Predicting the Blood-Brain Barrier Permeability of New Drug-Like Compounds via HPLC with Various Stationary Phases
Abstract
:1. Introduction
2. Results
2.1. Chromatographic Results
2.2. Establishment of the LFER Model
0.768(± 0.177) B + 0.545(± 0.104) V
2.3. Establishment of QSARs Models
0.009(± 0.004) α
0.004287; MSEcv* = 0.004218; MSEcv** = 0.004218; PRESS* = 0.2900; PRESS** = 0.2698.
3. Materials and Methods
3.1. Reagents
3.2. Instrumental
- Purosphere RP-18e (ODS), 125 × 4 mm i.d., 5 µm (Merck);
- IAM.PC.DD2 100 × 4.6 mm i.d., 10 µm (Regis Chemicals Company, Morton Grove, IL, USA);
- Cosmosil Cholester, 75 × 2 mm i.d., 2.5 µm (Genore, Warsaw, Poland).
3.3. Chromatographic Conditions and Test Substances
3.4. In silico Calculations
3.5. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sugano, K.; Kansy, M.; Artursson, P.; Avdeef, A.; Bendels, S.; Di, L.; Ecker, G.F.; Faller, B.; Fischer, H.; Gerebtzoff, G.; et al. Coexistence of passive and carrier-mediated processes in drug transport. Nat. Rev. Drug Discov. 2010, 9, 597–614. [Google Scholar] [CrossRef]
- Sugiyama, Y.; Kusuhara, H.; Suzuki, H. Kinetic and biochemical analysis of carrier-mediated efflux of drugs through the blood-brain and blood-cerebrospinal fluid barriers: Importance in the drug delivery to the brain. J. Cont. Rel. 1999, 62, 179–186. [Google Scholar] [CrossRef]
- Seddon, A.M.; Casey, D.; Law, R.V.; Gee, A.; Templera, R.H.; Cesab, O. Drug interactions with lipid membranes. Chem. Soc. Rev. 2009, 38, 2509–2519. [Google Scholar] [CrossRef] [PubMed]
- Wolak, D.J.; Thorne, R.G. Diffusion of macromolecules in the brain: Implications for drug delivery. Mol. Pharm. 2013, 10, 1492–1504. [Google Scholar] [CrossRef] [PubMed]
- Banks, W.A. Characteristics of compounds that cross the blood-brain barrier. BMC Neurol. 2009, 9 (Suppl. 1), S3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konovalov, D.A.; Coomans, D.; Deconinck, E.; Heyden, Y.V. Benchmarking of QSAR Models for Blood-Brain Barrier Permeation. J. Chem. Inf. Model. 2007, 47, 1648–1656. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, J.T.; Clark, D.E. In Silico Predictions of Blood-Brain Barrier Penetration: Considerations to “Keep in Mind”. J. Pharm. Exp. Therap. 2005, 315, 477–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, N.J. ADME-Tox Approaches. In Comprehensive Medicinal Chemistry II, 2nd ed.; Taylor, J.B., Triggle, D.J., Eds.; Elsevier LTD: Amsterdam, The Netherlands, 2007; pp. 301–320. [Google Scholar]
- Bickel, U. How to Measure Drug Transport across the Blood-Brain Barrier. NeuroRx 2005, 2, 15–26. [Google Scholar] [CrossRef]
- Liu, X.; Testa, B.; Fahr, A. Lipophilicity and its relationship with passive drug permeation. Pharm. Res. 2011, 28, 962–977. [Google Scholar] [CrossRef]
- Grumetto, L.; Russo, G.; Barbato, F. Immobilized Artificial Membrane HPLC Derived Parameters vs PAMPA-BBB Data in Estimating in Situ Measured Blood-Brain Barrier Permeation of Drugs. Mol. Pharm. 2016, 13, 2808–2816. [Google Scholar] [CrossRef]
- Russo, G.; Grumetto, L.; Szucs, R.; Barbato, F.; Lynen, F. Screening therapeutics according to their uptake across the blood-brain barrier: A high throughput method based on immobilized artificial membrane liquid chromatography-diode-array-detection coupled to electrospray-time-of-flight mass spectrometry. Eur. J. Pharm. Biopharm. 2018, 127, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.; Liu, H.; Pidgeon, C. Immobilized-artificial-membrane chromatography: Measurements of membrane partition coefficient and predicting drug membrane permeability. J. Chromatogr. A 1996, 728, 113–128. [Google Scholar] [CrossRef]
- Yang, C.Y.; Cai, S.J.; Liu, H.; Pidgeon, C. Immobilized Artificial Membranes – screens for drug membrane interactions. Adv. Drug Del. Rev. 1996, 23, 229–256. [Google Scholar] [CrossRef]
