Encapsulation Systems for Antimicrobial Food Packaging Components: An Update
Abstract
:1. Antimicrobial Food Packaging
1.1. Antimicrobial Substances Used in Food Packaging
1.1.1. Organic Acids and Their Salts
1.1.2. Bacteriocins
1.1.3. Enzymes
1.1.4. Biopolymers
1.1.5. Natural Extracts and Compounds
1.1.6. Essential Oils and Their Components
1.1.7. Metal Nanoparticles
1.1.8. Phages
2. Encapsulation Strategies for Antimicrobial Packaging
2.1. Emulsions
2.2. Core-Shell Nanofibers: Emulsion and Coaxial Electrospinning
2.3. Cyclodextrins
2.4. Halloysites Nanotubes
2.5. Liposomes
2.6. Other Encapsulating Particles
3. Conclusions and Future Trends
Author Contributions
Funding
Conflicts of Interest
References
- European Union Food Safety to Fork: Safe and Healthy Food for Everyone The EU Explained, Agriculture. Available online: http://europa.eu/pol/index_en.htm (accessed on 1 March 2020).
- European Parliament Legislative Resolution of 19 November 2008 on the Proposal for A Council Decision Amending Decision 2006/144/EC on the Community Strategic Guidelines for Rural Development (Programming Period 2007 to 2013). Off. J. Eur. Union 2013. Available online: https://op.europa.eu/en/publication-detail/-/publication/464b67b4-2521-459a-a2f0-2520b8783d07/language-en (accessed on 20 January 2020).
- Key Facts on Food Loss and Waste You Should Know! | SAVE FOOD: Global Initiative on Food Loss and Waste Reduction | Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/save-food/resources/keyfindings/en/ (accessed on 11 November 2019).
- Lemaire, A.; Limbourg, S. How can food loss and waste management achieve sustainable development goals? J. Clean. Prod. 2019, 234, 1221–1234. [Google Scholar] [CrossRef]
- Otoni, C.G.; Espitia, P.J.P.; Avena-Bustillos, R.J.; McHugh, T.H. Trends in antimicrobial food packaging systems: Emitting sachets and absorbent pads. Food Res. Int. 2016, 83, 60–73. [Google Scholar] [CrossRef]
- World Health Organization. WHO Estimates of the Global Burden of Foodborne Diseases: Foodborne Disease Burden Epidemiology Reference Group 2007–2015; World Health Organization (WHO): Geneva, Switzerland, 2015; pp. 1–15. [Google Scholar]
- Radusin, T.; Škrinjar, M.M.; Cabarkapa, I.; Pilić, B.; Novaković, A.R.; Hromiš, N.M. Actual and future trends in antimicrobial food packaging. Agro Food Ind. Hi. Tech. 2013, 24, 44–48. [Google Scholar]
- Silva, F.; Becerril, R.; Nerin, C. Safety assessment of active food packaging: Role of known and unknown substances. In Advances in the Determination of Xenobiotics in Foods; Bentham Science Publishers Pte. Ltd.: Singapore, 2019; pp. 1–41. [Google Scholar]
- Dobrucka, R. Antimicrobial packaging with natural compunds - a review. Logforum 2015, 12, 193–202. [Google Scholar]
- Smulders, F.J.M.; Paulsen, P.; Vali, S.; Wanda, S. Effectiveness of a polyamide film releasing lactic acid on the growth of E. coli O157: H7, Enterobacteriaceae and Total Aerobic Count on vacuum-packed beef. Meat Sci. 2013, 95, 160–165. [Google Scholar] [CrossRef]
- Akhter, R.; Masoodi, F.A.; Wani, T.A.; Rather, S.A. Functional characterization of biopolymer based composite film: Incorporation of natural essential oils and antimicrobial agents. Int. J. Biol. Macromol. 2019, 137, 1245–1255. [Google Scholar] [CrossRef]
- Birck, C.; Degoutin, S.; Maton, M.; Neut, C.; Bria, M.; Moreau, M.; Fricoteaux, F.; Miri, V.; Bacquet, M. Antimicrobial citric acid/poly(vinyl alcohol) crosslinked films: Effect of cyclodextrin and sodium benzoate on the antimicrobial activity. Lwt - Food Sci. Technol. 2016, 68, 27–35. [Google Scholar] [CrossRef]
- Liang, X.; Feng, S.; Ahmed, S.; Qin, W.; Liu, Y. Effect of potassium sorbate and ultrasonic treatment on the properties of fish scale collagen/polyvinyl alcohol composite film. Molecules 2019, 24, 2363. [Google Scholar] [CrossRef] [Green Version]
- Barbiroli, A.; Musatti, A.; Capretti, G.; Iametti, S.; Rollini, M. Sakacin-A antimicrobial packaging for decreasing Listeria contamination in thin-cut meat: Preliminary assessment. J. Sci. Food Agric. 2017, 97, 1042–1047. [Google Scholar] [CrossRef]
- Mapelli, C.; Musatti, A.; Barbiroli, A.; Saini, S.; Bras, J.; Cavicchioli, D.; Rollini, M. Cellulose nanofiber (CNF)–sakacin-A active material: Production, characterization and application in storage trials of smoked salmon. J. Sci. Food Agric. 2019, 99, 4731–4738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meira, S.M.M.; Zehetmeyer, G.; Werner, J.O.; Brandelli, A. A novel active packaging material based on starch-halloysite nanocomposites incorporating antimicrobial peptides. Food Hydrocoll. 2017, 63, 561–570. [Google Scholar] [CrossRef]
- Zimet, P.; Mombrú, Á.W.; Mombrú, D.; Castro, A.; Villanueva, J.P.; Pardo, H.; Rufo, C. Physico-chemical and antilisterial properties of nisin-incorporated chitosan/carboxymethyl chitosan films. Carbohydr. Polym. 2019, 219, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Woraprayote, W.; Kingcha, Y.; Amonphanpokin, P.; Kruenate, J.; Zendo, T.; Sonomoto, K.; Benjakul, S.; Visessanguan, W. Anti-listeria activity of poly(lactic acid)/sawdust particle biocomposite film impregnated with pediocin PA-1/AcH and its use in raw sliced pork. Int. J. Food Microbiol. 2013, 167, 229–235. [Google Scholar] [CrossRef] [PubMed]
- de Lima Marques, J.; Funck, G.D.; da Silva Dannenberg, G.; dos Santos Cruxen, C.E.; El Halal, S.L.M.; Dias, A.R.G.; Fiorentini, Â.M.; da Silva, W.P. Bacteriocin-like substances of Lactobacillus curvatus P99: Characterization and application in biodegradable films for control of Listeria monocytogenes in cheese. Food Microbiol. 2017, 63, 159–163. [Google Scholar] [CrossRef]
