Dependence of the Optical Constant Parameters of p-Toluene Sulfonic Acid-Doped Polyaniline and Its Composites on Dispersion Solvents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis and Characterization
2.3. Preparations of Thin Layer
3. Results
3.1. Comparison of UV-Vis Absorption Spectra
3.2. Field Emission Scanning Electron Microscopy (FESEM)
3.3. Comparison of Complex Refractive Index Parameters
3.4. Comparison of Complex Dielectric Constant
3.5. Comparison of Optical Conductivity
3.6. Applications of the Materials for Surface Plasmon Resonance Biosensors
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kohlman, R.; Min, Y.; MacDiarmid, A.; Epstein, A. Optical conductivity of doped polyaniline: Effects of disorder. Synth. Met. 1995, 69, 211–212. [Google Scholar] [CrossRef]
- Cao, Y.; Qiu, J.; Smith, P. Effect of solvents and co-solvents on the processibility of polyaniline: I. solubility and conductivity studies. Synth. Met. 1995, 69, 187–190. [Google Scholar] [CrossRef]
- Joo, J.; Chung, Y.; Song, H.; Baeck, J.; Lee, W.; Epstein, A.; MacDiarmid, A.; Jeong, S.; Oh, E. Charge transport studies of doped polyanilines with various dopants and their mixtures. Synth. Met. 1997, 84, 739–740. [Google Scholar] [CrossRef]
- Zheng, W.; Angelopoulos, M.; Epstein, A.A.J.; MacDiarmid, A.G. Concentration Dependence of Aggregation of Polyaniline in NMP Solution and Properties of Resulting Cast Films. Macromolecules 1997, 30, 7634–7637. [Google Scholar] [CrossRef]
- MacDiarmid, A.G.; Epstein, A.J. Secondary doping in polyaniline. Synth. Met. 1995, 69, 85–92. [Google Scholar] [CrossRef]
- Muhammad, F.F.; Aziz, S.B.; Hussein, S.A. Effect of the dopant salt on the optical parameters of PVA:NaNO3 solid polymer electrolyte. J. Mater. Sci. Mater. Electron. 2014, 26, 521–529. [Google Scholar] [CrossRef]
- Usman, F.; Dennis, J.O.; Ahmed, A.Y.; Seong, K.C.; Fen, Y.W.; Sadrolhosseini, A.R.; Meriaudeau, F.; Kumar, P.; Ayodele, O.B. Structural characterization and optical constants of p-toluene sulfonic acid doped polyaniline and its composites of chitosan and reduced graphene-oxide. J. Mater. Res. Technol. 2020, 9, 1468–1476. [Google Scholar] [CrossRef]
- Schubert, E.F.; Kim, J.K. Low-refractive-index materials-A new class of optical thin-film materials. In Proceedings of the Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference, Baltimore, MD, USA, 31 May–5 June 2009. [Google Scholar]
- Higashihara, T.; Ueda, M. Recent progress in high refractive index polymers. Macromolecules 2015, 48, 1915–1929. [Google Scholar] [CrossRef]
- Angelopoulos, M.; Dipietro, R.; Zheng, W.; MacDiarmid, A.; Epstem, A. Effect of selected processing parameters on solution properties and morphology of polyaniline and impact on conductivity. Synth. Metals 1997, 84, 35–39. [Google Scholar] [CrossRef]
- Junaid, M.; Khir, M.H.M.; Witjaksono, G.; Tansu, N.; Saheed, M.S.M.; Kumar, P.; Ullah, Z.; Yar, A.; Usman, F. Boron-Doped Reduced Graphene Oxide with Tunable Bandgap and Enhanced Surface Plasmon Resonance. Molecules 2020, 25, 3646. [Google Scholar] [CrossRef]