- Taillardat-Bertschinger, A.; Galland, A.; Carrupt, P.-A.; Testa, B. Immobilized artificial membrane liquid chromatography: Proposed guidelines for technical optimization of retention measurements. J. Chromatogr. A 2002, 953, 39–53. [Google Scholar] [CrossRef]
- Verzele, D.; Lynen, F.; De Vrieze, M.; Wright, A.G.; Hanna-Brown, M.; Sandra, P. Development of the first sphingomyelin biomimetic stationary phase for immobilized artificial membrane (IAM) chromatography. Chem. Commun. 2012, 48, 1162–1164. [Google Scholar] [CrossRef]
- De Vrieze, M.; Lynen, F.; Chen, K.; Szucs, R.; Sandra, P. Predicting drug penetration across the blood-brain barrier: Comparison of micellar liquid chromatography and immobilized artificial membrane liquid chromatography. Anal. Bioanal. Chem. 2013, 405, 6029–6041. [Google Scholar] [CrossRef]
- De Vrieze, M.; Verzele, D.; Szucs, R.; Sandra, P.; Lynen, F. Evaluation of sphingomyelin, cholester and phosphatidylcholine-based immobilized artificial membrane liquid chromatography to predict drug penetration across the blood-brain barrier. Anal. Bioanal. Chem. 2014, 406, 6179–6188. [Google Scholar] [CrossRef]
- Janicka, M.; Sztanke, M.; Sztanke, K. Reversed-phase liquid chromatography with octadecylsilyl, immobilized artificial membrane and cholesterol columns in correlation studies with in silico biological descriptors of newly synthesized antiproliferative and analgesic active compounds. J. Chromatogr. A 2013, 1318, 92–101. [Google Scholar] [CrossRef]
- Janicka, M.; Pachuta-Stec, A. Retention-property relationships of 1,2,4-triazoles by micellar and reversed-phase liquid chromatography. J. Sep. Sci. 2014, 31, 1419–1428. [Google Scholar] [CrossRef]
- Sztanke, M.; Tuzimski, T.; Janicka, M.; Sztanke, K. Structure-retention behaviour of biologically active fused 1,2,4-triazinones – Comparison with in silico molecular properties. Eur. J. Pharm. Sci. 2015, 68, 114–126. [Google Scholar] [CrossRef]
- Sztanke, M.; Rzymowska, J.; Janicka, M.; Sztanke, K. Synthesis, structure confirmation, identification of in vitro antiproliferative activities and correlation of determined lipophilicity parameters with in silico bioactivity descriptors of two novel classes of fused azaisocytosine-like congeners. Arab. J. Chem. 2016. [Google Scholar] [CrossRef]
- Sztanke, M.; Sztanke, K.; Medical University of Lublin. 3-(2-Phenylethyl)-8-aryl-7,8-dihydroimidazo[2,1-c][1,2,4]triazin-4(6H)-ones, Method for Obtaining them and Medical Application. Polish Patent 224678, 31 January 2017. [Google Scholar]
- Sztanke, M.; Sztanke, K.; Medical University of Lublin. 3-Ethyl-8-aryl-7,8-dihydroimidazo[2,1-c][1,2,4]triazin-4(6H)-ones, Method for Obtaining them and Medical Application. Polish Patent 224679, 31 January 2017. [Google Scholar]
- Sztanke, K.; Sztanke, M.; Medical University of Lublin. Ethyl 2-(4-oxo-4,6,7,8-tetrahydroimidazo[2,1-c][1,2,4]triazin-3-yl)acetates, Method for Obtaining them and Medical Application. Polish Patent 219424, 30 April 2015. [Google Scholar]
- Sztanke, M.; Rzymowska, J.; Sztanke, K. Synthesis, structure elucidation and in vitro anticancer activities of novel derivatives of diethyl (2E)-2-[(2E)-(1-arylimidazolidin-2-ylidene)hydrazono]succinate and ethyl (4-oxo-8-aryl-4,6,7,8-tetrahydroimidazo[2,1-c][1,2,4]triazin-3-yl)acetate. Bioorg. Med. Chem. 2013, 21, 7465–7480. [Google Scholar] [CrossRef] [PubMed]
- Sztanke, M.; Sztanke, K.; Rajtar, B.; Świątek, Ł.; Boguszewska, A.; Polz-Dacewicz, M. The influence of some promising fused azaisocytosine-containing congeners on zebrafish (Danio rerio) embryos/larvae and their antihaemolytic, antitumour and antiviral activities. Eur. J. Pharm. Sci. 2019, 132, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Sztanke, K.; Tuzimski, T.; Sztanke, M.; Rzymowska, J.; Pasternak, K. Synthesis, structure elucidation, determination of the lipophilicity and identification of antitumour activities in vitro of novel 3-(2-furanyl)-8-aryl-7,8-dihydroimidazo[2,1-c][1,2,4]triazin-4(6H)-ones with a low cytotoxicity towards normal human skin fibroblast cells. Bioorg. Med. Chem. 2011, 19, 5103–5116. [Google Scholar]