- Salvucci, E.; Rossi, M.; Colombo, A.; Pérez, G.; Borneo, R.; Aguirre, A. Triticale flour films added with bacteriocin-like substance (BLIS) for active food packaging applications. Food Packag. Shelf Life 2019, 19, 193–199. [Google Scholar] [CrossRef]
- Degli Esposti, M.; Toselli, M.; Sabia, C.; Messi, P.; de Niederhäusern, S.; Bondi, M.; Iseppi, R. Effectiveness of polymeric coated films containing bacteriocin-producer living bacteria for Listeria monocytogenes control under simulated cold chain break. Food Microbiol. 2018, 76, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Vincent Edwards, J.; Prevost, N.; Huang, Y.; Chen, J.Y. Physico- and bio-activities of nanoscale regenerated cellulose nonwoven immobilized with lysozyme. Mater. Sci. Eng. C 2018, 91, 389–394. [Google Scholar] [CrossRef]
- Barbiroli, A.; Bonomi, F.; Capretti, G.; Iametti, S.; Manzoni, M.; Piergiovanni, L.; Rollini, M. Antimicrobial activity of lysozyme and lactoferrin incorporated in cellulose-based food packaging. Food Control 2012, 26, 387–392. [Google Scholar] [CrossRef] [Green Version]
- Bugatti, V.; Vertuccio, L.; Viscusi, G.; Gorrasi, G. Antimicrobial membranes of bio-based pa 11 and hnts filled with lysozyme obtained by an electrospinning process. Nanomaterials 2018, 8, 47–53. [Google Scholar]
- Murillo-Martínez, M.M.; Tello-Solís, S.R.; García-Sánchez, M.A.; Ponce-Alquicira, E. Antimicrobial Activity and Hydrophobicity of Edible Whey Protein Isolate Films Formulated with Nisin and/or Glucose Oxidase. J. Food Sci. 2013, 78, M560–M566. [Google Scholar] [CrossRef] [PubMed]
- Jasour, M.S.; Ehsani, A.; Mehryar, L.; Naghibi, S.S. Chitosan coating incorporated with the lactoperoxidase system: An active edible coating for fish preservation. J. Sci. Food Agric. 2015, 95, 1373–1378. [Google Scholar] [CrossRef] [PubMed]
- Massouda, D.F.; Visioli, D.; Green, D.A.; Joerger, R.D. Extruded blends of chitosan and ethylene copolymers for antimicrobial packaging. Packag. Technol. Sci. 2012, 25, 321–327. [Google Scholar] [CrossRef]
- Şen, F.; Kahraman, M.V. Preparation and characterization of hybrid cationic hydroxyethyl cellulose/sodium alginate polyelectrolyte antimicrobial films. Polym. Adv. Technol. 2018, 29, 1895–1901. [Google Scholar] [CrossRef]
- Alves, D.; Marques, A.; Milho, C.; José Costa, M.; Pastrana, L.M.; Cerqueira, M.A.; Sillankorva, S.M. Bacteriophage ϕIBB-PF7A loaded on sodium alginate-based films to prevent microbial meat spoilage. Int. J. Food Microbiol. 2018, 291, 121–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amarillas, L.; Lightbourn-Rojas, L.; Angulo-Gaxiola, A.K.; Basilio Heredia, J.; González-Robles, A.; León-Félix, J. The antibacterial effect of chitosan-based edible coating incorporated with a lytic bacteriophage against Escherichia coli O157:H7 on the surface of tomatoes. J. Food Saf. 2018, 38, e12571–e12581. [Google Scholar] [CrossRef]
- Lone, A.; Anany, H.; Hakeem, M.; Aguis, L.; Avdjian, A.-C.; Bouget, M.; Atashi, A.; Brovko, L.; Rochefort, D.; Griffiths, M.W. Development of prototypes of bioactive packaging materials based on immobilized bacteriophages for control of growth of bacterial pathogens in foods. Int. J. Food Microbiol. 2016, 217, 49–58. [Google Scholar] [CrossRef]
- Silva, F.; Gracia, N.; McDonagh, B.H.; Domingues, F.C.; Nerín, C.; Chinga-Carrasco, G. Antimicrobial activity of biocomposite films containing cellulose nanofibrils and ethyl lauroyl arginate. J. Mater. Sci. 2019, 54, 12159–12170. [Google Scholar] [CrossRef]
- Shankar, S.; Rhim, J.W. Preparation of sulfur nanoparticle-incorporated antimicrobial chitosan films. Food Hydrocoll. 2018, 82, 116–123. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, B.; Wang, S.; Zhang, L.; Wang, J.; Huang, X.; Zhao, Y.; Huang, L. Moisture-triggered release of self-produced ClO2 gas from microcapsule antibacterial film system. J. Mater. Sci. 2018, 53, 12704–12717. [Google Scholar] [CrossRef]
- Sekhavat Pour, Z.; Makvandi, P.; Ghaemy, M. Performance properties and antibacterial activity of crosslinked films of quaternary ammonium modified starch and poly(vinyl alcohol). Int. J. Biol. Macromol. 2015, 80, 596–604. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, D.J.; Azlin-Hasim, S.; Cruz-Romero, M.; Cummins, E.; Kerry, J.P.; Morris, M.A. Antimicrobial effect of benzoic and sorbic acid salts and nano-solubilisates against Staphylococcus aureus, Pseudomonas fluorescens and chicken microbiota biofilms. Food Control 2020, 107, 106786. [Google Scholar] [CrossRef]
- Khaneghah, A.M.; Hashemi, S.M.B.; Es, I.; Fracassetti, D.; Limbo, S. Efficacy of antimicrobial agents for food contact applications: Biological activity, incorporation into packaging, and assessment methods: A review. J. Food Prot. 2018, 81, 1142–1156. [Google Scholar] [CrossRef] [PubMed]
- Mousavi Khaneghah, A.; Hashemi, S.M.B.; Limbo, S. Antimicrobial agents and packaging systems in antimicrobial active food packaging: An overview of approaches and interactions. Food Bioprod. Process. 2018, 111, 1–19. [Google Scholar] [CrossRef]
- European Commission Regulation (EC) No 1333/2008 of the European Parliament and of the Council of 16 December 2008 on Food Additives. Off. J. Eur. Union. 2008, L 354, 16–33. Available online: https://eur-lex.europa.eu/eli/reg/2008/1333/2012-12-03 (accessed on 20 January 2020).
