Scholar]
- Menger, L.; Vacchelli, E.; Kepp, O.; Eggermont, A.; Tartour, E.; Zitvogel, L.; Kroemer, G.; Galluzzi, L. Trial watch: Cardiac glycosides and cancer therapy. Oncoimmunology 2013, 2, e23082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mekhail, T.; Kaur, H.; Ganapathi, R.; Budd, G.T.; Elson, P.; Bukowski, R.M. Phase 1 trial of Anvirzel™ in patients with refractory solid tumors. Invest. New Drug. 2006, 24, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Henary, H.; Kurzrock, R.; Falchook, G.S.; Naing, A.; Fu, S.; Moulder, S.; Wheler, J.; Tsimberdou, A.; Durand, J.B.; Yang, P.; et al. Final Results of a First-in-Human Phase I Trial of PBI-05204, an Inhibitor of Akt, FGF-2, NF-Kb and p70S6K in Advanced Cancer Patients. Breast 2011, 5, 10–19. [Google Scholar] [CrossRef]
- Hong, D.S.; Henary, H.; Falchook, G.S.; Naing, A.; Fu, S.; Moulder, S.; Wheler, J.J.; Tsimberidou, A.; Durand, J.B.; Khan, R.; et al. First-in-human study of pbi-05204, an oleander-derived inhibitor of akt, fgf-2, nf-κΒ and p70s6k, in patients with advanced solid tumors. Invest. New Drug. 2014, 32, 1204–1212. [Google Scholar] [CrossRef] [PubMed]
- Schneider, N.F.Z.; Cerella, C.; Simões, C.M.O.; Diederich, M. Anticancer and immunogenic properties of cardiac glycosides. Molecules 2017, 22, 1932. [Google Scholar] [CrossRef] [Green Version]
- Van Quaquebeke, E.; Simon, G.; André, A.; Dewelle, J.; Yazidi, M.E.; Bruyneel, F.; Tuti, J.; Nacoulma, O.; Guissou, P.; Decaestecker, C.; et al. Identification of a Novel Cardenolide (2 “-Oxovoruscharin) from Calotropis p rocera and the Hemisynthesis of Novel Derivatives Displaying Potent in Vitro Antitumor Activities and High in Vivo Tolerance: Structure—Activity Relationship Analyses. J. Med. Chem. 2005, 48, 849–856. [Google Scholar] [CrossRef]
- Mijatovic, T.; Lefranc, F.; Van Quaquebeke, E.; Van Vynckt, F.; Darro, F.; Kiss, R. UNBS1450: A new hemi-synthetic cardenolide with promising anti-cancer activity. Drug Dev. Res. 2007, 68, 164–173. [Google Scholar] [CrossRef]
- Mijatovic, T.; De Neve, N.; Gailly, P.; Mathieu, V.; Haibe-Kains, B.; Bontempi, G.; Lapeira, J.; Decaestecker, C.; Facchini, V.; Kiss, R. Nucleolus and c-Myc: Potential targets of cardenolide-mediated antitumor activity. Mol. Cancer 2008, 7, 1285–1296. [Google Scholar] [CrossRef] [Green Version]
- Lefranc, F.; Mijatovic, T.; Kondo, Y.; Sauvage, S.; Roland, I.; Debeir, O.; Krstic, D.; Vasic, V.; Gailly, P.; Kondo, S.; et al. Targeting the α 1 subunit of the sodium pump to combat glioblastoma cells. Neurosurgery 2008, 62, 211–222. [Google Scholar] [CrossRef]
- Juncker, T.; Cerella, C.; Teiten, M.H.; Morceau, F.; Schumacher, M.; Ghelfi, J.; Gaascht, F.; Schnekenburger, M.; Henry, E.; Dicato, M.; et al. UNBS1450, a steroid cardiac glycoside inducing apoptotic cell death in human leukemia cells. Biochem Pharm. 2011, 81, 13–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orrenius, S.; Zhivotovsky, B.; Nicotera, P. Regulation of cell death: The calcium–apoptosis link. Nat. Rev. Mol. Cell Biol. 2003, 4, 552–565. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, A.; Cai, H.; Forman, M.; He, R.; Shamay, M.; Arav-Boger, R. Human cytomegalovirus inhibition by cardiac glycosides: Evidence for involvement of the HERG gene. Antimicrob. Agents Chemother. 2012, 56, 4891–4899. [Google Scholar] [CrossRef] [Green Version]
