Flavonoid Profile of the Genista tridentata L., a Species Used Traditionally to Treat Inflammatory Processes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Biological Activity of G. Tridentata Ethanolic Extracts
2.2. Ethanolic Extracts UHPLC-DAD-ESI/MSn Analysis
2.2.1. Isoflavonoid Derivatives
2.2.2. Flavonol and Flavanonol Derivatives
2.2.3. Flavan-3-ol Derivatives
2.3. Characterization of the Isolated Metabolites
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Material
3.3. Extract Preparation
3.4. Cell Culture
3.5. Cytotoxicity Assay
3.6. The Nitric Oxide Production and NO Scavenging Assays
3.7. In Vitro Antioxidant Potential
3.8. The qPCR Analysis
3.9. The Western Blot Analysis
3.10. UHPLC-DAD-ESI/MSn Analysis PCR Analysis
3.11. Compounds Isolation and Purification
3.12. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- The Plant List database. Available online: http://www.theplantlist.org (accessed on 21 January 2020).
- Talavera, S. Flora Ibérica; CSIC (Centro Superior Investigaciones Científica): Madrid, Spain, 2001. [Google Scholar]
- Teixeira, G.; Pereira, A.L. Winged stems in Pterospartum tridentatum: Morphoanatomical study. Acta Bot. Gall. 2004, 151, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Novais, M.H.; Santos, I.; Mendes, S.; Pinto-Gomes, C. Studies on pharmaceutical ethnobotany in Arrabida Natural Park (Portugal). J. Ethnopharmacol. 2004, 93, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Neves, J.M.; Matos, C.; Moutinho, C.; Queiroz, G.; Gomes, L.R. Ethnopharmacological notes about ancient uses of medicinal plants in Trás-os-Montes (northern of Portugal). J. Ethnopharmacol. 2009, 124, 270–283. [Google Scholar] [CrossRef] [PubMed]
- Coelho, M.T.; Gonçalves, J.C.; Alves, V.; Martins, M.M. Antioxidant activity and phenolic content of extracts from different Pterospartum tridentatum populations growing in Portugal. Procedia Food Sci. 2012, 1, 1454–1458. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, S.; Gomes, D.; Costa, P.; Romano, A. The phenolic content and antioxidant activity of infusions from Mediterranean medicinal plants. Ind. Crops Prod. 2013, 43, 465–471. [Google Scholar] [CrossRef]
- Roriz, C.L.; Barros, L.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Scientific validation of synergistic antioxidant effects in commercialized mixtures of Cymbopogon citratus and Pterospartum tridentatum or Gomphrena globosafor infusions preparation. Food Chem. 2015, 185, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Vitor, R.F.; Mota-Filipe, H.; Teixeira, G.; Borges, C.; Rodrigues, A.I.; Teixeira, A.; Paulo, A. Flavonoids of an extract of Pterospartum tridentatum showing endothelial protection against oxidative injury. J. Ethnopharmacol. 2004, 93, 363–370. [Google Scholar] [CrossRef]
- Aires, A.; Marrinhas, E.; Carvalho, R.; Dias, C.; Saavedra, M.J. Phytochemical composition and antibacterial activity of hydroalcoholic extracts of Pterospartum tridentatum and Mentha pulegium against Staphylococcus aureus isolates. BioMed Res. Inter. 2016, 5201879. [Google Scholar] [CrossRef] [Green Version]
- Martins, V.M.R.L.; Simões, J.; Ferreira, I.; Cruz, M.T.; Domingues, M.R.; Coimbra, M.A. In vitro macrophage nitric oxide production by Pterospartum tridentatum (L.) Willk. inflorescence polysaccharides. Carbohydr. Polym. 2017, 157, 176–184. [Google Scholar] [CrossRef] [Green Version]
