Kinetics of the Lattice Response to Hydrogen Absorption in Thin Pd and CoPd Films
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
Author Contributions
Funding
Conflicts of Interest
References
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A Hydrogen Strategy for a Climate-Neutral Europe, (European Commission; Brussels, 8.7.2020). Available online: https://ec.europa.eu/energy/sites/ener/files/hydrogen_strategy.pdf (accessed on 30 July 2020).
- Gielen, D.; Taibi, E.; Miranda, R. Hydrogen: A Renewable Energy Perspective; International Renewable Energy Agency (IRENA): Abu Dhabi, UAE, 2019; ISBN 978-92-9260-151-5. [Google Scholar]
- Fukai, Y. The Metal-Hydrogen System: Basic Bulk Properties; Springer Series in Materials Science; Springer-Verlag: Berlin/Heidelberg, Germany, 2005; Volume 21. [Google Scholar]
- Gillan, M.J. Quantum simulation of hydrogen in metals. Phys. Rev. Lett. 1987, 58, 563. [Google Scholar] [CrossRef] [PubMed]
- Kimizuka, H.; Ogata, S.; Shiga, M. Mechanism of fast lattice diffusion of hydrogen in palladium: Interplay of quantum fluctuations and lattice strain. Phys. Rev. B 2018, 97, 014102. [Google Scholar] [CrossRef] [Green Version]
- Callori, S.J.; Rehm, C.; Causer, G.L.; Kostylev, M.; Klose, F. Hydrogen absorption in metal thin films and heterostructures investigated in situ with neutron and X-ray scattering. Metals 2016, 6, 125. [Google Scholar] [CrossRef] [Green Version]
- Kofu, M.; Yamamuro, O. Dynamics of atomic hydrogen in palladium probed by neutron spectroscopy. J. Phys. Soc. Jpn. 2020, 89, 051002. [Google Scholar] [CrossRef]
- Wipf, H. (Ed.) Hydrogen in Metals III: Properties and Applications; Springer: Berlin/Heidelberg, Germany, 1997; p. 51. [Google Scholar]
- Delmelle, R.; Proost, J. An in situ study of the hydriding kinetics of Pd thin films. Phys. Chem. Chem. Phys. 2011, 13, 11412–11421. [Google Scholar] [CrossRef]
- Delmelle, R.; Amin-Ahmadi, B.; Sinnaeve, M.; Idrissi, H.; Pardoen, T.; Schryvers, D.; Proost, J. Effect of structural defects on the hydriding kinetics of nanocrystalline Pd thin films. Int. J. Hydrog. Energy 2015, 40, 7335. [Google Scholar] [CrossRef]
- Ulvestad, A.; Welland, M.J.; Collins, S.S.E.; Harder, R.; Maxey, E.; Wingert, J.; Singer, A.; Hy, S.; Mulvaney, P.; Zapol, P.; et al. Avalanching strain dynamics during the hydriding phase transformation in individual palladium nanoparticles. Nat. Commun. 2015, 6, 10092. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.; Kostylev, M.; Ivanov, E. Metallic spintronic thin film as a hydrogen sensor. Appl. Phys. Lett. 2013, 102, 142405. [Google Scholar] [CrossRef] [Green Version]
- Gerber, A.; Kopnov, G.; Karpovski, M. Hall effect spintronics for gas detection. Appl. Phys. Lett. 2017, 111, 143505. [Google Scholar] [CrossRef] [Green Version]
- Das, S.S.; Kopnov, G.; Gerber, A.J. Detection of hydrogen by the extraordinary Hall effect in CoPd alloys. Appl. Phys. 2018, 124, 104502. [Google Scholar] [CrossRef] [Green Version]
- Flanagan, T.B.; Lewis, F.A. Hydrogen absorption by palladium in aqueous solution. Trans. Faraday Soc. 1959, 55, 1400. [Google Scholar] [CrossRef]
- Fletcher, R.; Ho, N.S.; Manchester, F.D. The residual resistivity and low temperature thermopower of palladium hydrogen alloys. J. Phys. C Solid State Phys. 1970, 3, S59. [Google Scholar] [CrossRef]
- Sakamoto, Y.; Takai, K.; Takashima, I.; Imada, M. Electrical resistance measurements as a function of composition of palladium-hydrogen (deuterium) systems by a gas phase method. J. Phys. Condens. Matter 1996, 8, 3399. [Google Scholar] [CrossRef]
- Geerken, B.M.; Griessen, R. Concentration and temperature dependence of the electrical resistivity of quenched PdHx. J. Phys. F: Met. Phys. 1983, 13, 963. [Google Scholar] [CrossRef]