- Sztanke, K.; Sztanke, M.; Pasternak, K.; Medical University of Lublin. 3-(2-Furanyl)-7,8- dihydroimidazo[2,1-c][1,2,4]triazin-4(6H)-ones Substituted with Mono- or Dichlorophenyl and Process for the Preparation Thereof. Polish Patent PL 212442, 31 October 2012. [Google Scholar]
- Sztanke, K.; Sztanke, M.; Pasternak, K.; Medical University of Lublin. Derivatives of 3-(2-furanyl)-7,8-dihydroimidazo[2,1-c][1,2,4]triazin-4(6H)-one Substituted with phenyl, Alkylphenyl, Alkoxyphenyl and Process for the Preparation Thereof. Polish Patent PL 212447, 31 October 2012. [Google Scholar]
- Sztanke, K.; Medical University of Lublin. New 8-aryl-3-phenyl-6,7-dihydro-4H-imidazo[2,1-c][1,2,4]triazine-4-ones and Methods for their Manufacture. Polish Patent PL 199750, 31 October 2008. [Google Scholar]
- Sztanke, K.; Pasternak, K.; Sztanke, M.; Kandefer-Szerszeń, M.; Kozioł, A.E.; Dybała, I. Crystal structure, antitumour and antimetastatic activities of disubstituted fused 1,2,4-triazinones. Bioorg. Med. Chem. Lett. 2009, 19, 5095–5100. [Google Scholar] [CrossRef]
- Tuzimski, T.; Sztanke, K. Retention data for some carbonyl derivatives of imidazo[2,1-c][1,2,4]triazine in reversed-phase systems in TLC and HPLC and their use for determination of lipophilicity. Part 1. Lipophilicity of 8-aryl-3-phenyl-6,7-dihydro-4H-imidazo[2,1-c][1,2,4]triazin-4-ones. J. Planar Chromatogr. 2005, 18, 274–281. [Google Scholar]
- Łyszczek, R.; Bartyzel, A.; Głuchowska, H.; Mazur, L.; Sztanke, M.; Sztanke, K. Thermal investigations of biologically important fused azaisocytosine-containing congeners and the crystal structure of one representative. J. Anal. Appl. Pyrolysis 2018, 135, 141–151. [Google Scholar] [CrossRef]
- Bartyzel, A.; Sztanke, M.; Sztanke, K. Thermal behaviour of antiproliferative active 3-(2-furanyl)-8-aryl-7,8-dihydroimidazo[2,1-c][1,2,4]triazin-4(6H)-ones. J. Therm. Anal. Calorim. 2017, 130, 1541–1551. [Google Scholar] [CrossRef] [Green Version]
- Soczewiński, E.; Wachtmeister, C.A. The relation between the composition of certain ternary two-phase solvent systems and RM values. J. Chromatogr. 1962, 7, 311–320. [Google Scholar] [CrossRef]
- Kaliszan, R. Quantitative Structure-Chromatographic Retention Relationships; John Wiley & Sons: New York, NY, USA, 1987. [Google Scholar]
- Abraham, M.H.; Chadha, H.S.; Mitchell, R.C. Hydrogen bonding. 33. Factors that influence the distribution of solutes between blood and brain. J. Pharm. Sci. 1994, 83, 1257–1268. [Google Scholar] [CrossRef]
- Abraham, M.H. Scales of Solute Hydrogen-bonding: Their Construction and Application to Physicochemical and Biochemical Processes. Chem. Soc. Rev. 1993, 22, 73–83. [Google Scholar] [CrossRef]
- Abraham, M.H.; Ibrahim, A.; Zissimos, A.M. Determination of sets of solute descriptors from chromatographic measurements. J. Chromatogr. A 2004, 1037, 29–47. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.H. The factors that influence permeation across the blood-brain barrier. Eur. J. Med. Chem. 2004, 39, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Vitha, M.; Carr, P.W. The chemical interpretation and practice of linear solvation energy relationships in chromatography. J. Chromatogr. A 2006, 1126, 143–194. [Google Scholar] [CrossRef] [PubMed]
- Mente, S.R.; Lombardo, F. A recursive-partitioning model for blood-brain barrier permeation. J. Comp. Aided Mol. Design. 2005, 19, 465–481. [Google Scholar] [CrossRef]
- Bujak, R.; Struck-Lewicka, W.; Kaliszan, M.; Kaliszan, R.; Markuszewski, M.J. Blood-brain barrier permeability mechanisms in view of quantitative structure-activity relationships (QSAR). J. Pharm. Biomed. Anal. 2015, 108, 29–37. [Google Scholar] [CrossRef]