- Hunter, P. The inflammation theory of disease. EMBO Rep. 2012, 13, 968–970. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018, 9, 7204–7218. [Google Scholar] [CrossRef] [Green Version]
- Paulo, A.; Martins, S.; Branco, P.; Dias, T.; Borges, C.; Rodrigues, A.I.; Costa, M.C.; Teixeira, A.; Mota-Filipe, H. The opposing effects of the flavonoids isoquercitrin and sissotrin, isolated from Pterospartum tridentatum, on oral glucose tolerance in rats. Phytother. Res. 2008, 22, 539–543. [Google Scholar] [CrossRef]
- Yang, G.; Ham, I.; Choi, H.-Y. Anti-inflammatory effect of prunetin via the suppression of NF-κB pathway. Food Chem. Toxicol. 2013, 58, 124–132. [Google Scholar] [CrossRef]
- Byun, E.B.; Sung, N.Y.; Yang, M.S.; Lee, B.S.; Song, D.S.; Park, J.N.; Kim, J.H.; Jang, B.S.; Choi, D.S.; Park, S.H.; et al. Anti-inflammatory effect of gamma-irradiated genistein through inhibition of NF-κB and MAPK signaling pathway in lipopolysaccharide-induced macrophages. Food Chem. Toxicol. 2014, 74, 255–264. [Google Scholar] [CrossRef]
- Hämäläinen, M.; Nieminen, R.; Vuorela, P.; Heinonen, M.; Moilanen, E. Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-κB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-κB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm. 2007, 2007, 45673. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.-S.; Kundu, J.K.; Chun, K.-S.; Na, H.-K.; Surh, Y.-J. Rutin inhibits UVB radiation-induced expression of COX-2 and iNOS in hairless mouse skin: p38 MAP kinase and JNK as potential targets. Arch. Biochem. Biophys. 2014, 559, 38–45. [Google Scholar] [CrossRef]
- Majno, G. Chronic Inflammation. Links with angiogenesis and wound healing. Am. J. Pathol. 1998, 153, 1035–1039. [Google Scholar] [CrossRef]
- Roriz, C.L.; Barros, L.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Pterospartum tridentatum, Gomphrena globosa and Cymbopogon citratus: A phytochemical study focused on antioxidant compounds. Food Res. Inter. 2014, 62, 684–693. [Google Scholar] [CrossRef] [Green Version]
- Razali, N.; Razab, R.; Junit, S.M.; Aziz, A.A. Radical scavenging and reducing properties of extracts of cashew shoots (Anacardium occidentale). Food Chem. 2008, 111, 38–44. [Google Scholar] [CrossRef]
- Procházková, D.; Boušová, I.; Wilhelmová, N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia 2011, 82, 513–523. [Google Scholar] [CrossRef]
- Kole, L.; Giri, B.; Manna, S.K.; Pal, B.; Ghosh, S. Biochanin-A, an isoflavon, showed anti-proliferative and anti-inflammatory activities through the inhibition of iNOS expression, p38-MAPK and ATF-2 phosphorylation and blocking NFκB nuclear translocation. Eur. J. Pharmacol. 2011, 653, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Daruházi, Á.E.; Kiss, T.; Vecsernyés, M.; Szente, L.; Szöke, É.; Lemberkovics, É. Investigation of transport of genistein, daidzein and their inclusion complexes prepared with different cyclodextrins on Caco-2 cell line. J. Pharm. Biomed. Anal. 2013, 84, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Park, C.E.; Yun, H.; Lee, E.-B.; Min, B.-I.; Bae, H.; Choe, W.; Kang, I.; Kim, S.-S.; Ha, J. The antioxidant effects of genistein are associated with AMP-activated protein kinase activation and PTEN induction in prostate cancer cells. J. Med. Food 2010, 13, 815–820. [Google Scholar] [CrossRef]