- Hauser, C.; Thielmann, J.; Muranyi, P. Organic Acids: Usage and Potential in Antimicrobial Packaging. In Antimicrobial Food Packaging; Elsevier Inc.: London, UK, 2016; pp. 563–580. ISBN 9780128007235. [Google Scholar]
- Maliyakkal Johnson, E.; Jung, Y.-G.; Jin, Y.-Y.; Jayabalan, R.; Hwan Yang, S.; Joo Won Suh, P. Bacteriocins as food preservatives: Challenges and emerging horizons Bacteriocins as food preservatives: Challenges and emerging horizons. Food Sci. Nutr. 2017, 58, 2743–2767. [Google Scholar]
- Woraprayote, W.; Pumpuang, L.; Tosukhowong, A.; Roytrakul, S.; Perez, R.H.; Zendo, T.; Sonomoto, K.; Benjakul, S.; Visessanguan, W. Two putatively novel bacteriocins active against Gram-negative food borne pathogens produced by Weissella hellenica BCC 7293. Food Control 2015, 55, 176–184. [Google Scholar] [CrossRef]
- Cintas, L.M.; Casaus, M.P.; Herranz, C.; Nes, I.F.; Hernandez, P.E. Review: Bacteriocins of lactic acid bacteria. Food Sci. Technol. Int. 2001, 7, 281–305. [Google Scholar] [CrossRef]
- Suda, S.; Cotter, P.D.; Hill, C.; Ross, R.P. Lacticin 3147 - Biosynthesis, Molecular Analysis, Immunity, Bioengineering and Applications. Curr. Protein Pept. Sci. 2012, 13, 193–204. [Google Scholar] [CrossRef]
- Grande Burgos, M.; Pulido, R.; del Carmen López Aguayo, M.; Gálvez, A.; Lucas, R. The Cyclic Antibacterial Peptide Enterocin AS-48: Isolation, Mode of Action, and Possible Food Applications. Int. J. Mol. Sci. 2014, 15, 22706–22727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trinetta, V.; Rollini, M.; Limbo, S.; Manzoni, M. Influence of temperature and sakacin A concentration on survival of Listeria innocua cultures. Ann. Microbiol. 2008, 58, 633–639. [Google Scholar] [CrossRef]
- Blázquez, I.O.; Burgos, M.J.G.; Pérez-Pulido, R.; Gálvez, A.; Lucas, R. Treatment with high-hydrostatic pressure, activated film packaging with thymol plus enterocin AS-48, and its combination modify the bacterial communities of refrigerated sea bream (Sparus aurata) fillets. Front. Microbiol. 2018, 9, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Babich, O.; Dyshlyuk, L.; Sukhikh, S.; Prosekov, A.; Ivanova, S.; Pavsky, V.; Chaplygina, T.; Kriger, O. Effects of Biopreservatives Combined with Modified Atmosphere Packaging on the Quality of Apples and Tomatoes. Pol. J. Food Nutr. Sci. 2019, 69, 289–296. [Google Scholar] [CrossRef]
- Costa, J.C.C.P.; Bover-Cid, S.; Bolívar, A.; Zurera, G.; Pérez-Rodríguez, F. Modelling the interaction of the sakacin-producing Lactobacillus sakei CTC494 and Listeria monocytogenes in filleted gilthead sea bream (Sparus aurata) under modified atmosphere packaging at isothermal and non-isothermal conditions. Int. J. Food Microbiol. 2019, 297, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Blázquez, I.O.; Burgos, M.J.G.; Pulido, R.P.; Gálvez, A.; Lucas, R. Bacterial inactivation by using plastic materials activated with combinations of natural antimicrobials. Coatings 2018, 8, 460. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Gallah, H.; Riedl, B.; Bouchard, J.; Safrany, A.; Lacroix, M. Genipin cross-linked antimicrobial nanocomposite films and gamma irradiation to prevent the surface growth of bacteria in fresh meats. Innov. Food Sci. Emerg. Technol. 2016, 35, 96–102. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Zhang, M.; Gao, X.; Shao, Y.; Liu, H.; Jin, J.; Yang, W.; Zhang, H. Development and antimicrobial application of plantaricin BM-1 incorporating a PVDC film on fresh pork meat during cold storage. J. Appl. Microbiol. 2018, 125, 1108–1116. [Google Scholar] [CrossRef]
- Panel, E.B.; Koutsoumanis, K.; Allende, A.; Alvarez-Ordonez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Hilbert, F.; et al. The list of QPS Status Recommended Biological Agents for Safety Risk Assessments Carried Out by EFSA. 2019. Available online: https://zenodo.org/record/3336268#.Xlz6gyFKjIV (accessed on 20 January 2020).
- Yildirim, S.; Röcker, B.; Pettersen, M.K.; Nilsen-Nygaard, J.; Ayhan, Z.; Rutkaite, R.; Radusin, T.; Suminska, P.; Marcos, B.; Coma, V. Active Packaging Applications for Food. Compr. Rev. Food Sci. Food Saf. 2018, 17, 165–199. [Google Scholar] [CrossRef] [Green Version]
- Ünalan, I.U.; Korel, F.; Yemenicioǧlu, A. Active packaging of ground beef patties by edible zein films incorporated with partially purified lysozyme and Na 2EDTA. Int. J. Food Sci. Technol. 2011, 46, 1289–1295. [Google Scholar] [CrossRef] [Green Version]
- European Commission Regulation (EC) No 1332/2008 of the European Parliament and of the Council of 16 December 2008 on Food Enzymes and Amending Council Directive 83/417/EEC, Council Regulation (EC) No 1493/1999, Directive 2000/13/EC, Council Directive 2001/112/EC and Regulation (EC) No 258/97. Off. J. Eur. Union 2008, L 354, 7–15. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A52017PC0265 (accessed on 20 January 2020).
- Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int. J. Food Microbiol. 2010, 144, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Elsabee, M.Z.; Abdou, E.S. Chitosan based edible films and coatings: A review. Mater. Sci. Eng. C 2013, 33, 1819–1841. [Google Scholar] [CrossRef] [PubMed]
- Theapsak, S.; Watthanaphanit, A.; Rujiravanit, R. Preparation of Chitosan-Coated Polyethylene Packaging Films by DBD Plasma Treatment. Acs Appl. Mater. Interfaces 2012, 4, 2474–2482. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Zhu, Y.; Wu, T.; Wang, L.; Yuan, Y.; Chen, J.; Hu, Y.; Pang, J. Enhanced functional properties of biopolymer film incorporated with curcurmin-loaded mesoporous silica nanoparticles for food packaging. Food Chem. 2019, 288, 139–145. [Google Scholar] [CrossRef]
- Fang, Z.; Lin, D.; Warner, R.D.; Ha, M. Effect of gallic acid/chitosan coating on fresh pork quality in modified atmosphere packaging. Food Chem. 2018, 260, 90–96. [Google Scholar] [CrossRef]