- Carpenter, T.S.; Kirshner, E.D.A.; Lau, Y.; Wong, S.E.; Nilmeier, J.P.; Lightstone, F.C. A Method to Predict Blood-Brain Barrier Permeability of Drug-Like Compounds Using Molecular Dynamics Simulations. Biophys. J. 2014, 107, 630–641. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zhu, Q.-J.; Pan, J.; Wu, X.-P. A prediction model for blood-brain barrier permeation and analysis on its parameter biologically. Comp. Meth. Prog. Biomed. 2009, 95, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Ooms, F.; Weber, T.; Carrupt, P.A.; Testa, B. A simple model to predict blood-brain barrier permeation from 3D molecular fields. Biochim. Biophys. Acta 2002, 1587, 118–125. [Google Scholar] [CrossRef]
- Sagandykova, G.N.; Pomastowski, P.P.; Kaliszan, R.; Buszewski, B. Modern analytical methods for consideration of natural biological activity. Trends Anal. Chem. 2018, 109, 198–213. [Google Scholar] [CrossRef]
- Kaliszan, R.; Markuszewski, M. Brain/blood distribution described by a combination of partition coefficient and molecular mass. Int. J. Pharm. 1996, 145, 9–16. [Google Scholar] [CrossRef]
- Österberg, T.; Norinder, U. Prediction of polar surface area and drug transport processes using simple parameters and PLS statistics. J. Chem. Inf. Comput. Sci. 2000, 40, 1408–1411. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.E. Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 2. Prediction of blood-brain barrier penetration. J. Pharm. Sci. 1999, 88, 815–821. [Google Scholar] [CrossRef] [PubMed]
- Norinder, U.; Haeberlein, M. Computational approaches to the prediction of the blood-brain distribution. Adv. Drug Deliv. Rev. 2002, 54, 291–313. [Google Scholar] [CrossRef]
- Luco, J.M. Prediction of the brain-blood distribution of a large set of drugs from structurally derived descriptors using partial least-squares (PLS) modeling. J. Chem. Inf. Comput. Sci. 1999, 39, 396–404. [Google Scholar] [CrossRef]
- Feher, M.; Sourial, E.; Schmidt, J.M. A simple model for the prediction of blood-brain partitioning. Int. J. Pharm. 2000, 201, 239–247. [Google Scholar] [CrossRef]
- Fu, X.-C.; Song, Z.-F.; Fu, C.-Y.; Liang, W.-Q. A simple predictive model for blood-brain barrier penetration. Pharmazie 2005, 60, 354–358. [Google Scholar]
- Fu, X.-C.; Wang, G.-P.; Shan, H.-L.; Liang, W.-Q.; Gao, J.-Q. Predicting blood-brain barrier penetration from molecular weight and number of polar atoms. Eur. J. Pharm. Biopharm. 2008, 70, 462–466. [Google Scholar] [CrossRef]
- Young, R.C.; Mitchell, R.C.; Brown, T.H.; Ganellin, C.R.; Griffiths, R.; Jones, M.; Rana, K.K.; Saunders, D.; Smith, I.R.; Sore, N.E.; et al. Development of a new physicochemical model for brain penetration and its application to the design of centrally acting H2 receptor histamine antagonists. J. Med. Chem. 1988, 31, 656–671. [Google Scholar] [CrossRef]
- van de Waterbeemd, H.; Kansy, M. Hydrogen-bonding capacity and brain penetration. Chimia 1992, 46, 299–303. [Google Scholar]
- Lombardo, F.; Blacke, J.F.; Curatolo, W.J. Computation of brain-blood partitioning of organic solutes via free energy calculations. J. Med. Chem. 1996, 39, 4750–4755. [Google Scholar] [CrossRef] [PubMed]
- Kelder, J.; Grootenhuis, P.D.J.; Bayada, D.M.; Delbressine, L.P.C.; Ploemen, J.P. Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs. Pharm. Res. 1999, 16, 1514–1519. [Google Scholar] [CrossRef] [PubMed]
- Ertl, P.; Rohde, B.; Selzer, P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem. 2000, 43, 3714–3717. [Google Scholar] [CrossRef] [PubMed]
- Vilar, S.; Chakrabarti, M.; Constanzi, S. Prediction of passive blood-brain partitioning: Straightforward and effective classification models based on in silico derived physicochemical descriptors. J. Mol. Graph. Model. 2010, 28, 899–903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raevsky, O.A.; Solodova, S.L.; Raevskaya, O.E.; Mannhold, R. Molecular biology problems of drug design and mechanism of drug action. Quantitative interactions between the structures of organic compounds and their abilities to penetrate the blood-brain barrier. Pharm. Chem. J. 2012, 46, 133–138. [Google Scholar] [CrossRef]