- Magiera, S.; Baranowska, I.; Lautenszleger, A. UHPLC–UV method for the determination of flavonoids in dietary supplements and for evaluation of their antioxidant activities. J. Pharm. Biomed. Anal. 2015, 102, 468–475. [Google Scholar] [CrossRef]
- Choi, E.J.; Kim, T.; Lee, M.S. Pro-apoptotic effect and cytotoxicity of genistein and genistin in human ovarian cancer SK-OV-3 cells. Life Sci. 2007, 80, 1403–1408. [Google Scholar] [CrossRef]
- Baldisserotto, A.; Vertuani, S.; Bino, A.; De Lucia, D.; Lampronti, I.; Milani, R.; Gambari, R.; Manfredini, S. Design, synthesis and biological activity of a novel rutin analogue with improved lipid soluble properties. Bioorg. Med. Chem. 2015, 23, 264–271. [Google Scholar] [CrossRef]
- Khan, K.; Pal, S.; Yadav, M.; Maurya, R.; Trivedi, A.K.; Sanyal, S.; Chattopadhyay, N. Prunetin signals via G-protein-coupled receptor, GPR30(GPER1): Stimulation of adenylyl cyclase and cAMP-mediated activation of MAPK signaling induces Runx2 expression in osteoblasts to promote bone regeneration. J. Nutr. Biochem. 2015, 26, 1491–1501. [Google Scholar] [CrossRef]
- Choi, E.-Y.; Jin, J.-Y.; Lee, J.-Y.; Choi, J.-I.; Choi, I.S.; Kim, S.-J. Anti-inflammatory effects and the underlying mechanisms of action of daidzein in murine macrophages stimulated with Prevotella intermedia lipopolysaccharide. J. Periodontal Res. 2012, 47, 204–211. [Google Scholar] [CrossRef]
- Hershko, D.D.; Robb, B.W.; Luo, G.; Hasselgren, P.-O. Multiple transcription factors regulating the IL-6 gene are activated by cAMP in cultured Caco-2 cells. Am. J. Physiol. Integr. Comp. Physiol. 2002, 283, R1140–R1148. [Google Scholar] [CrossRef] [Green Version]
- Falvo, J.V.; Tsytsykova, A.V.; Goldfeld, A.E. Transcriptional control of the TNF gene. Curr. Dir. Autoimmun. 2010, 11, 27–60. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, J.C.; Coelho, M.T.; Diogo, M.G.; Alves, V.D.; Bronze, M.R.; Coimbra, M.A.; Martins, V.M.; Moldão-Martins, M. In vitro shoot cultures of Pterospartum tridentatum as an alternative to wild plants as a source of bioactive compounds. Nat. Prod. Commun. 2018, 13, 439–442. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Hick, L.A.; Price, W.E. A fragmentation study of isoflavones in negative electrospray ionization by MSn ion trap mass spectrometry and triple quadrupole mass spectrometry. Rap. Commun. Mass Spectrom. 2007, 21, 857–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabre, N.; Rustan, I.; Hoffmann, E.; Quetin-Leclercq, J. Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. J. Am. Mass Spectrom. 2001, 12, 707–715. [Google Scholar] [CrossRef] [Green Version]
- March, R.E.; Miao, X.-S. A fragmentation study of kaempferol using electrospray quadrupole time-of-flight mass spectrometry at high mass resolution. Int. J. Mass Spectrom. 2004, 231, 157–167. [Google Scholar] [CrossRef]
- Mok, S.-Y.; Kim, H.M.; Lee, S. Isolation of astragalin from flowers of Rhododendron mucronulatum for. albiflorum. Hort. Environ. Biotechnol. 2013, 54, 450–455. [Google Scholar] [CrossRef]
- Xiao, X.; Xu, L.; Hu, H.; Yang, Y.; Zhang, X.; Peng, Y.; Xiao, P. DPPH Radical scavenging and postprandial hyperglycemia inhibition activities and flavonoid composition analysis of Hawk tea by UPLC-DAD and UPLC-Q/TOF MSE. Molecules 2017, 22, 1622. [Google Scholar] [CrossRef]