- Souza, V.G.L.; Rodrigues, C.; Ferreira, L.; Pires, J.R.A.; Duarte, M.P.; Coelhoso, I.; Fernando, A.L. In vitro bioactivity of novel chitosan bionanocomposites incorporated with different essential oils. Ind. Crop. Prod. 2019, 140, 111563. [Google Scholar] [CrossRef]
- Saeed, F.; Afzaal, M.; Tufail, T.; Ahmad, A. Use of Natural Antimicrobial Agents: A Safe Preservation Approach. In Active Antimicrobial Food Packaging; IntechOpen: London, UK, 2019. [Google Scholar]
- Silva, F.; Nerín, C.; Domingues, F.C. Stilbene phytoallexins inclusion complexes: A natural-based strategy to control foodborne pathogen Campylobacter. Food Control 2015, 54, 66–73. [Google Scholar] [CrossRef]
- Ferreira, S.; Silva, F.; Queiroz, J.A.; Oleastro, M.; Domingues, F.C. Resveratrol against Arcobacter butzleri and Arcobacter cryaerophilus: Activity and effect on cellular functions. Int. J. Food Microbiol. 2014, 180, 62–68. [Google Scholar] [CrossRef]
- Radulovic, N.S.; Blagojevic, P.D.; Stojanovic-Radic, Z.Z.; Stojanovic, N.M. Antimicrobial Plant Metabolites: Structural Diversity and Mechanism of Action. Curr. Med. Chem. 2013, 20, 932–952. [Google Scholar]
- Alzagameem, A.; Klein, S.E.; Bergs, M.; Do, X.T.; Korte, I.; Dohlen, S.; Hüwe, C.; Kreyenschmidt, J.; Kamm, B.; Larkins, M.; et al. Antimicrobial activity of lignin and lignin-derived cellulose and chitosan composites against selected pathogenic and spoilage microorganisms. Polym. (Basel). 2019, 11, 670. [Google Scholar] [CrossRef] [Green Version]
- Silva, F.; Domingues, F.C.; Nerín, C. Control microbial growth on fresh chicken meat using pinosylvin inclusion complexes based packaging absorbent pads. Lwt - Food Sci. Technol. 2018, 89, 148–154. [Google Scholar] [CrossRef]
- Glaser, T.K.; Plohl, O.; Vesel, A.; Ajdnik, U.; Ulrih, N.P.; Hrnčič, M.K.; Bren, U.; Zemljič, L.F. Functionalization of polyethylene (PE) and polypropylene (PP) material using chitosan nanoparticles with incorporated resveratrol as potential active packaging. Mater. (Basel). 2019, 12, 2118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López de Dicastillo, C.; Bustos, F.; Guarda, A.; Galotto, M.J. Cross-linked methyl cellulose films with murta fruit extract for antioxidant and antimicrobial active food packaging. Food Hydrocoll. 2016, 60, 335–344. [Google Scholar] [CrossRef]
- Siripatrawan, U.; Noipha, S. Active film from chitosan incorporating green tea extract for shelf life extension of pork sausages. Food Hydrocoll. 2012, 27, 102–108. [Google Scholar] [CrossRef]
- Radusin, T.; Torres-Giner, S.; Stupar, A.; Ristic, I.; Miletic, A.; Novakovic, A.; Lagaron, J.M. Preparation, characterization and antimicrobial properties of electrospun polylactide films containing Allium ursinum L. extract. Food Packag. Shelf Life 2019, 21, 73. [Google Scholar] [CrossRef]
- Hu, X.; Yuan, L.; Han, L.; Li, S.; Song, L. Characterization of antioxidant and antibacterial gelatin films incorporated with Ginkgo biloba extract. Rsc Adv. 2019, 9, 27449–27454. [Google Scholar] [CrossRef] [Green Version]
- Balti, R.; Mansour, M.B.; Sayari, N.; Yacoubi, L.; Rabaoui, L.; Brodu, N.; Massé, A. Development and characterization of bioactive edible films from spider crab (Maja crispata) chitosan incorporated with Spirulina extract. Int. J. Biol. Macromol. 2017, 105, 1464–1472. [Google Scholar] [CrossRef]
- Kalaycıoğlu, Z.; Torlak, E.; Akın-Evingür, G.; Özen, İ.; Erim, F.B. Antimicrobial and physical properties of chitosan films incorporated with turmeric extract. Int. J. Biol. Macromol. 2017, 101, 882–888. [Google Scholar] [CrossRef]
- Shankar, S.; Rhim, J.W. Preparation of antibacterial poly(lactide)/poly(butylene adipate-co-terephthalate) composite films incorporated with grapefruit seed extract. Int. J. Biol. Macromol. 2018, 120, 846–852. [Google Scholar] [CrossRef]
- Albertos, I.; Avena-Bustillos, R.J.; Martín-Diana, A.B.; Du, W.X.; Rico, D.; McHugh, T.H. Antimicrobial Olive Leaf Gelatin films for enhancing the quality of cold-smoked Salmon. Food Packag. Shelf Life 2017, 13, 49–55. [Google Scholar] [CrossRef]
- Iturriaga, L.; Olabarrieta, I.; Castellan, A.; Gardrat, C.; Coma, V. Active naringin-chitosan films: Impact of UV irradiation. Carbohydr. Polym. 2014, 110, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Ashrafi, A.; Jokar, M.; Mohammadi Nafchi, A. Preparation and characterization of biocomposite film based on chitosan and kombucha tea as active food packaging. Int. J. Biol. Macromol. 2018, 108, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Shahbazi, Y. Characterization of nanocomposite films based on chitosan and carboxymethylcellulose containing Ziziphora clinopodioides essential oil and methanolic Ficus carica extract. J. Food Process. Preserv. 2018, 42, e13444. [Google Scholar] [CrossRef]
- Silva, F.; Domingues, F.C. Antimicrobial activity of coriander oil and its effectiveness as food preservative. Crit. Rev. Food Sci. Nutr. 2017, 57, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro-Santos, R.; Andrade, M.; de Melo, N.R.; Sanches-Silva, A. Use of essential oils in active food packaging: Recent advances and future trends. Trends Food Sci. Technol. 2017, 61, 132–140. [Google Scholar] [CrossRef]
- Silva, F.; Domeño, C.; Domingues, F.C. Coriandrum Sativum: Characterization, biological activities and application. In Nuts and Seeds in Health and Disease Prevention, 2nd ed.; ELSEVIER ACADEMIC PRESS: London, UK, 2019; ISBN 9780128185537. [Google Scholar]
- Vergis, J.; Gokulakrishnan, P.; Agarwal, R.K.; Kumar, A. Essential Oils as Natural Food Antimicrobial Agents: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1320–1323. [Google Scholar] [CrossRef]
- Bentayeb, K.; Vera, P.; Rubio, C.; Nerín, C. The additive properties of Oxygen Radical Absorbance Capacity (ORAC) assay: The case of essential oils. Food Chem. 2014, 148, 204–208. [Google Scholar] [CrossRef]
- Food and Drug Administration, U.S.D. of H. and H.S. CFR - Code of Federal Regulations Title 21. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=182.20 (accessed on 27 November 2019).