- Ruiz-Ángel, M.J.; Garcia-Álvarez-Coque, M.C.; Berthod, A. New insights and recent developments in micellar liquid chromatography (review). Sep. Purif. Rev. 2009, 38, 45–96. [Google Scholar] [CrossRef]
- Mensch, J.; Oyarzabal, J.; Mackie, C.; Augustijns, P. In vitro, in vitro and in silico methods for small molecule transfer across the BBB. J. Pharm. Sci. 2009, 98, 4429–4468. [Google Scholar] [CrossRef]
- Naik, P.; Cucullo, L. In vitro blood-brain barrier models: Current and perspective technologies. J. Pharm. Sci. 2012, 101, 1337–1354. [Google Scholar] [CrossRef] [Green Version]
- Tetko, I.V.; Tanchuk, V.Y. Application of associative neural networks for prediction of lipophilicity in ALOGPS 2.1 program. J. Chem. Inf. Comput. Sci. 2002, 42, 1136–1145. [Google Scholar] [CrossRef]
- Tetko, I.V.; Tanchuk, V.Y.; Villa, A.E. Prediction of n-octanol/water partition coefficients from PHYSPROP database using artificial neural networks and E-state indices. J. Chem. Inf. Comput. Sci. 2001, 41, 1407–1421. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds 1–65 are available from the authors. |
Group | Compound No.; R, R’ | Chemical Name | References |
---|---|---|---|
Group I | 1: R = H 2: R = 4-CH3 3: R = 2-Cl 4: R = 3-Cl 5: R = 4-Cl 6: R = 3,4-Cl2 | 8-(R-phenyl)-3-ethyl-7,8-dihydroimidazo[2,1-c][1,2,4]triazin-4(6H)-ones | [22,24,27] |
Group II | 7: R = H 8: R = 4-CH3 9: R = 4-OCH3 10: R = 4-OC2H5 11: R = 4-Cl | Methyl [4-oxo-8-(R-phenyl)-4,6,7,8-tetrahydroimidazo[2,1-c][1,2,4]triazin-3-yl]acetates | [21] |
Group III | 12: R = H 13: R = 4-CH3 14: R = 4-OCH3 15: R = 3-Cl 16: R = 4-Cl 17: R = 3,4-Cl2 | Ethyl [4-oxo-8-(R-phenyl)-4,6,7,8-tetrahydroimidazo[2,1-c][1,2,4]triazin-3-yl]acetates | [25,26] |
Group IV | 18: R = H 19: R = 2-CH3 20: R = 4-CH3 21: R = 2,3(-CH3)2 22: R = 2-OCH3 23: R = 4-OCH3 24: R = 2-Cl 25: R = 3-Cl 26: R = 4-Cl 27: R = 3,4-Cl2 28: R = 2,6-Cl2 | 8-(R-phenyl)-3-(2-furanyl)-7,8-dihydroimidazo[2,1-c][1,2,4]triazin-4(6H)-ones | [19,28,29,30] |
Group V | 29: R = H 30: R = 2-CH3 31: R = 3-CH3 32: R = 4-CH3 33: R = 2-OCH3 34: R = 4-OCH3 35: R = 4-OC2H5 36: R = 2,3(-CH3)2 37: R = 2-Cl 38: R = 3-Cl 39: R = 4-Cl 40: R = 3,4-Cl2 | 8-(R-phenyl)-3-phenyl-7,8-dihydroimidazo[2,1-c][1,2,4]triazin-4(6H)-ones | [19,31,32,33] |
Group VI | 41: R = H; R’ = H 42: R = H; R’ = 2-Cl 43: R = H; R’ = 3-Cl 44: R = H; R’ = 4-Cl 45: R = 4-CH3; R’ = H 46: R = 4-CH3; R’ = 4-CH3 47: R = 4-CH3; R’ = 3-CH3 48: R = 4-CH3; R’ = 2-Cl 49: R = 4-CH3; R’ = 3-Cl 50: R = 4-CH3; R’ = 4-Cl 51: R = 4-OC2H5; R’ = H 52: R = 4-OC2H5; R’ = 4-CH3 53: R = 4-OC2H5; R’ = 2-Cl 54: R = 4-OC2H5; R’ = 3-Cl 55: R = 4-OC2H5; R’ = 4-Cl 56: R = 2-CH3; R’ = 2-Cl 57: R = 4-Cl; R’ = H 58: R = 4-Cl; R’ = 2-Cl 59: R = 4-Cl; R’ = 3-Cl 60: R = 4-Cl; R’ = 4-Cl | 8-(R-phenyl)-3-benzyl/3-(R’-benzyl)-7,8-dihydroimidazo[2,1-c][1,2,4]triazin-4(6H)-ones | [19,21] |
Group VII | 61: R = H 62: R = 4-CH3 63: R = 2-Cl 64: R = 4-Cl 65: R = 3,4-Cl2 | 8-(R-phenyl)-3-(2-phenylethyl)-7,8-dihydroimidazo[2,1-c][1,2,4]triazin-4(6H)-ones | [22,23] |
Compound Tested | ODS | IAM | Cholester | |||
---|---|---|---|---|---|---|
log kw, ODS | sODS | log kw, IAM | sIAM | log kw, Cholester | sCholester | |
1 | 0.97 | 2.70 | 0.55 | 2.10 | 0.20 | 1.25 |
2 | 1.30 | 3.12 | 1.00 | 2.88 | 0.57 | 1.84 |
3 | 1.22 | 3.02 | 0.80 | 2.51 | 0.46 | 1.70 |
4 | 1.33 | 3.15 | 0.84 | 2.60 | 0.62 | 1.82 |
5 | 1.78 | 3.56 | 1.24 | 3.25 | 1.18 | 2.61 |
6 | 2.53 | 4.49 | 1.85 | 4.11 | 2.05 | 3.61 |
7 | 1.28 | 3.09 | 0.81 | 2.38 | 0.58 | 1.92 |
8 | 1.90 | 3.82 | 1.33 | 3.33 | 1.29 | 2.75 |
9 | 1.30 | 3.02 | 0.81 | 2.45 | 0.57 | 1.82 |
10 | 1.95 | 3.91 | 1.42 | 3.39 | 1.36 | 2.81 |
11 | 2.36 | 4.44 | 1.82 | 4.39 | 1.82 | 3.55 |
12 | 1.75 | 3.61 | 1.21 | 3.11 | 1.11 | 2.55 |
13 | 2.37 | 4.36 | 1.70 | 3.85 | 1.92 | 3.58 |
14 | 1.37 | 3.15 | 0.91 | 2.58 | 0.65 | 1.92 |