- Ferreira, F.M.; Dinis, L.T.; Azedo, P.; Galhano, C.I.C.; Simões, A.; Cardoso, S.M.; Domingues, M.R.M.; Pereira, O.R.; Palmeira, C.M.; Peixoto, F.P. Antioxidant capacity and toxicological evaluation of Pterospartum tridentatum flower extracts. CyTA J. Food 2012, 10, 92–102. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, R.M.; El-Halawany, A.M.; Saleh, D.O.; El-Naggar, E.M.B.; El-Shabrawy, A.E.O.; El-Hawary, S.S. HPLC-DAD-MS/MS profiling of phenolics from Securigera securidaca flowers and its anti-hyperglycemic and anti-hyperlipidemic activities. Brazilian J. Pharmacogn. 2015, 25, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Price, W.E.; Ashton, J.; Tapsell, L.C.; Johnson, S. Identification and characterization of phenolic compounds in hydromethanolic extracts of sorghum whole grains by LC-ESI-MSn. Food Chem. 2016, 211, 215–226. [Google Scholar] [CrossRef] [Green Version]
- Yuzuak, S.; Ballington, J.; Xie, D.-Y. HPLC-qTOF-MS/MS-based profiling of flavan-3-ols and dimeric proanthocyanidins in berries of two muscadine grape hybrids FLH 13-11 and FLH 17-66. Metabolites 2018, 8, 57. [Google Scholar] [CrossRef] [Green Version]
- Yusook, K.; Weeranantanapan, O.; Hua, Y.; Kumkrai, P.; Chudapongse, N. Lupinifolin from Derris reticulata possesses bactericidal activity on Staphylococcus aureus by disrupting bacterial cell membrane. J. Nat. Med. 2017, 71, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Alavez-Solano, D.; Reyes-Chilpa, R.; Jiménez-Estrada, M.; Gómez-Garibay, F.; Chavez-Uribe, I.; Sousa-Sánchez, M. Flavanones and 3-hydroxyflavanones from Lonchocarpus oaxacensis. Phytochemistry 2000, 55, 953–957. [Google Scholar] [CrossRef]
- Sutthivaiyakit, S.; Thongnak, O.; Lhinhatrakool, T.; Yodchun, O.; Srimark, R.; Dowtaisong, P.; Chuankamnerdkarn, M. Cytotoxic and antimycobacterial prenylated flavonoids from the roots of Eriosema chinense. J. Am. Chem. Soc. 2009, 72, 1092–1096. [Google Scholar] [CrossRef]
- Itoigawa, M.; Ito, C.; Ju-Ichi, M.; Nobukuni, T.; Ichiishi, E.; Tokuda, H.; Nishino, H.; Furukawa, H. Cancer chemopreventive activity of flavanones on Epstein-Barr virus activation and two-stage mouse skin carcinogenesis. Cancer Lett. 2002, 176, 25–29. [Google Scholar] [CrossRef]
- Reyes-Chilpa, R.; Baggio, C.H.; Alavez-Solano, D.; Estrada-Muñiz, E.; Kauffman, F.C.; Sanchez, R.I.; Mesia-Vela, S. Inhibition of gastric H+,K+-ATPase activity by flavonoids, coumarins and xanthones isolated from Mexican medicinal plants. J. Ethnopharmacol. 2006, 105, 167–172. [Google Scholar] [CrossRef]
- Brien, J.O.; Wilson, I.; Orton, T.; Pognan, F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. 2000, 267, 5421–5426. [Google Scholar] [CrossRef]
- Nasri, H.; Baradaran, A.; Shirzad, H.; Rafieian-Kopaei, M. New concepts in nutraceuticals as alternative for pharmaceuticals. Int. J. Prev. Med. 2014, 5, 1487–1499. [Google Scholar]
- Bull, E.; Rapport, L.; Lockwood, B. What is a nutraceutical? 2000. Available online: https://www.pharmaceutical-journal.com/1-what-is-a-nutraceutical/20002095.article (accessed on 11 February 2020).
Sample Availability: Samples of the compounds are not available from the authors. |
tR * | λmax | [M − H]− | MS2 | MS3 | Assigned Identification | R | L | S |
---|---|---|---|---|---|---|---|---|