- Manso, S.; Becerril, R.; Nerín, C.; Gomez-Lus, R. Influence of pH and temperature variations on vapor phase action of an antifungal food packaging against five mold strains. Food Control 2015, 47, 20–26. [Google Scholar] [CrossRef]
- Atarés, L.; Chiralt, A. Essential oils as additives in biodegradable films and coatings for active food packaging. Trends Food Sci. Technol. 2016, 48, 51–62. [Google Scholar] [CrossRef]
- Wen, P.; Zhu, D.-H.; Wu, H.; Zong, M.-H.; Jing, Y.-R.; Han, S.-Y. Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging. Food Control 2016, 59, 366–376. [Google Scholar] [CrossRef]
- Artiga-Artigas, M.; Acevedo-Fani, A.; Martín-Belloso, O. Improving the shelf life of low-fat cut cheese using nanoemulsion-based edible coatings containing oregano essential oil and mandarin fiber. Food Control 2017, 76, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Hager, J.V.; Rawles, S.D.; Xiong, Y.L.; Newman, M.C.; Thompson, K.R.; Webster, C.D. Listeria monocytogenes is inhibited on fillets of cold-smoked sunshine bass, Morone chrysops × Morone saxatilis, with an edible corn zein-based coating incorporated with lemongrass essential oil or nisin. J. World Aquac. Soc. 2019, 50, 575–592. [Google Scholar] [CrossRef]
- 92. Da Silva, F.T.; da Cunha, K.F.; Fonseca, L.M.; Antunes, M.D.; El Halal, S.L.M.; Fiorentini, Â.M.; da Rosa Zavareze, E.; Dias, A.R.G. Action of ginger essential oil (Zingiber officinale) encapsulated in proteins ultrafine fibers on the antimicrobial control in situ. Int. J. Biol. Macromol. 2018, 118, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Campos-Requena, V.H.; Rivas, B.L.; Pérez, M.A.; Figueroa, C.R.; Figueroa, N.E.; Sanfuentes, E.A. Thermoplastic starch/clay nanocomposites loaded with essential oil constituents as packaging for strawberries—In vivo antimicrobial synergy over Botrytis cinerea. Postharvest Biol. Technol. 2017, 129, 29–36. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.; Kang, H. Chitosan coatings incorporated with free or nano-encapsulated Paulownia Tomentosa essential oil to improve shelf-life of ready-to-cook pork chops. LWT 2019, 116, 108580. [Google Scholar] [CrossRef]
- Chein, S.H.; Sadiq, M.B.; Anal, A.K. Antifungal effects of chitosan films incorporated with essential oils and control of fungal contamination in peanut kernels. J. Food Process. Preserv. 2019, 43, e14235–e14247. [Google Scholar] [CrossRef]
- Oğuzhan Yıldız, P.; Yangılar, F. Effects of whey protein isolate based coating enriched with Zingiber officinale and Matricaria recutita essential oils on the quality of refrigerated rainbow trout. J. Food Saf. 2017, 37, e12341–e12349. [Google Scholar] [CrossRef]
- Hossain, F.; Follett, P.; Salmieri, S.; Vu, K.D.; Fraschini, C.; Lacroix, M. Antifungal activities of combined treatments of irradiation and essential oils (EOs) encapsulated chitosan nanocomposite films in in vitro and in situ conditions. Int. J. Food Microbiol. 2019, 295, 33–40. [Google Scholar] [CrossRef]
- Wang, H.; Yang, C.; Wang, J.; Chen, M.; Luan, D.; Li, L. EVOH Films Containing Antimicrobials Geraniol and α-Terpilenol Extend the Shelf Life of Snakehead Slices. Packag. Technol. Sci. 2017, 30, 587–600. [Google Scholar] [CrossRef]
- Boyacı, D.; Iorio, G.; Sozbilen, G.S.; Alkan, D.; Trabattoni, S.; Pucillo, F.; Farris, S.; Yemenicioğlu, A. Development of flexible antimicrobial zein coatings with essential oils for the inhibition of critical pathogens on the surface of whole fruits: Test of coatings on inoculated melons. Food Packag. Shelf Life 2019, 20, 100316–100326. [Google Scholar] [CrossRef]
- Konuk Takma, D.; Korel, F. Active packaging films as a carrier of black cumin essential oil: Development and effect on quality and shelf-life of chicken breast meat. Food Packag. Shelf Life 2019, 19, 210–217. [Google Scholar] [CrossRef]
- Lin, L.; Liao, X.; Cui, H. Cold plasma treated thyme essential oil/silk fibroin nanofibers against Salmonella Typhimurium in poultry meat. Food Packag. Shelf Life 2019, 21, 100337–100345. [Google Scholar] [CrossRef]
- Buendía−Moreno, L.; Sánchez−Martínez, M.J.; Antolinos, V.; Ros−Chumillas, M.; Navarro−Segura, L.; Soto−Jover, S.; Martínez−Hernández, G.B.; López−Gómez, A. Active cardboard box with a coating including essential oils entrapped within cyclodextrins and/or hallosyte nanotubes: A Case Study Fresh Tomato Storage. Food Control 2020, 107, 106763–106773. [Google Scholar] [CrossRef]
- Alkan Tas, B.; Sehit, E.; Erdinc Tas, C.; Unal, S.; Cebeci, F.C.; Menceloglu, Y.Z.; Unal, H. Carvacrol loaded halloysite coatings for antimicrobial food packaging applications. Food Packag. Shelf Life 2019, 20, 100300–100306. [Google Scholar] [CrossRef]
- Gold, K.; Slay, B.; Knackstedt, M.; Gaharwar, A.K. Antimicrobial Activity of Metal and Metal-Oxide Based Nanoparticles. Adv. 2018, 1, 1700033. [Google Scholar] [CrossRef]
- Espitia, P.J.P.; De Fátima Ferreira Soares, N.; Teófilo, R.F.; Dos Reis Coimbra, J.S.; Vitor, D.M.; Batista, R.A.; Ferreira, S.O.; De Andrade, N.J.; Medeiros, E.A.A. Physical-mechanical and antimicrobial properties of nanocomposite films with pediocin and ZnO nanoparticles. Carbohydr. Polym. 2013, 94, 199–208. [Google Scholar] [CrossRef]
- Vasile, C.; Râpă, M.; Ștefan, M.; Stan, M.; Macavei, S.; Darie-Niță, R.N.; Barbu-Tudoran, L.; Vodnar, D.C.; Popa, E.E.; Ștefan, R.; et al. New PLA/ZnO:Cu/Ag bionanocomposites for food packaging. Express Polym. Lett. 2017, 11, 531–544. [Google Scholar] [CrossRef]
- Ahmed, J.; Arfat, Y.A.; Bher, A.; Mulla, M.; Jacob, H.; Auras, R. Active Chicken Meat Packaging Based on Polylactide Films and Bimetallic Ag–Cu Nanoparticles and Essential Oil. J. Food Sci. 2018, 83, 1299–1310. [Google Scholar] [CrossRef]
- Hardy, A.; Benford, D.; Halldorsson, T.; Jeger, M.J.; Knutsen, H.K.; More, S.; Naegeli, H.; Noteborn, H.; Ockleford, C.; Ricci, A.; et al. Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: Part 1, human and animal health. Efsa J. 2018, 16, 5327–5332. [Google Scholar]
- European Commission Regulation (EU) No 1282/2011 of 28 November 2011 Amending and Correcting Commission Regulation (EU) No 10/2011 on Plastic Materials and Articles Intended to Come Into Contact with Food Text with EEA Relevance 2011. Off. J. Eur. Union 2011, L 328, 22–29. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32011R1282 (accessed on 20 January 2020).