15 | 2.85 | 4.90 | 2.05 | 4.45 | 2.41 | 4.15 |
16 | 2.80 | 4.88 | 2.11 | 4.51 | 2.37 | 4.19 |
17 | 3.16 | 5.33 | 2.42 | 5.01 | 2.77 | 4.61 |
18 | 2.12 | 4.06 | 1.29 | 3.23 | 1.43 | 3.12 |
19 | 1.74 | 3.48 | 0.96 | 2.72 | 1.20 | 2.78 |
20 | 2.43 | 4.39 | 1.69 | 3.90 | 2.03 | 3.68 |
21 | 2.26 | 4.20 | 1.42 | 3.51 | 1.66 | 3.33 |
22 | 1.67 | 3.48 | 1.11 | 3.02 | 1.22 | 2.68 |
23 | 1.91 | 3.82 | 1.19 | 3.13 | 1.53 | 3.05 |
24 | 2.25 | 4.22 | 1.27 | 3.25 | 1.34 | 2.95 |
25 | 2.75 | 4.85 | 2.08 | 4.55 | 2.36 | 4.05 |
26 | 2.65 | 4.59 | 2.02 | 4.44 | 2.29 | 4.15 |
27 | 3.46 | 5.68 | 3.23 | 6.30 | 2.92 | 4.85 |
28 | 2.53 | 4.45 | 1.70 | 3.90 | 2.05 | 3.66 |
29 | 2.49 | 4.51 | 1.91 | 4.22 | 2.34 | 4.02 |
30 | 2.12 | 4.01 | 1.53 | 3.52 | 1.88 | 3.50 |
31 | 2.93 | 5.02 | 2.26 | 4.68 | 2.77 | 4.42 |
32 | 2.93 | 5.06 | 2.22 | 4.81 | 2.86 | 4.65 |
33 | 1.98 | 3.99 | 1.47 | 3.62 | 1.69 | 2.94 |
34 | 2.59 | 4.62 | 1.71 | 3.91 | 2.27 | 3.80 |
35 | 3.09 | 5.33 | 2.14 | 4.48 | 2.80 | 4.61 |
36 | 2.74 | 4.85 | 1.85 | 4.05 | 2.34 | 3.60 |
37 | 2.43 | 4.60 | 1.73 | 3.84 | 1.96 | 3.65 |
38 | 3.29 | 5.70 | 2.64 | 5.41 | 3.20 | 5.20 |
39 | 3.41 | 5.20 | 2.57 | 5.32 | 3.19 | 5.30 |
40 | 3.48 | 5.90 | 3.26 | 6.40 | 3.86 | 6.02 |
41 | 2.90 | 5.02 | 3.26 | 6.45 | 2.23 | 3.75 |
42 | 3.28 | 5.10 | 2.34 | 4.78 | 2.83 | 4.71 |
43 | 3.59 | 5.85 | 2.48 | 5.18 | 2.90 | 4.80 |
44 | 3.60 | 5.62 | 2.39 | 4.81 | 3.01 | 4.70 |
45 | 3.35 | 5.55 | 2.15 | 4.69 | 2.74 | 4.59 |
46 | 3.04 | 5.30 | 2.51 | 5.22 | 3.15 | 5.05 |
47 | 3.09 | 5.24 | 2.59 | 5.14 | 3.09 | 5.06 |
48 | 3.12 | 5.11 | 2.65 | 5.21 | 3.24 | 4.90 |
49 | 3.31 | 5.41 | 2.78 | 5.50 | 3.40 | 5.33 |
50 | 3.22 | 5.55 | 2.81 | 5.62 | 3.39 | 5.34 |
51 | 3.28 | 5.61 | 2.11 | 4.51 | 2.68 | 4.55 |
52 | 3.14 | 5.36 | 2.43 | 5.02 | 3.07 | 5.02 |
53 | 2.93 | 5.02 | 2.51 | 5.17 | 3.21 | 5.15 |
54 | 3.35 | 5.55 | 2.73 | 5.61 | 3.31 | 5.22 |
55 | 3.32 | 5.66 | 2.72 | 5.44 | 3.36 | 5.35 |
56 | 3.01 | 4.95 | 2.02 | 4.31 | 2.34 | 4.05 |
57 | 3.11 | 5.05 | 2.52 | 5.06 | 2.98 | 4.85 |
58 | 3.55 | 5.65 | 3.22 | 6.32 | 3.74 | 5.62 |
59 | 3.61 | 5.85 | 3.15 | 6.01 | 3.67 | 5.75 |
60 | 4.02 | 6.45 | 3.17 | 6.18 | 3.68 | 5.82 |
61 | 2.80 | 4.92 | 2.07 | 4.45 | 2.33 | 4.02 |
62 | 3.23 | 5.44 | 2.41 | 5.01 | 2.84 | 4.70 |
63 | 2.46 | 4.44 | 1.81 | 4.08 | 1.94 | 3.66 |
64 | 3.56 | 5.81 | 2.68 | 5.44 | 3.22 | 5.12 |
65 | 4.29 | 6.66 | 3.40 | 6.55 | 4.12 | 6.20 |
No. | CAS # | A | B | S | E | V | log BBexp. |
---|---|---|---|---|---|---|---|
1 | 23830-88-8 | 0.45 | 0.90 | 1.22 | 1.560 | 1.5317 | 0.16 |
2 | 21571-08-4 | 0.45 | 0.86 | 1.30 | 1.690 | 1.6541 | 0.47 |
3 | 38941-33-2 | 0.45 | 0.86 | 1.54 | 2.240 | 1.8119 | 0.58 |
4 | 4205-93-0 | 0.39 | 0.90 | 1.36 | 1.920 | 1.6369 | 0.33 |
5 | 40065-09-6 | 0.45 | 0.86 | 1.38 | 1.870 | 1.7067 | 0.41 |
6 | 4205-90-7 | 0.55 | 1.16 | 1.34 | 1.600 | 1.5317 | 0.19 |
7 | 73590-58-6 | 0.35 | 2.05 | 3.18 | 2.670 | 2.5161 | −0.82 |
8 | 28981-97-7 | 0 | 1.55 | 2.50 | 2.896 | 2.2041 | −0.04 |
9 | 84379-13-5 | 0 | 1.55 | 2.84 | 2.520 | 2.7008 | −0.09 |
10 | 78755-81-4 | 0 | 1.50 | 2.63 | 1.910 | 2.0884 | −0.29 |
11 | 59467-70-8 | 0 | 1.38 | 2.01 | 2.570 | 2.2628 | 0.32 |
12 | 99632-94-7 | 0 | 1.48 | 2.52 | 1.920 | 2.2773 | −0.25 |
13 | 2507-81-5 | 0.75 | 0.94 | 1.52 | 1.906 | 1.6051 | −0.18 |
14 | 112598-30-8 | 0.40 | 1.69 | 2.16 | 2.070 | 2.0043 | −0.66 |
15 | 7120-01-6 | 0.75 | 0.80 | 1.00 | 1.305 | 1.1382 | −0.04 |
16 | 104076-38-2 | 0.40 | 1.38 | 2.64 | 2.689 | 2.9946 | 0.14 |
17 | 104076-32-6 | 0.40 | 1.40 | 2.69 | 2.694 | 2.8898 | 0.22 |
18 | 133099-04-4 | 0.49 | 1.58 | 2.82 | 2.800 | 2.2978 | −0.62 |
19 | 142494-12-0 | 0.00 | 1.73 | 1.83 | 1.490 | 2.6577 | 0.16 |
20 | 486-56-6 | 0.00 | 1.38 | 1.49 | 1.049 | 1.3867 | 0.04 |
21 | 54-11-5 | 0.00 | 1.08 | 0.92 | 0.865 | 1.3710 | 0.56 |
22 | 494-97-3 | 0.13 | 0.85 | 1.02 | 0.990 | 1.2301 | 0.32 |
23 | 58-08-2 | 0.05 | 1.28 | 1.72 | 1.500 | 1.3632 | 0.01 |
MLR Model | Statistical Parameters | Values |