8.59 | 198, 224, 292, sh338 | 465 | 447(10) [M − H − H2O]− 375(9) [M − H − C3H6O3]− 345(100) [M − H − C4H8O4]− 303(7) [M − H − glucose]− | 357(9) [M − H − H2O − C3H6O3]− 327(100) [M − H − H2O − C4H8O4]− 285(11) [M − H − glucose − H2O]− 195(11) [M − H − glucose − C6H4O2] 167(18) [M − H − glucose − C7H4O3] | b,c Taxifolin glucoside I | ✓ | ||
8.69 | 192, 254, sh314 | 445 | 430(5) [M − H − CH3]− 427(1) [M − H − H2O]− 355(3) [M − H − C3H6O3]− 325(7) [M − H − C4H8O4]− 283(100) [M − H − glucose]− 267(2) [M − H − Oglucose]− | 268(100) [M − H − CH3 − glucose]− 255(2) [M − H − glucose − CO]− | c Sissotrin | ✓ | ||
8.74 | 198, 229, 291, sh335 | 465 | 447 (10) [M − H − H2O]− 375(10) [M − H − C3H6O3]− 345(100) [M − H − C4H8O4]− 303(7) [M − H − glucose]− | 357(9) [M − H − H2O − C3H6O3]− 327(100) [M − H − H2O − C4H8O4]− 285(11) [M − H − glucose − H2O]− 195(11) [M − H − glucose − C6H4O2] 167(18) [M − H − glucose − C7H4O3] | b,c Taxifolin glucoside II | ✓ | ||
9.15 | 194, 260, 231, 330 | 593 | 575(10) [M − H − H2O]− 503(7) [M − H − C3H6O3]− 473(100) [M − H − C4H8O4]− 431(7) [M − H − glucose]− 415(2) [M − H − Oglucose]− 269(7) [M − H − 2glucose]− | 311(7) [M − H − glucose − C4H8O4]− 325(2) [M − H − Oglucose − C3H6O3]− 253(2) [M − H − Oglucose − glucose]− | c Genistein O- and C-glucoside | ✓ | ✓ | |
9.24 | 199, 217, 290, sh336 | 465 | 447(80) [M − H − H2O]− 375(15) [M − H − C3H6O3]− 345(70) [M − H − C4H8O4]− 303(30) [M − H − glucose]− 285(100) [M − H − H2O − glucose]− | 177(18) [M − H − H2O − glucose − C6H4O2]− 151(15) [M − H − H2O − glucose − C7H2O3]− | b,c Taxifolin glucoside III | ✓ | ✓ | |
9.76 | 220, 265 | 467 | 449(10) [M − H − H2O]− 345(100) [M − H − C6H2O3]− 305(10) [M − H − glucose]− 289(2) [M − H − Oglucose]− 275(11) [M − H − CH2 − Oglucose]− | b,c Gallocatechin 3-O-glucoside | ✓ | ✓ | ||
9.87 | 194, 259, sh330 | 639 | 621(8) [M − H − H2O]− 593(22) [M − H − CH2O2]− 549(7) [M − H − C3H6O3]− 519(83) [M − H − C4H8O4]− 477(100) [M − H − glucose]− 431(100) [M − H − CH2O2 − glucose]− | 269(100) [M − H − CH2O2 − 2glucose]− 549(22) [M − H − CO2 − CH2O2]− 357(6) [M − H − glucose − C4H8O4]− 315(7) [M − H − 2glucose]− | d Formic acid genistein O- and C-glucoside adduct | ✓ | ✓ | |
10.49 | 198, 261, sh336 | 447 | 429(100) [M − H − H2O]− 403(100) [M − H − CO2]− 357(3) [M − H − C3H6O3]− 327(6) [M − H − C4H8O4]− 285(10) [M − H − glucose]− 269(30) [M − H − Oglucose]− | 267(23) [M − H − glucose − H2O]− 257(7) [M − H − glucose − CO]− 241(27) [M − H − glucose − CO2]− 217(3) [M − H − glucose − C3O2]− 177(11) 0,4B− 149(16) [M − H − glucose − C7H4O3]− | a,c Astragalin | ✓ | ||
10.64 | 221, 265 | 467 | 449(10) [M − H − H2O]− 345(100) [M − H − C6H2O3]− 305(10) [M − H − glucose]− 289(2) [M − H − Oglucose]− 275(11) [M − H − CH2 − Oglucose]− | 257(23) [M − H − H2O − CH2 − Oglucose]− | b,c Epigallocatechin 3-O-glucoside | ✓ | ✓ | |
10.89 | 199, 220, 290, sh340 | 479 | 389(7) [M − H − C3H6O3]− 359(100) [M − H − C4H8O4]− | 341(36) [M − H − H2O − C3H6O3]− 331(100) [M − H − CO − C3H6O3]− 315(4) [M − H − CO2 − C3H6O3]−194(15) 1,4B− | a,c Myricetin 6-C-glucoside | ✓ | ||
11.14 | 194, 255, sh328 | 491 | 445(100) [M − H − CH2O2]− 283(24) [M − H − CH2O2 − glucose]− | 283(16) [M − H − glucose]− 268(100) [M − H − glucose − CH3]− 255(1) [M − H − glucose − CO]− 239(5) [M − H − glucose − CO2]− 237(1) [M − H − H2O − CO]− | d Formic acid biochanin O-glucoside adduct | ✓ | ✓ | |