- Silano, V.; Bolognesi, C.; Chipman, K.; Cravedi, J.; Engel, K.; Fowler, P.; Franz, R.; Grob, K.; Gürtler, R.; Husøy, T.; et al. Safety assessment of the active substance selenium nanoparticles, for use in active food contact materials. Efsa J. 2018, 16, e05115–e05122. [Google Scholar]
- Kim, S.; Song, K. Bin Antimicrobial activity of buckwheat starch films containing zinc oxide nanoparticles against Listeria monocytogenes on mushrooms. Int. J. Food Sci. Technol. 2018, 53, 1549–1557. [Google Scholar] [CrossRef]
- Marcous, A.; Rasouli, S.; Ardestani, F. Low-density Polyethylene Films Loaded by Titanium Dioxide and Zinc Oxide Nanoparticles as a New Active Packaging System against Escherichia coli O157:H7 in Fresh Calf Minced Meat. Packag. Technol. Sci. 2017, 30, 693–701. [Google Scholar] [CrossRef]
- Mathew, S.; S., S.; Mathew, J.; Radhakrishnan, E.K. Biodegradable and active nanocomposite pouches reinforced with silver nanoparticles for improved packaging of chicken sausages. Food Packag. Shelf Life 2019, 19, 155–166. [Google Scholar] [CrossRef]
- Lotfi, S.; Ahari, H.; Sahraeyan, R. The effect of silver nanocomposite packaging based on melt mixing and sol–gel methods on shelf life extension of fresh chicken stored at 4 °C. J. Food Saf. 2019, 39, e12625–e12634. [Google Scholar] [CrossRef]
- Ahmed, J.; Mulla, M.; Jacob, H.; Luciano, G.; T.B., B.; Almusallam, A. Polylactide/poly(ε-caprolactone)/zinc oxide/clove essential oil composite antimicrobial films for scrambled egg packaging. Food Packag. Shelf Life 2019, 21, 100355–100364. [Google Scholar] [CrossRef]
- Amjadi, S.; Emaminia, S.; Nazari, M.; Davudian, S.H.; Roufegarinejad, L.; Hamishehkar, H. Application of Reinforced ZnO Nanoparticle-Incorporated Gelatin Bionanocomposite Film with Chitosan Nanofiber for Packaging of Chicken Fillet and Cheese as Food Models. Food Bioprocess Technol. 2019, 12, 1205–1219. [Google Scholar] [CrossRef]
- Zhang, X.; Niu, Y.D.; Nan, Y.; Stanford, K.; Holley, R.; McAllister, T.; Narváez-Bravo, C. SalmoFreshTM effectiveness in controlling Salmonella on romaine lettuce, mung bean sprouts and seeds. Int. J. Food Microbiol. 2019, 305, 108250–108260. [Google Scholar] [CrossRef]
- Andreoletti, O.; Budka, H.; Buncic, S.; Colin, P.; Collins, J.D.; Koeijer, A.D.; Griffin, J.; Havelaar, A.; Hope, J.; Klein, G.; et al. The use and mode of action of bacteriophages in food production-Endorsed for public consultation 22 January 2009-Public consultation 30 January–6 March 2009. Efsa J. 2009, 7, 1076. [Google Scholar]
- Gouvêa, D.M.; Mendonça, R.C.S.; Soto, M.L.; Cruz, R.S. Acetate cellulose film with bacteriophages for potential antimicrobial use in food packaging. Lwt - Food Sci. Technol. 2015, 63, 85–91. [Google Scholar]
- Moye, Z.D.; Woolston, J.; Sulakvelidze, A. Bacteriophage Applications for Food Production and Processing. Viruses 2018, 10, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nerin, C.; Silva, F.; Manso, S.; Becerril, R. The Downside of Antimicrobial Packaging: Migration of Packaging Elements into Food. In Antimicrobial Food Packaging; Elsevier Inc.: London, UK, 2016; pp. 81–93. ISBN 9780128007235. [Google Scholar]
- Nedovic, V.; Kalusevic, A.; Manojlovic, V.; Levic, S.; Bugarski, B. An overview of encapsulation technologies for food applications. Procedia Food Sci. 2011, 1, 1806–1815. [Google Scholar] [CrossRef] [Green Version]
- Zanetti, M.; Carniel, T.K.; Dalcanton, F.; dos Anjos, R.S.; Gracher Riella, H.; de Araújo, P.H.H.; de Oliveira, D.; Antônio Fiori, M. Use of encapsulated natural compounds as antimicrobial additives in food packaging: A brief review. Trends Food Sci. Technol. 2018, 81, 51–60. [Google Scholar] [CrossRef]
- Prakash, B.; Kujur, A.; Yadav, A.; Kumar, A.; Singh, P.P.; Dubey, N.K. Nanoencapsulation: An efficient technology to boost the antimicrobial potential of plant essential oils in food system. Food Control 2018, 89, 1–11. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A.; Cimpeanu, C.; Turcuş, V.; Predoi, G.; Iordache, F. Nanoencapsulation techniques for compounds and products with antioxidant and antimicrobial activity - A critical view. Eur. J. Med. Chem. 2018, 157, 1326–1345. [Google Scholar] [CrossRef] [PubMed]
- Espitia, P.J.P.; Fuenmayor, C.A.; Otoni, C.G. Nanoemulsions: Synthesis, Characterization, and Application in Bio-Based Active Food Packaging. Compr. Rev. Food Sci. Food Saf. 2019, 18, 264–285. [Google Scholar] [CrossRef] [Green Version]
- Robledo, N.; López, L.; Bunger, A.; Tapia, C.; Abugoch, L. Effects of antimicrobial edible coating of thymol nanoemulsion/quinoa protein/chitosan on the safety, sensorial properties, and quality of refrigerated strawberries (Fragaria × ananassa) under commercial storage environment. Food Bioprocess Technol. 2018, 11, 1566–1574. [Google Scholar] [CrossRef]
- Frank, K.; Garcia, C.V.; Shin, G.H.; Kim, J.T. Alginate biocomposite films incorporated with cinnamon essential oil nanoemulsions: Physical, mechanical, and antibacterial properties. Int. J. Polym. Sci. 2018, 2018, 1519408–1519416. [Google Scholar] [CrossRef] [Green Version]
- Hashemi Gahruie, H.; Ziaee, E.; Eskandari, M.H.; Hosseini, S.M.H. Characterization of basil seed gum-based edible films incorporated with Zataria multiflora essential oil nanoemulsion. Carbohydr. Polym. 2017, 166, 93–103. [Google Scholar] [CrossRef]
- Jantrawut, P.; Boonsermsukcharoen, K.; Thipnan, K.; Chaiwarit, T.; Hwang, K.-M.; Park, E.-S. Enhancement of Antibacterial Activity of Orange Oil in Pectin Thin Film by Microemulsion. Nanomaterials 2018, 8, 545. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Hu, X.; Chen, E.; Wu, S.; McClements, D.J.; Liu, S.; Li, B.; Li, Y. Preparation, characterization, and properties of chitosan films with cinnamaldehyde nanoemulsions. Food Hydrocoll. 2016, 61, 662–671. [Google Scholar] [CrossRef]
- McClements, D.J. Nanoemulsions versus microemulsions: Terminology, differences, and similarities. Soft Matter 2012, 8, 1719–1729. [Google Scholar] [CrossRef]
- Guo, M.; Jin, T.Z.; Yadav, M.P.; Yang, R. Antimicrobial property and microstructure of micro-emulsion edible composite films against Listeria. Int. J. Food Microbiol. 2015, 208, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Yadav, M.P.; Jin, T.Z. Antimicrobial edible coatings and films from micro-emulsions and their food applications. Int. J. Food Microbiol. 2017, 263, 9–16. [Google Scholar] [CrossRef]