- Baba, K.; Miyagawa, U.; Watanabe, K.; Sakamoto, Y.; Flanagan, T.B. Electrical resistivity changes due to interstitial hydrogen in palladium-rich substitutional alloys. J. Mater. Sci. 1990, 25, 3910. [Google Scholar] [CrossRef]
- Wagner, S.; Pundt, A. Electrical resistivity and hydrogen solubility of PdHc thin films. Acta Mater. 2010, 58, 1387–1394. [Google Scholar] [CrossRef]
- Wagner, S.; Kramer, T.; Uchida, H.; Dobron, P.; Cizek, J.; Pundt, A. Mechanical stress and stress release channels in 10–350 nm palladium hydrogen thin films with different micro-structures. Acta Mater. 2016, 114, 116–125. [Google Scholar] [CrossRef]
- Das, S.S.; Kopnov, G.; Gerber, A. Positive vs negative resistance response to hydrogenation in palladium and its alloys. AIP Adv. 2020, 10, 065129. [Google Scholar] [CrossRef]
- Wu, F.; Morris, J.E. The effects of hydrogen absorption on the electrical conduction in discontinuous palladium films. Thin Solid Films 1994, 246, 17–23. [Google Scholar]
- Barr, A. The effect of hydrogen absorption on the electrical conduction in discontinuous palladium films. Thin Solid Films 1977, 41, 217–226. [Google Scholar] [CrossRef]
- Xu, T.; Zach, M.P.; Xiao, Z.L.; Rosenmann, D.; Welp, U.; Kwok, W.K.; Crabtree, G.W. Self-assembled monolayer-enhanced hydrogen sensing with ultrathin palladium films. Appl. Phys. Lett. 2005, 86, 203104. [Google Scholar] [CrossRef] [Green Version]
- van Lith, J.; Lassesson, A.; Brown, S.A.; Schulze, M.; Partridge, J.G.; Ayesh, A. A hydrogen sensor based on tunneling between palladium clusters. Appl. Phys. Lett. 2007, 91, 181910. [Google Scholar] [CrossRef]
- Kajita, S.; Hasebe, Y.; Fukunaga, T.; Matsubara, E. Abnormal behavior of hydrogen response and hydrogen induced linear expansion coefficient of Pd-Cu-Si metallic glassy alloys for thin film hydrogen sensor. Mater. Trans. 2011, 52, 1148–1156. [Google Scholar] [CrossRef] [Green Version]
- Spasojević, M.; Maričić, A.; Zelenović, L.R.; Krstajić, N.; Spasojević, P. The kinetics of hydrogen absorption/desorption within nanostructured composite Ni79. 1Co18. 6Cu2. 3 alloy using resistometry. J. Alloys Compd. 2013, 551, 660–666. [Google Scholar] [CrossRef]
- Tripodi, P.; Di Gioacchino, D.; Vinko, J.D. Superconductivity in PdH: Phenomenological explanation. Physica C Supercond. 2004, 410, 350–352. [Google Scholar] [CrossRef]
- Lee, E.; Lee, J.M.; Koo, J.H.; Lee, W.; Lee, T. Hysteresis behavior of electrical resistance in Pd thin films during the process of absorption and desorption of hydrogen gas. Int. J. Hydrog. Energy 2010, 35, 6984–6991. [Google Scholar] [CrossRef]
- Lee, E.; Lee, J.M.; Lee, E.; Noh, J.S.; Joe, J.H.; Jung, B.; Lee, W. Hydrogen gas sensing performance of Pd–Ni alloy thin films. Thin Solid Films 2010, 519, 880–884. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. On the statistical theory of the crystallization of metals. Bull. Acad. Sci. URSS 1937, 3, 355. [Google Scholar]
- Avrami, M. Kinetics of phase change. I general theory. J. Chem. Phys. 1939, 7, 1103. [Google Scholar] [CrossRef]
- Avrami, M. Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J. Chem. Phys. 1940, 8, 212. [Google Scholar] [CrossRef]
- Avrami, M. Granulation, phase change, and microstructure kinetics of phase change. III. J. Chem. Phys. 1941, 9, 177. [Google Scholar] [CrossRef]
- Johnson, W.A. Reaction kinetics in processes of nucleation and growth. Am. Inst. Min. Metal. Petro. Eng. 1939, 135, 416–458. [Google Scholar]
- Mehl, R.F.; Cahn, R.W. Physical Metallurgy; Cahn, R.W., Haasen, P., Eds.; North-Holland Physics Publishing: Oxford, UK, 1983. [Google Scholar]
- Fanfoni, M.; Tomellini, M. The Johnson-Mehl-Avrami-Kohnogorov model: A brief review. Il Nuovo Cimento D 1998, 20, 1171–1182. [Google Scholar] [CrossRef]