---|---|---|
Equation (10) | N | 23 |
R2 | 0.9039 | |
Q2 | 0.8756 | |
MSE | 0.01784 | |
PRESS* | 0.55198 | |
MSEcv* | 0.01784 | |
Equation (12) | N | 65 |
R2 | 0.8474 | |
Q2 | 0.8398 | |
MSE | 0.00481 | |
PRESS* | 0.3272 | |
PRESS** | 0.3076 | |
MSEcv* | 0.004799 | |
MSEcv** | 0.004799 | |
Equation (13) | N | 65 |
R2 | 0.8469 | |
Q2 | 0.8394 | |
MSE | 0.00482 | |
PRESS* | 0.3293 | |
PRESS** | 0.3100 | |
MSEcv* | 0.004841 | |
MSEcv** | 0.004841 | |
Equation (14) | N | 65 |
R2 | 0.8471 | |
Q2 | 0.8396 | |
MSE | 0.00482 | |
PRESS* | 0.3270 | |
PRESS** | 0.3067 | |
MSEcv* | 0.004817 | |
MSEcv** | 0.004817 |
Comp. Tested | A | B | S | E | V | TPSA [A2] | α [A3] | MW [g/mol] | log BB calculated | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Equation (10) | Equation (12) | Equation (13) | Equation (14) | |||||||||
1 | 0 | 1.34 | 1.73 | 1.88 | 1.8144 | 48.27 | 27.55 | 242.28 | 0.21 | 0.19 | 0.20 | 0.22 |
2 | 0 | 1.34 | 1.67 | 1.90 | 1.9553 | 48.27 | 29.30 | 256.30 | 0.32 | 0.21 | 0.22 | 0.24 |
3 | 0 | 1.33 | 1.81 | 2.01 | 1.9368 | 48.27 | 29.37 | 276.72 | 0.26 | 0.21 | 0.22 | 0.24 |
4 | 0 | 1.28 | 1.80 | 2.01 | 1.9368 | 48.27 | 29.37 | 276.72 | 0.30 | 0.21 | 0.22 | 0.24 |
5 | 0 | 1.33 | 1.84 | 2.03 | 1.9368 | 48.27 | 29.37 | 276.72 | 0.24 | 0.21 | 0.22 | 0.24 |
6 | 0 | 1.26 | 1.91 | 2.14 | 2.0592 | 48.27 | 31.20 | 311.17 | 0.34 | 0.24 | 0.24 | 0.26 |
7 | 0 | 1.67 | 2.13 | 1.94 | 2.0297 | 74.57 | 30.27 | 286.29 | −0.16 | −0.13 | −0.11 | −0.10 |
8 | 0 | 1.67 | 2.07 | 1.97 | 2.1706 | 74.57 | 32.02 | 300.31 | −0.04 | −0.11 | −0.09 | −0.08 |
9 | 0 | 1.88 | 2.26 | 2.01 | 2.2293 | 83.80 | 32.57 | 316.31 | −0.28 | −0.23 | −0.21 | −0.20 |
10 | 0 | 1.88 | 2.26 | 2.01 | 2.3702 | 83.80 | 34.40 | 330.34 | −0.20 | −0.21 | −0.19 | −0.17 |
11 | 0 | 1.65 | 2.24 | 2.09 | 2.1521 | 74.57 | 32.09 | 320.73 | −0.12 | −0.10 | −0.09 | −0.07 |
12 | 0 | 1.68 | 2.14 | 1.94 | 2.1706 | 74.57 | 32.09 | 300.31 | −0.10 | −0.11 | −0.09 | −0.07 |
13 | 0 | 1.68 | 2.08 | 1.96 | 2.3115 | 74.57 | 33.85 | 314.38 | 0.02 | −0.09 | −0.07 | −0.05 |
14 | 0 | 1.88 | 2.24 | 1.98 | 2.3702 | 83.80 | 34.40 | 330.34 | −0.20 | −0.21 | −0.20 | −0.18 |
15 | 0 | 1.62 | 2.20 | 2.07 | 2.2930 | 74.57 | 33.92 | 334.76 | 0.00 | −0.08 | −0.07 | −0.05 |
16 | 0 | 1.66 | 2.25 | 2.09 | 2.2930 | 74.57 | 33.92 | 334.76 | −0.05 | −0.08 | −0.07 | −0.05 |
17 | 0 | 1.59 | 2.32 | 2.20 | 2.4154 | 74.57 | 35.74 | 369.20 | 0.05 | −0.06 | −0.05 | −0.03 |
18 | 0 | 1.46 | 2.07 | 2.24 | 1.9603 | 61.41 | 30.82 | 280.31 | 0.06 | 0.06 | 0.07 | 0.09 |
19 | 0 | 1.46 | 2.01 | 2.26 | 2.1012 | 61.41 | 32.57 | 294.34 | 0.17 | 0.07 | 0.08 | 0.10 |
20 | 0 | 1.46 | 2.01 | 2.26 | 2.1012 | 61.41 | 32.57 | 294.34 | 0.17 | 0.08 | 0.08 | 0.11 |
21 | 0 | 1.46 | 1.95 | 2.29 | 2.2421 | 61.41 | 34.33 | 308.37 | 0.29 | 0.09 | 0.10 | 0.12 |
22 | 0 | 1.66 | 2.17 | 2.28 | 2.1599 | 70.64 | 33.12 | 310.34 | −0.04 | −0.05 | −0.03 | −0.02 |
23 | 0 | 1.66 | 2.19 | 2.31 | 2.1599 | 70.64 | 33.12 | 310.34 | −0.05 | −0.05 | −0.03 | −0.01 |
24 | 0 | 1.45 | 2.15 | 2.36 | 2.0827 | 61.41 | 32.64 | 314.75 | 0.11 | 0.07 | 0.08 | 0.10 |
25 | 0 | 1.40 | 2.13 | 2.36 | 2.0827 | 61.41 | 32.64 | 314.75 | 0.16 | 0.08 | 0.09 | 0.11 |
26 | 0 | 1.45 | 2.18 | 2.39 | 2.0827 | 61.41 | 32.64 | 314.75 | 0.09 | 0.08 | 0.09 | 0.11 |
27 | 0 | 1.38 | 2.25 | 2.50 | 2.2051 | 61.41 | 34.47 | 349.20 | 0.19 | 0.10 | 0.11 | 0.13 |
28 | 0 | 1.38 | 2.22 | 2.48 | 2.2051 | 61.41 | 34.47 | 349.20 | 0.21 | 0.09 | 0.10 | 0.12 |
29 | 0 | 1.42 | 2.19 | 2.46 | 2.1404 | 48.27 | 33.92 | 290.32 | 0.15 | 0.26 | 0.27 | 0.29 |
30 | 0 | 1.43 | 2.13 | 2.48 | 2.2813 | 48.27 | 35.68 | 304.35 | 0.26 | 0.27 | 0.28 | 0.30 |
31 | 0 | 1.43 | 2.13 | 2.48 | 2.2813 | 48.27 | 35.68 | 304.35 | 0.26 | 0.28 | 0.29 | 0.31 |
32 | 0 | 1.43 | 2.13 | 2.48 | 2.2813 | 48.27 | 35.68 | 304.35 | 0.26 | 0.28 | 0.29 | 0.31 |
33 | 0 | 1.63 | 2.29 | 2.50 | 2.3400 | 57.50 | 36.23 | 320.35 | 0.05 | 0.15 | 0.17 | 0.19 |