- Otoni, C.G.; de Moura, M.R.; Aouada, F.A.; Camilloto, G.P.; Cruz, R.S.; Lorevice, M.V.; de F.F. Soares, N.; Mattoso, L.H.C. Antimicrobial and physical-mechanical properties of pectin/papaya puree/cinnamaldehyde nanoemulsion edible composite films. Food Hydrocoll. 2014, 41, 188–194. [Google Scholar] [CrossRef]
- Oh, Y.A.; Oh, Y.J.; Song, A.Y.; Won, J.S.; Song, K.B.; Min, S.C. Comparison of effectiveness of edible coatings using emulsions containing lemongrass oil of different size droplets on grape berry safety and preservation. LWT 2017, 75, 742–750. [Google Scholar] [CrossRef]
- Fu, Y.; Sarkar, P.; Bhunia, A.K.; Yao, Y. Delivery systems of antimicrobial compounds to food. Trends Food Sci. Technol. 2016, 57, 165–177. [Google Scholar] [CrossRef] [Green Version]
- Lei, K.; Wang, X.; Li, X.; Wang, L. The innovative fabrication and applications of carvacrol nanoemulsions, carboxymethyl chitosan microgels and their composite films. Colloids Surf. B Biointerfaces 2019, 175, 688–696. [Google Scholar] [CrossRef]
- Robledo, N.; Vera, P.; López, L.; Yazdani-Pedram, M.; Tapia, C.; Abugoch, L. Thymol nanoemulsions incorporated in quinoa protein/chitosan edible films; antifungal effect in cherry tomatoes. Food Chem. 2018, 246, 211–219. [Google Scholar] [CrossRef]
- Noori, S.; Zeynali, F.; Almasi, H. Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food Control 2018, 84, 312–320. [Google Scholar] [CrossRef]
- Ghani, S.; Barzegar, H.; Noshad, M.; Hojjati, M. The preparation, characterization and in vitro application evaluation of soluble soybean polysaccharide films incorporated with cinnamon essential oil nanoemulsions. Int. J. Biol. Macromol. 2018, 112, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Gharibzahedi, S.M.T.; Mohammadnabi, S. Effect of novel bioactive edible coatings based on jujube gum and nettle oil-loaded nanoemulsions on the shelf-life of Beluga sturgeon fillets. Int. J. Biol. Macromol. 2017, 95, 769–777. [Google Scholar] [CrossRef] [PubMed]
- Abdou, E.S.; Galhoum, G.F.; Mohamed, E.N. Curcumin loaded nanoemulsions/pectin coatings for refrigerated chicken fillets. Food Hydrocoll. 2018, 83, 445–453. [Google Scholar] [CrossRef]
- Taştan, Ö.; Pataro, G.; Donsì, F.; Ferrari, G.; Baysal, T. Decontamination of fresh-cut cucumber slices by a combination of a modified chitosan coating containing carvacrol nanoemulsions and pulsed light. Int. J. Food Microbiol. 2017, 260, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Sugumar, S.; Mukherjee, A.; Chandrasekaran, N. Eucalyptus oil nanoemulsion-impregnated chitosan film: Antibacterial effects against a clinical pathogen, Staphylococcus aureus, in vitro. Int. J. Nanomed. 2015, 10, 67–75. [Google Scholar]
- Acevedo-Fani, A.; Salvia-Trujillo, L.; Rojas-Graü, M.A.; Martín-Belloso, O. Edible films from essential-oil-loaded nanoemulsions: Physicochemical characterization and antimicrobial properties. Food Hydrocoll. 2015, 47, 168–177. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Zheng, K.; Chen, H.; Feng, S.; Wang, W.; Qin, C. Influence of Nano Titanium Dioxide and Clove Oil on Chitosan–Starch Film Characteristics. Polym. (Basel). 2019, 11, 1418. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.Y.; Garcia, C.V.; Shin, G.H.; Kim, J.T. Antibacterial and antioxidant properties of hydroxypropyl methylcellulose-based active composite films incorporating oregano essential oil nanoemulsions. LWT 2019, 106, 164–171. [Google Scholar] [CrossRef]
- Amiri, E.; Aminzare, M.; Azar, H.H.; Mehrasbi, M.R. Combined antioxidant and sensory effects of corn starch films with nanoemulsion of Zataria multiflora essential oil fortified with cinnamaldehyde on fresh ground beef patties. Meat Sci. 2019, 153, 66–74. [Google Scholar] [CrossRef]
- Radi, M.; Akhavan-Darabi, S.; Akhavan, H.; Amiri, S. The use of orange peel essential oil microemulsion and nanoemulsion in pectin-based coating to extend the shelf life of fresh-cut orange. J. Food Process. Preserv. 2018, 42, e13441. [Google Scholar] [CrossRef]
- Moghimi, R.; Aliahmadi, A.; Rafati, H. Antibacterial hydroxypropyl methyl cellulose edible films containing nanoemulsions of Thymus daenensis essential oil for food packaging. Carbohydr. Polym. 2017, 175, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Gundewadi, G.; Rudra, S.G.; Sarkar, D.J.; Singh, D. Nanoemulsion based alginate organic coating for shelf life extension of okra. Food Packag. Shelf Life 2018, 18, 1–12. [Google Scholar] [CrossRef]
- Chevalier, Y.; Bolzinger, M.A. Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids Surf. A Phys. Eng. Asp. 2013, 439, 23–34. [Google Scholar] [CrossRef]
- Almasi, H.; Azizi, S.; Amjadi, S. Development and characterization of pectin films activated by nanoemulsion and Pickering emulsion stabilized marjoram (Origanum majorana L.) essential oil. Food Hydrocoll. 2020, 99, 105338. [Google Scholar] [CrossRef]
- Fasihi, H.; Fazilati, M.; Hashemi, M.; Noshirvani, N. Novel carboxymethyl cellulose-polyvinyl alcohol blend films stabilized by Pickering emulsion incorporation method. Carbohydr. Polym. 2017, 167, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.-Y.; Tang, C.-H.; Yin, S.-W.; Yang, X.-Q. Development and characterization of novel antimicrobial bilayer films based on Polylactic acid (PLA)/Pickering emulsions. Carbohydr. Polym. 2018, 181, 727–735. [Google Scholar] [CrossRef]
- Liu, Q.-R.; Wang, W.; Qi, J.; Huang, Q.; Xiao, J. Oregano essential oil loaded soybean polysaccharide films: Effect of Pickering type immobilization on physical and antimicrobial properties. Food Hydrocoll. 2019, 87, 165–172. [Google Scholar] [CrossRef]
- Zhang, C.; Feng, F.; Zhang, H. Emulsion electrospinning: Fundamentals, food applications and prospects. Trends Food Sci. Technol. 2018, 80, 175–186. [Google Scholar] [CrossRef]