- Bertol, J.W.; Rigotto, C.; de Pádua, R.M.; Kreis, W.; Barardi, C.R.M.; Braga, F.C.; Simões, C.M.O. Antiherpes activity of glucoevatromonoside, a cardenolide isolated from a Brazilian cultivar of Digitalis Lanata. Antivir Res. 2011, 92, 73–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Z. Molecular mechanisms of Na/K-ATPase-mediated signal transduction. Ann. N. Y. Acad. Sci. 2003, 986, 497–503. [Google Scholar] [CrossRef]
- Cai, H.; Wang, H.Y.L.; Venkatadri, R.; Fu, D.X.; Forman, M.; Bajaj, S.O.; Li, H.; O’Doherty, G.A.; Arav-Boger, R. Digitoxin analogues with improved anticytomegalovirus activity. ACS Med. Chem. Lett. 2011, 5, 395–399. [Google Scholar] [CrossRef]
- Dodson, A.W.; Taylor, T.J.; Knipe, D.M.; Coen, D.M. Inhibitors of the sodium potassium ATPase that impair herpes simplex virus replication identified via a chemical screening approach. Virology 2007, 366, 340–348. [Google Scholar] [CrossRef] [Green Version]
- Cohen, T.; Williams, J.D.; Opperman, T.J.; Sanchez, R.; Lurain, N.S.; Tortorella, D. Convallatoxin-induced reduction of methionine import effectively inhibits human cytomegalovirus infection and replication. J. Virol. 2016, 90, 10715–10727. [Google Scholar] [CrossRef] [Green Version]
- Mal’dov, D.G.; Gmyl, L.V.; Karganova, G.G. Change in Na+, K+-ATPase activity during reproduction of the tick-borne encephalitis virus in SPEV cell culture. Vopr. Virusol. 1997, 42, 23–26. [Google Scholar]
- Laird, G.M.; Eisele, E.E.; Rabi, S.A.; Nikolaeva, D.; Siliciano, R.F. A novel cell-based high-throughput screen for inhibitors of HIV-1 gene expression and budding identifies the cardiac glycosides. J. Antimicrob. 2014, 69, 988–994. [Google Scholar] [CrossRef] [Green Version]
- Wong, R.W.; Lingwood, C.A.; Ostrowski, M.A.; Cabral, T.; Cochrane, A. Cardiac glycoside/aglycones inhibit HIV-1 gene expression by a mechanism requiring MEK1/2-ERK1/2 signaling. Sci. Rep. 2018, 8, 1–17. [Google Scholar]
- Wong, R.W.; Balachandran, A.; Ostrowski, M.A.; Cochrane, A. Digoxin suppresses HIV-1 replication by altering viral RNA processing. PLoS Pathog. 2013, 9, e1003241. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, V.K.; Duan, B.; Reid, S.P. Chikungunya virus: Pathophysiology, mechanism, and modeling. Viruses 2017, 9, 368. [Google Scholar] [CrossRef] [Green Version]
- Burkard, C.; Verheije, M.H.; Haagmans, B.L.; van Kuppeveld, F.J.; Rottier, P.J.; Bosch, B.J.; de Haan, C.A. ATP1A1-mediated Src signaling inhibits coronavirus entry into host cells. J. Virol. 2015, 89, 4434–4448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Dorival, I.; Wu, W.; Dowall, S.; Armstrong, S.; Touzelet, O.; Wastling, J.; Barr, J.N.; Matthews, D.; Carroll, M.; Hewson, R.; et al. Elucidation of the Ebola virus VP24 cellular interactome and disruption of virus biology through targeted inhibition of host-cell protein function. J. Proteome Res. 2014, 13, 5120–5135. [Google Scholar] [CrossRef] [PubMed]
- Dowall, S.D.; Bewley, K.; Watson, R.J.; Vasan, S.S.; Ghosh, C.; Konai, M.M.; Gausdal, G.; Lorens, J.B.; Long, J.; Barclay, W.; et al. Antiviral screening of multiple compounds against ebola virus. Viruses 2016, 8, 277. [Google Scholar] [CrossRef]
- Amarelle, L.; Katzen, J.; Shigemura, M.; Welch, L.C.; Cajigas, H.; Peteranderl, C.; Celli, D.; Herold, S.; Lecuona, E.; Sznajder, J.I. Cardiac glycosides decrease influenza virus replication by inhibiting cell protein translational machinery. Am. J. Physiol. Lung Cell Mol. Physiol. 2019, 316, L1094–L1106. [Google Scholar] [CrossRef]