- Fatuzzo, E. Theoretical considerations on the switching transient in ferroelectrics. Phys. Rev. 1962, 127, 1999. [Google Scholar] [CrossRef]
- Orihara, H.; Hashimoto, S.; Ishibashi, Y. A theory of DE hysteresis loop based on the Avrami model. J. Phys. Soc. Jpn. 1994, 63, 1031–1035. [Google Scholar] [CrossRef]
- Labrune, M.; Andrieu, S.; Rio, F.; Bernstein, P. Time dependence of the magnetization process of RE-TM alloys. J. Magn. Magn. Mater. 1989, 80, 211–218. [Google Scholar] [CrossRef]
- Windsor, Y.W.; Gerber, A.; Karpovski, M. Dynamics of successive minor hysteresis loops. Phys. Rev. B 2012, 85, 064409. [Google Scholar] [CrossRef] [Green Version]
- Windsor, Y.W.; Gerber, A.; Korenblit, I.Y.; Karpovski, M. Time dependence of magnetization reversal when beginning with pre-existing nucleation sites. J. Appl. Phys. 2013, 113, 223902. [Google Scholar] [CrossRef]
- Avramov, I. Kinetics of distribution of infections in networks. Phys. A Stat. Mech. Appl. 2007, 379, 615–620. [Google Scholar] [CrossRef]
- Ausloos, M.; Petroni, F. Statistical dynamics of religion evolutions. Phys. A Stat. Mech. Appl. 2009, 388, 4438–4444. [Google Scholar] [CrossRef] [Green Version]
- Harumoto, T.; Ohnishi, Y.; Nishio, K.; Ishiguro, T.; Shi, J.; Nakamura, Y. In-situ X-ray diffraction study of hydrogen absorption and desorption processes in Pd thin films: Hydrogen composition dependent anisotropic expansion and its quantitative description. AIP Adv. 2017, 7, 065108. [Google Scholar] [CrossRef] [Green Version]
- Kawasaki, S.; Itoh, K.; Shima, K.; Kato, H.; Ohashi, T.; Ishikawa, T. Yamazaki. Change in the crystalline structure during the phase transition of the palladium–hydrogen system. Phys. Chem. Chem. Phys. 2015, 17, 24783–24790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ollagnier, A.; Fabre, A.; Thundat, T.; Finot, E. Activation process of reversible Pd thin film hydrogen sensors. Sens. Actuators B Chem. 2013, 186, 258–262. [Google Scholar] [CrossRef]
- Nörthemann, R.; Kirchheim, A.; Pundt, J. Surface modification of Nb-films during hydrogen loading. Alloys Compd. 2003, 357, 541–544. [Google Scholar] [CrossRef]
- Yamada, Y.; Miura, M.; Tajima, K.; Okada, M.; Yoshimura, K. Film thickness change of switchable mirrors using Mg–Y alloy thin films due to hydrogenation and dehydrogenation. Sol. Energy Mater. Sol. Cells 2014, 126, 237. [Google Scholar] [CrossRef]
- Jovanović, Z.; De Francesco, M.; Tosti, S.; Pozio, A. Structural modification of PdAg alloy induced by electrolytic hydrogen absorption. Int. J. Hydrog. Energy 2011, 36, 7728. [Google Scholar] [CrossRef]
- Donachie, M.J.; Donachie, S.J. Superalloys: A Technical Guide; ASM International: Materials Park, OH, USA, 2002; ISBN 0-87170-749-7. [Google Scholar]
Sample Availability: Samples of the compounds are not available from the authors. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, S.S.; Kopnov, G.; Gerber, A. Kinetics of the Lattice Response to Hydrogen Absorption in Thin Pd and CoPd Films. Molecules 2020, 25, 3597. https://doi.org/10.3390/molecules25163597
Das SS, Kopnov G, Gerber A. Kinetics of the Lattice Response to Hydrogen Absorption in Thin Pd and CoPd Films. Molecules. 2020; 25(16):3597. https://doi.org/10.3390/molecules25163597
Chicago/Turabian StyleDas, Sudhansu Sekhar, Gregory Kopnov, and Alexander Gerber. 2020. "Kinetics of the Lattice Response to Hydrogen Absorption in Thin Pd and CoPd Films" Molecules 25, no. 16: 3597. https://doi.org/10.3390/molecules25163597
APA StyleDas, S. S., Kopnov, G., & Gerber, A. (2020). Kinetics of the Lattice Response to Hydrogen Absorption in Thin Pd and CoPd Films. Molecules, 25(16), 3597. https://doi.org/10.3390/molecules25163597