34 | 0 | 1.63 | 2.32 | 2.52 | 2.3400 | 57.50 | 36.23 | 320.35 | 0.04 | 0.16 | 0.17 | 0.19 |
35 | 0 | 1.63 | 2.32 | 2.52 | 2.4809 | 57.50 | 38.05 | 334.41 | 0.11 | 0.18 | 0.19 | 0.21 |
36 | 0 | 1.43 | 2.07 | 2.50 | 2.4222 | 48.27 | 37.43 | 318.37 | 0.38 | 0.29 | 0.30 | 0.32 |
37 | 0 | 1.41 | 2.27 | 2.58 | 2.2628 | 48.27 | 35.75 | 324.76 | 0.20 | 0.27 | 0.28 | 0.30 |
38 | 0 | 1.37 | 2.25 | 2.58 | 2.2628 | 48.27 | 35.75 | 324.76 | 0.25 | 0.28 | 0.29 | 0.31 |
39 | 0 | 1.41 | 2.30 | 2.61 | 2.2628 | 48.27 | 35.75 | 324.76 | 0.19 | 0.28 | 0.29 | 0.31 |
40 | 0 | 1.34 | 2.37 | 2.71 | 2.3852 | 48.27 | 37.57 | 359.21 | 0.29 | 0.30 | 0.31 | 0.34 |
41 | 0 | 1.43 | 2.19 | 2.45 | 2.2813 | 48.27 | 35.75 | 304.35 | 0.22 | 0.28 | 0.30 | 0.31 |
42 | 0 | 1.42 | 2.27 | 2.60 | 2.4037 | 48.27 | 37.57 | 338.82 | 0.28 | 0.30 | 0.31 | 0.33 |
43 | 0 | 1.42 | 2.27 | 2.60 | 2.4037 | 48.27 | 37.57 | 338.82 | 0.28 | 0.30 | 0.31 | 0.33 |
44 | 0 | 1.42 | 2.27 | 2.60 | 2.4037 | 48.27 | 37.57 | 338.82 | 0.28 | 0.30 | 0.31 | 0.33 |
45 | 0 | 1.43 | 2.14 | 2.48 | 2.4222 | 48.27 | 37.50 | 318.41 | 0.33 | 0.30 | 0.30 | 0.33 |
46 | 0 | 1.43 | 2.08 | 2.50 | 2.5631 | 48.27 | 39.26 | 332.44 | 0.45 | 0.31 | 0.32 | 0.35 |
47 | 0 | 1.43 | 2.08 | 2.50 | 2.5631 | 48.27 | 39.26 | 332.44 | 0.45 | 0.31 | 0.32 | 0.35 |
48 | 0 | 1.43 | 2.22 | 2.63 | 2.5446 | 48.27 | 39.26 | 352.85 | 0.38 | 0.31 | 0.32 | 0.35 |
49 | 0 | 1.43 | 2.22 | 2.63 | 2.5446 | 48.27 | 39.33 | 352.85 | 0.38 | 0.31 | 0.32 | 0.35 |
50 | 0 | 1.43 | 2.22 | 2.63 | 2.5446 | 48.27 | 39.33 | 352.85 | 0.38 | 0.31 | 0.32 | 0.35 |
51 | 0 | 1.63 | 2.32 | 2.52 | 2.6218 | 57.50 | 39.88 | 348.44 | 0.19 | 0.19 | 0.20 | 0.23 |
52 | 0 | 1.64 | 2.27 | 2.54 | 2.9036 | 57.50 | 41.63 | 362.47 | 0.37 | 0.21 | 0.22 | 0.25 |
53 | 0 | 1.63 | 2.41 | 2.67 | 2.7442 | 57.50 | 41.70 | 382.88 | 0.23 | 0.21 | 0.22 | 0.25 |
54 | 0 | 1.63 | 2.41 | 2.67 | 2.7442 | 57.50 | 41.70 | 382.88 | 0.23 | 0.21 | 0.22 | 0.25 |
55 | 0 | 1.63 | 2.41 | 2.61 | 2.7442 | 57.50 | 41.70 | 382.88 | 0.22 | 0.21 | 0.22 | 0.25 |
56 | 0 | 1.43 | 2.22 | 2.63 | 2.5446 | 48.27 | 39.33 | 352.85 | 0.38 | 0.31 | 0.32 | 0.34 |
57 | 0 | 1.41 | 2.30 | 2.60 | 2.4037 | 48.27 | 37.57 | 338.82 | 0.27 | 0.29 | 0.31 | 0.33 |
58 | 0 | 1.41 | 2.38 | 2.75 | 2.5261 | 48.27 | 39.40 | 373.27 | 0.31 | 0.31 | 0.33 | 0.35 |
59 | 0 | 1.41 | 2.38 | 2.75 | 2.5261 | 48.27 | 39.40 | 373.27 | 0.31 | 0.31 | 0.33 | 0.35 |
60 | 0 | 1.41 | 2.38 | 2.75 | 2.5261 | 48.27 | 39.40 | 373.27 | 0.31 | 0.32 | 0.33 | 0.35 |
61 | 0 | 1.43 | 2.20 | 2.45 | 2.4222 | 48.27 | 37.58 | 318.37 | 0.29 | 0.29 | 0.30 | 0.32 |
62 | 0 | 1.43 | 2.14 | 2.48 | 2.5631 | 48.27 | 39.33 | 332.40 | 0.41 | 0.31 | 0.32 | 0.34 |
63 | 0 | 1.42 | 2.28 | 2.58 | 2.5446 | 48.27 | 39.40 | 352.82 | 0.34 | 0.30 | 0.32 | 0.34 |
64 | 0 | 1.42 | 2.31 | 2.60 | 2.5446 | 48.27 | 39.40 | 352.82 | 0.33 | 0.31 | 0.32 | 0.35 |
65 | 0 | 1.35 | 2.38 | 2.71 | 2.6670 | 48.27 | 41.22 | 387.26 | 0.43 | 0.34 | 0.35 | 0.37 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janicka, M.; Sztanke, M.; Sztanke, K. Predicting the Blood-Brain Barrier Permeability of New Drug-Like Compounds via HPLC with Various Stationary Phases. Molecules 2020, 25, 487. https://doi.org/10.3390/molecules25030487
Janicka M, Sztanke M, Sztanke K. Predicting the Blood-Brain Barrier Permeability of New Drug-Like Compounds via HPLC with Various Stationary Phases. Molecules. 2020; 25(3):487. https://doi.org/10.3390/molecules25030487
Chicago/Turabian StyleJanicka, Małgorzata, Małgorzata Sztanke, and Krzysztof Sztanke. 2020. "Predicting the Blood-Brain Barrier Permeability of New Drug-Like Compounds via HPLC with Various Stationary Phases" Molecules 25, no. 3: 487. https://doi.org/10.3390/molecules25030487
APA StyleJanicka, M., Sztanke, M., & Sztanke, K. (2020). Predicting the Blood-Brain Barrier Permeability of New Drug-Like Compounds via HPLC with Various Stationary Phases. Molecules, 25(3), 487. https://doi.org/10.3390/molecules25030487