CGs Name | Mechanism of Action | Reference |
---|---|---|
Digitoxin | Inhibit general protein synthesis | [62] |
Loss of mitochondrial membrane potential | [51] | |
Increase Ca2+ uptake | [63] | |
Estrogenic receptor antagonist | [64] | |
ROS production | [48] | |
MAPK pathway mediated apoptosis | [65] | |
Topoisomerase I inhibition | [66] | |
Decrease in anti-apoptotic proteins Bcl-xL and Bcl-2 | [67] | |
Increased cytochrome c release and Caspase activation | [68] | |
Caspase 9 mediated apoptosis | [69] | |
Inhibition of DNA topoisomerases I and II | [70] | |
Inhibits p53 synthesis | [71] | |
Digoxin | Inhibition of Src signaling pathways | [72] |
Inhibition HIF-1alpha synthesis | [40] | |
Inhibition of androgen-dependent/independent mechanism | [50] | |
Ouabain | Inhibits Akt/mTOR signaling pathway | [73] |
Inhibits HIF-1alpha synthesis | [73] | |
Androgen-independent apoptosis | [51] | |
Autophagic cell death via a JNK-dependent decrease of Bcl-2 | [74] | |
Oleandrin | Inhibition of Wnt/β-catenin signaling | [75] |
Reduction of NF-kB and JNK | [76] | |
AP-1 activation | [54] | |
Inhibition of 12-O-tetradecanoylphorbol-13-acetate | [77] | |
Caspase-3 dependent apoptosis | [78] | |
Induces autophagic cell death | [61] | |
Proscillaridin A | Inhibition of STAT3 activation | [79] |
MYC degradation | [80] | |
Apoptosis through calcium-induced DR4 upregulation | [81] | |
Cell death through GSK3β activation and alteration of microtubule dynamics | [41] | |
Downregulating the expressions of Bcl-xl and MMP2 | [82] | |
Convallatoxin | (mTOR)/p70S6 K signal pathway inhibition | [83] |
p53-independent apoptosis | [30] | |
Cell cycle arrest at G0/G1 phase | [8] | |
UNBS1450 | Inhibition of heat shock protein (Hsp70) | [84] |
Augmented permeabilization of lysosomal membrane | [85] | |
Blockade of TNF-α/NF-κB signaling pathway | [84] | |
Lanatoside C | PTEN dependent apoptosis | [86] |
Apoptosis via PKCδ activation | [25] | |
Attenuation of Wnt/β-catenin/c-Myc signaling pathway | [87] | |
Cell cycle arrest at G2/M phase | [13] | |
Bufalin | Inhibits topoisomerase II | [88] |
Tiaml mediated apoptosis through activation of Rac1, PAK and JNK pathway. | [89] | |
mitochondria-dependent apoptosis through downregulating the miR-221 expression | [90] | |
Apoptosis through ROS-dependent RIP1/RIP3/PARP-1 pathways | [81] | |
Cell death by upregulation of MiR-203 | [91] | |
Inhibition of Wnt/ASCL2 expression | [36] | |
Inhibits human telomerase reverse transcriptase (hTERT) | [90] | |
Apoptosis through downregulation of TGF-β receptors | [92] | |
Apoptosis through PTEN/AKT pathways | [93] | |
Glucoevatromonoside | p53 dependent and independent G2/M arrest | [14] |
Cerberin | Inhibition of PI3K/AKT/mTOR signaling | [94] |
Digitoxigenin | Inhibition of MMP-2, MMP-9 and p-FAK | [95] |
Helleborein | Mitochondrial pathway and caspase-3 dependent apoptosis | [96] |
Strophanthidin | Cell death by attenuation of MAPK, PI3K/AKT/mTOR and Wnt/β-Catenin signaling | [12] |
Periplocin | Apoptosis by downregulating ATP5A1, EIF5A, ALDH1 and PSMB6 | [97] |
Blockade of AKT/ERK signaling | [98] | |
Peruvoside | Cell cycle arrest at G0/G1 phase | [8] |
Apoptosis via MAPK Wnt/β-catenin and PI3K/AKT/mTOR signaling pathways | [11] | |
Caspase and PARP cleavage | [44] | |