- Santos, J.L.; Farahi, F. Handbook of Optical Sensors; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Xia, Y.; Wiesinger, J.M.; MacDiarmid, A.G.; Epstein, A.J. Camphorsulfonic acid fully doped polyaniline emeraldine salt: Conformations in different solvents studied by an ultraviolet/visible/near-infrared spectroscopic method. Chem. Mater. 1995, 7, 443–445. [Google Scholar] [CrossRef]
- Xia, Y.; MacDiarmid, A.G.; Epstein, A.J. Camphorsulfonic Acid Fully Doped Polyaniline Emeraldine Salt: In situ Observation of Electronic and Conformational Changes Induced by Organic Vapors by an Ultraviolet/Visible/Near-Infrared Spectroscopic Method. Macromolecules 1994, 27, 7212–7214. [Google Scholar] [CrossRef]
- Pasela, B.R.; Castillo, A.P.; Simon, R.; Pulido, M.T.; Mana-Ay, H.; Abiquibil, M.R.; Montecillo, R.; Thumanu, K.; Von Tumacder, D.; Taaca, K.L.M. Synthesis and Characterization of Acetic Acid-Doped Polyaniline and Polyaniline–Chitosan Composite. Biomimetics 2019, 4, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayamurgan, P.; Ponnuswamy, V.; Ashokan, S.; Mahalingam, T. The effect of dopant on structural, thermal and morphological properties of DBSA-doped polypyrrole. Iran. Polym. J. 2013, 22, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Usman, F.; Dennis, J.O.; Seong, K.C.; Ahmed, A.Y.; Meriaudeau, F.; Ayodele, O.B.; Tobi, A.R.; Rabih, A.A.S.; Yar, A. Synthesis and characterisation of a ternary composite of polyaniline, reduced graphene-oxide and chitosan with reduced optical band gap and stable aqueous dispersibility. Results Phys. 2019, 15, 102690. [Google Scholar] [CrossRef]
- Bhadra, J.; Alkareem, A.; Al-Thani, N. A review of advances in the preparation and application of polyaniline based thermoset blends and composites. J. Polym. Res. 2020, 27, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Qin, M.; Lan, D.; Liu, J.; Liang, H.; Zhang, L.; Xing, H.; Xu, T.; Wu, H. Synthesis of Single-Component Metal Oxides with Controllable Multi-Shelled Structure and their Morphology-Related Applications. Chem. Rec. 2019, 20, 102–119. [Google Scholar] [CrossRef]
- Al Attar, H.; Telfah, A. Optical constants of polyaniline/poly(methylmethacrylate) blend. Opt. Commun. 2004, 229, 263–270. [Google Scholar] [CrossRef]
- Menegazzo, N.; Herbert, B.; Banerji, S.; Booksh, K.S. Discourse on the utilization of polyaniline coatings for surface plasmon resonance sensing of ammonia vapor. Talanta 2011, 85, 1369–1375. [Google Scholar] [CrossRef]
- Abdullah, O.G.; Aziz, S.B.; Rasheed, M.A. Structural and optical characterization of PVA:KMnO 4 based solid polymer electrolyte. Results Phys. 2016, 6, 1103–1108. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, L.; Moura, C.; Pinto, L.F.; Ferreira, F.C.; Rodrigues, A. Processing and Characterization of 3D Dense Chitosan Pieces, for Orthopedic Applications, by Adding Plasticizers. Procedia Eng. 2015, 110, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Nalwa, H.S. Handbook of Low and High Dielectric Constant Materials and Their Applications, Two-Volume Set; Elsevier: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Fox, M.; Bertsch, G.F. Optical Properties of Solids. Am. J. Phys. 2002, 70, 1269–1270. [Google Scholar] [CrossRef]