13.37 | 206, 227, 249, 271, sh328 | 431 | 413(3) [M − H − H2O]− 341(7) [M − H − C3H6O3]− 311(100) [M − H − C4H8O4]− 269(13) [M − H − glucose]− | 293(15) [M − H − H2O − C4H8O4]− 282(100) [M − H − HCO − C4H8O4]− 225(4) [M − H − glucose − CO2]− | c Genistein 6- or 8-C-glucoside | ✓ | ✓ | ✓ |
13.69 | 192, 262, sh332 | 461 | 446(12) [M − H − CH3]− 443(1) [M − H − H2O]− 371(7) [M − H − C3H6O3]− 341(7) [M − H − C4H8O4]− 299(23) [M − H − glucose]− 283(38) [M − H − Oglucose]− | 326(3) [M − H − CH3 − C4H8O4]− 268(2) [M − H − CH3 − Oglucose]− 255(4) [M − H − CO − Oglucose]− | c 5,5′-Dihydroxy-3′-methoxyisoflavone 7-O-glucoside | ✓ | ✓ | ✓ |
14.73 | 196, 260, sh334 | 477 | 459(9) [M − H − H2O]− 433(6) [M − H − CO2]− 387(7) [M − H − C3H6O3]− 357(70) [M − H − C4H8O4]− 315(100) [M − H − glucose]− 297(10) [M − H − H2O − glucose]− | 297(75) [M − H − H2O − glucose]− 282(100) [M − H − H2O − glucose − CH3]− 269(13) [M − H − H2O − glucose − CO]− | a,c Isorhamnetin 3-O-glucoside | ✓ | ||
15.35 | 255, sh318 | 283 | 268(100) [M − H − CH3]− 255(2) [M − H − CO]− 239(4) [M − H − CO2]− 165(1) 1,3A− | 196(1) [M − H − CH3 − CO2 − CO]− | c Prunetin | ✓ | ✓ | |
16.08 | 249, sh295, 301 | 253 | 225(70) [M − H − CO]− 211(3) [M − H − C2H2O]− 209(7) [M − H − CO2]− 135(2) 1,3A− 117(1) 1,3B− | 197(7) [M − H − CO2 − CO]− | c Daidzein | ✓ | ||
16.57 | 198, 261, sh294 | 285 | 267(4) [M − H − H2O]− 257(51) [M − H − CO]− 241(27) [M − H − CO2]− 217(53) [M − H − C3O2]− 177(7) 0,4B− 149(11) [M − H − C7H4O3]− | 229(4) [M − H − 2CO]− 199(72) [M − H − H2O − C3O2]− | a,c Kaempferol | ✓ | ||
17.09 | 194, 255, sh320 | 283 | 269(3) [M − CH3]− 268(55) [M − H − CH3]− 265(10) [M − H − H2O]− 255(91) [M − H − CO]− 151(1) 1,3A− 132(1) 1,3B− 149(4) 0,3B− | 237(4) [M − H − H2O − CO]− 212(5) [M − H − CH3 − 2CO]− 181(3) [M − CH3 − 2CO2]− | c Biochanin A | ✓ | ||
18.88 | 195, 261, sh332 | 269 | 251(12) [M − H − H2O]− 241(86) [M − H − CO]− 225(97) [M − H − CO2]− 201(10) [M − H − C3O2]− 151(10) 1,3A− 117(4) 1,3B− | 197(17) [M − H − CO2 − CO]− 181(3) [M − H − 2CO2]− | c Genistein | ✓ | ✓ | ✓ |
21.03 | 194, 260, sh320 | 297 | 282(10) [M − H − CH3]− 279(4) [M − H − H2O]− 269(6) [M − H − CO]− 253(3) [M − H − CO2]− | 241(3) [M − H − 2CO]− 225(5) [M − H − CO − CO2]− | c 5-Hydroxy-4′,7-dimethoxyisoflavone | ✓ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simões, M.A.M.; Pinto, D.C.G.A.; Neves, B.M.R.; Silva, A.M.S. Flavonoid Profile of the Genista tridentata L., a Species Used Traditionally to Treat Inflammatory Processes. Molecules 2020, 25, 812. https://doi.org/10.3390/molecules25040812
Simões MAM, Pinto DCGA, Neves BMR, Silva AMS. Flavonoid Profile of the Genista tridentata L., a Species Used Traditionally to Treat Inflammatory Processes. Molecules. 2020; 25(4):812. https://doi.org/10.3390/molecules25040812
Chicago/Turabian StyleSimões, Mark A. M., Diana C. G. A. Pinto, Bruno M. R. Neves, and Artur M. S. Silva. 2020. "Flavonoid Profile of the Genista tridentata L., a Species Used Traditionally to Treat Inflammatory Processes" Molecules 25, no. 4: 812. https://doi.org/10.3390/molecules25040812
APA StyleSimões, M. A. M., Pinto, D. C. G. A., Neves, B. M. R., & Silva, A. M. S. (2020). Flavonoid Profile of the Genista tridentata L., a Species Used Traditionally to Treat Inflammatory Processes. Molecules, 25(4), 812. https://doi.org/10.3390/molecules25040812