Calotropin | Apoptosis through inhibiting Wnt signaling by increasing casein kinase 1α | [99] |
Cymarin | Inhibition HIF-1α synthesis | [40] |
Virus | Cardiac Glycosides | Mechanism of Action Proposed | Reference |
---|---|---|---|
Human Cytomegalovirus | digitoxin | Inhibition of NF-κB in CG-treated cells and by modulating human cellular targets associated with hERG | [135] |
Human Cytomegalovirus | ouabain | Inhibits viral protein translation | [137] |
Human Cytomegalovirus | digoxin | Inhibits viral protein translation | [3] |
Human Cytomegalovirus | convallatoxin | Inhibits viral protein translation | [138] |
Herpes Simplex Virus | ouabain | Reduces viral protein synthesis | [139] |
Herpes Simplex Virus | digoxin | Inhibition of viral gene expression | [140] |
Herpes Simplex Virus | digitoxin | Inhibition of viral gene expression | [3] |
Herpes Simplex Virus | g-strophanthin | Inhibition of viral gene expression | [3] |
Tick-Borne Encephalitis (TBE) Virus | ouabain | Inhibition of to suppress TBE | [141] |
Human Cytomegalovirus | digitoxin | Inhibition of NF-κB in CG-treated cells and by modulating human cellular targets associated with hERG | [135] |
Human Cytomegalovirus | ouabain | Inhibits viral protein translation | [137] |
Human Cytomegalovirus | digoxin | Inhibits viral protein translation | [3] |
Human Cytomegalovirus | convallatoxin | Inhibits viral protein translation | [3,138] |
Human Cytomegalovirus | digitoxin | Inhibition of NF-κB in CG-treated cells and by modulating human cellular targets associated with hERG | [135] |
HIV | convallatoxin, periplocymarin, digitoxin, digoxin, strophanthidin, gitoxigenin diacetate digoxigenin, cymarin, sarmentogenin gitoxin gitoxigenin, strophanthidinic acid lactone acetate, strophanthidin semicarbazide | Inhibition of HIV-1 gene expressionInhibits HIV-1 gene expression by attenuating MEK1/2-ERK1/2 signaling | [142,143] |
HIV | digitoxin, lanatoside C, digoxin, ouabain | Alteration of viral pre-RNA splicing | [144] |
Chikungunya Virus | digoxin | Inhibition of Src pathway | [145] |
Corona Virus | ouabain | Inhibits viral entry through ATP1A1-mediated Src signaling | [140,146] |
Ebola Virus | ouabain | Inhibits EBOV replication by around half and the interruption of cellular interacting proteins | [147,148] |
Influenza Virus | ouabain, digoxin, lanatoside C | Inhibition of viral proteintranslation | [3,149] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reddy, D.; Kumavath, R.; Barh, D.; Azevedo, V.; Ghosh, P. Anticancer and Antiviral Properties of Cardiac Glycosides: A Review to Explore the Mechanism of Actions. Molecules 2020, 25, 3596. https://doi.org/10.3390/molecules25163596
Reddy D, Kumavath R, Barh D, Azevedo V, Ghosh P. Anticancer and Antiviral Properties of Cardiac Glycosides: A Review to Explore the Mechanism of Actions. Molecules. 2020; 25(16):3596. https://doi.org/10.3390/molecules25163596
Chicago/Turabian StyleReddy, Dhanasekhar, Ranjith Kumavath, Debmalya Barh, Vasco Azevedo, and Preetam Ghosh. 2020. "Anticancer and Antiviral Properties of Cardiac Glycosides: A Review to Explore the Mechanism of Actions" Molecules 25, no. 16: 3596. https://doi.org/10.3390/molecules25163596
APA StyleReddy, D., Kumavath, R., Barh, D., Azevedo, V., & Ghosh, P. (2020). Anticancer and Antiviral Properties of Cardiac Glycosides: A Review to Explore the Mechanism of Actions. Molecules, 25(16), 3596. https://doi.org/10.3390/molecules25163596