- Aziz, S.B.; Hassan, A.Q.; Mohammed, S.J.; Karim, W.O.; Kadir, M.; Tajuddin, H.A.; Chan, N.N.M.Y. Structural and Optical Characteristics of PVA:C-Dot Composites: Tuning the Absorption of Ultra Violet (UV) Region. Nanomaterials 2019, 9, 216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aziz, S.B. Modifying Poly(Vinyl Alcohol) (PVA) from Insulator to Small-Bandgap Polymer: A Novel Approach for Organic Solar Cells and Optoelectronic Devices. J. Electron. Mater. 2015, 45, 736–745. [Google Scholar] [CrossRef]
- Usman, F.; Dennis, J.O.; Seong, K.C.; Ahmed, A.Y.; Ferrell, T.L.; Fen, Y.W.; Sadrolhosseini, A.R.; Ayodele, O.B.; Meriaudeau, F.; Saidu, A. Enhanced Sensitivity of Surface Plasmon Resonance Biosensor Functionalized with Doped Polyaniline Composites for the Detection of Low-Concentration Acetone Vapour. J. Sens. 2019, 2019, 5786105. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Li, W.; Luo, L.; Zhu, Y. Ultrahigh dielectric constant composites based on the oleic acid modified ferroferric oxide nanoparticles and polyvinylidene fluoride. Appl. Phys. Lett. 2013, 102, 92904. [Google Scholar] [CrossRef]
- Halper, M.S.; Ellenbogen, J.C. Supercapacitors: A Brief Overview; The MITRE Corporation: McLean, VA, USA, 2006; pp. 1–34. Available online: http://www.mitre.org/sites/default/files/pdf/06_0667.pdf (accessed on 15 August 2020).
- Pandey, R.K.; Stapleton, W.A.; Tate, J.; Bandyopadhyay, A.K.; Sutanto, I.; Sprissler, S.; Lin, S. Applications of CCTO supercapacitor in energy storage and electronics. AIP Adv. 2013, 3, 062126. [Google Scholar] [CrossRef]
Sample Availability: Samples of the PTSA and NMP processed PANI, PANI-chitosan, PANI-RGO and Ternary composites are available from the authors. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Usman, F.; Dennis, J.O.; Meriaudeau, F.; Ahmed, A.Y.; Seong, K.C.; Fen, Y.W.; Sadrolhosseini, A.R.; Abdulkadir, B.A.; Ayinla, R.T.; Daniyal, W.M.E.M.M.; et al. Dependence of the Optical Constant Parameters of p-Toluene Sulfonic Acid-Doped Polyaniline and Its Composites on Dispersion Solvents. Molecules 2020, 25, 4414. https://doi.org/10.3390/molecules25194414
Usman F, Dennis JO, Meriaudeau F, Ahmed AY, Seong KC, Fen YW, Sadrolhosseini AR, Abdulkadir BA, Ayinla RT, Daniyal WMEMM, et al. Dependence of the Optical Constant Parameters of p-Toluene Sulfonic Acid-Doped Polyaniline and Its Composites on Dispersion Solvents. Molecules. 2020; 25(19):4414. https://doi.org/10.3390/molecules25194414
Chicago/Turabian StyleUsman, Fahad, John Ojur Dennis, Fabrice Meriaudeau, Abdelaziz Yousif Ahmed, Khe Cheng Seong, Yap Wing Fen, Amir Reza Sadrolhosseini, Bashir Abubakar Abdulkadir, Ridwan Tobi Ayinla, Wan Mohd Ebtisyam Mustaqim Mohd Daniyal, and et al. 2020. "Dependence of the Optical Constant Parameters of p-Toluene Sulfonic Acid-Doped Polyaniline and Its Composites on Dispersion Solvents" Molecules 25, no. 19: 4414. https://doi.org/10.3390/molecules25194414
APA StyleUsman, F., Dennis, J. O., Meriaudeau, F., Ahmed, A. Y., Seong, K. C., Fen, Y. W., Sadrolhosseini, A. R., Abdulkadir, B. A., Ayinla, R. T., Daniyal, W. M. E. M. M., Omar, N. A. S., Tamam, N., & Sulieman, A. (2020). Dependence of the Optical Constant Parameters of p-Toluene Sulfonic Acid-Doped Polyaniline and Its Composites on Dispersion Solvents. Molecules, 25(19), 4414. https://doi.org/10.3390/molecules25194414