- Nikmaram, N.; Roohinejad, S.; Hashemi, S.; Koubaa, M.; Barba, F.J.; Abbaspourrad, A.; Greiner, R. Emulsion-based systems for fabrication of electrospun nanofibers: Food, pharmaceutical and biomedical applications. Rsc Adv. 2017, 7, 28951–28964. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Hortal, M.; Dobon, A.; Jorda-Beneyto, M.; Bermudez, J.M. Selection of Nanomaterial-Based Active Agents for Packaging Application: Using Life Cycle Assessment (LCA) as a Tool. Packag. Technol. Sci. 2017, 30, 575–586. [Google Scholar] [CrossRef]
- Zhao, X.; Lui, Y.S.; Wen, P.; Toh, J.; Chye, S.; Loo, J. Sustained Release of Hydrophilic L-ascorbic acid 2-phosphate Magnesium from Electrospun Polycaprolactone Scaffold-A Study across Blend, Coaxial, and Emulsion Electrospinning Techniques. Mater. (Basel). 2014, 7, 7398–7408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naeimirad, M.; Zadhoush, A.; Kotek, R.; Esmaeely Neisiany, R.; Nouri Khorasani, S.; Ramakrishna, S. Recent advances in core/shell bicomponent fibers and nanofibers: A review. J. Appl. Polym. Sci. 2018, 135, 46265. [Google Scholar] [CrossRef]
- Yao, Z.-C.; Chen, S.-C.; Ahmad, Z.; Huang, J.; Chang, M.-W.; Li, J.-S. Essential Oil Bioactive Fibrous Membranes Prepared via Coaxial Electrospinning. J. Food Sci. 2017, 82, 1412–1422. [Google Scholar] [CrossRef] [PubMed]
- Sedghi, R.; Shaabani, A. Electrospun biocompatible core/shell polymer-free core structure nanofibers with superior antimicrobial potency against multi drug resistance organisms. Polym. (Guildf). 2016, 101, 151–157. [Google Scholar] [CrossRef]
- Shin, J.; Lee, S. Encapsulation of Phytoncide in Nanofibers by Emulsion Electrospinning and their Antimicrobial Assessment. Fibers Polym. 2018, 19, 627–634. [Google Scholar] [CrossRef]
- Kesici Güler, H.; Cengiz Çallıoğlu, F.; Sesli Çetin, E. Antibacterial PVP/cinnamon essential oil nanofibers by emulsion electrospinning. J. Text. Inst. 2019, 110, 302–310. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, Y.; Zhu, Z.; Jiao, X.; Shang, Y.; Wen, Y. Encapsulation of Thymol in Biodegradable Nanofiber via Coaxial Eletrospinning and Applications in Fruit Preservation. J. Agric. Food Chem. 2019, 67, 1736–1741. [Google Scholar] [CrossRef]
- Li, Y.; Dong, Q.; Chen, J.; Li, L. Effects of coaxial electrospun eugenol loaded core-sheath PVP/shellac fibrous films on postharvest quality and shelf life of strawberries. Postharvest Biol. Technol. 2020, 159, 111028. [Google Scholar] [CrossRef]
- Astray, G.; Gonzalez-Barreiro, C.; Mejuto, J.C.; Rial-Otero, R.; Simal-Gándara, J. A review on the use of cyclodextrins in foods. Food Hydrocoll. 2009, 23, 1631–1640. [Google Scholar] [CrossRef]
- Marques, H.M.C. A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Fragr. J. 2010, 25, 313–326. [Google Scholar] [CrossRef]
- Aytac, Z.; Ipek, S.; Durgun, E.; Tekinay, T.; Uyar, T. Antibacterial electrospun zein nanofibrous web encapsulating thymol/cyclodextrin-inclusion complex for food packaging. Food Chem. 2017, 233, 117–124. [Google Scholar] [CrossRef]
- Chen, G.; Liu, B. Cellulose sulfate based film with slow-release antimicrobial properties prepared by incorporation of mustard essential oil and β-cyclodextrin. Food Hydrocoll. 2016, 55, 100–107. [Google Scholar] [CrossRef]
- Mallardo, S.; De Vito, V.; Malinconico, M.; Volpe, M.G.; Santagata, G.; Di Lorenzo, M.L. Poly(butylene succinate)-based composites containing β-cyclodextrin/d-limonene inclusion complex. Eur. Polym. J. 2016, 79, 82–96. [Google Scholar] [CrossRef]
- Samperio, C.; Boyer, R.; Eigel, W.N.; Holland, K.W.; McKinney, J.S.; O’Keefe, S.F.; Smith, R.; Marcy, J.E. Enhancement of Plant Essential Oils’ Aqueous Solubility and Stability Using Alpha and Beta Cyclodextrin. J. Agric. Food Chem. 2010, 58, 12950–12956. [Google Scholar] [CrossRef] [PubMed]
- Wen, P.; Wen, Y.; Zong, M.-H.; Linhardt, R.J.; Wu, H. Encapsulation of Bioactive Compound in Electrospun Fibers and Its Potential Application. J. Agric. Food Chem. 2017, 65, 9161–9179. [Google Scholar] [CrossRef]
- Wen, P.; Zhu, D.H.; Feng, K.; Liu, F.J.; Lou, W.Y.; Li, N.; Zong, M.H.; Wu, H. Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/β-cyclodextrin inclusion complex for antimicrobial packaging. Food Chem. 2016, 196, 996–1004. [Google Scholar] [CrossRef]
- Lin, L.; Zhu, Y.; Cui, H. Electrospun thyme essential oil/gelatin nanofibers for active packaging against Campylobacter jejuni in chicken. LWT 2018, 97, 711–718. [Google Scholar] [CrossRef]
- Pan, J.; Ai, F.; Shao, P.; Chen, H.; Gao, H. Development of polyvinyl alcohol/β-cyclodextrin antimicrobial nanofibers for fresh mushroom packaging. Food Chem. 2019, 300, 125249–125257. [Google Scholar] [CrossRef] [PubMed]
- Dias Antunes, M.; da Silva Dannenberg, G.; Fiorentini, A.M.; Pinto, V.Z.; Lim, L.-T.; da Rosa Zavareze, E.; Dias, A.R.G. Antimicrobial electrospun ultrafine fibers from zein containing eucalyptus essential oil/cyclodextrin inclusion complex. Int. J. Biol. Macromol. 2017, 104, 874–882. [Google Scholar] [CrossRef]
- Rezaei, A.; Fathi, M.; Jafari, S.M. Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocoll. 2019, 88, 146–162. [Google Scholar] [CrossRef]
- Simionato, I.; Domingues, F.C.; Nerín, C.; Silva, F. Encapsulation of cinnamon oil in cyclodextrin nanosponges and their potential use for antimicrobial food packaging. Carbohydr Polym 2018. submitted. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.; Caldera, F.; Trotta, F.; Nerín, C.; Domingues, F.C. Encapsulation of coriander essential oil in cyclodextrin nanosponges: A new strategy to promote its use in controlled-release active packaging. Food Chem 2018. submitted. [Google Scholar] [CrossRef]
- Du, M.; Guo, B.; Jia, D. Newly emerging applications of halloysite nanotubes: A review. Polym. Int. 2010, 59, 574–582. [Google Scholar] [CrossRef]
- Hanif, M.; Jabbar, F.; Sharif, S.; Abbas, G.; Farooq, A.; Aziz, M. Halloysite nanotubes as a new drug-delivery system: A review. Clay Min. 2016, 51, 469–477. [Google Scholar] [CrossRef]
- Zhang, H. Selective modification of inner surface of halloysite nanotubes: A review. Nanotechnol. Rev. 2017, 6, 573–581. [Google Scholar] [CrossRef]
- Lvov, Y.M.; Shchukin, D.G.; Mö, H.; Price, R.R.; Muir, G. Halloysite Clay Nanotubes for Controlled Release of Protective Agents. ACS Nano. 2008, 2, 814–820. [Google Scholar] [CrossRef]
- Bugatti, V.; Sorrentino, A.; Gorrasi, G. Encapsulation of Lysozyme into halloysite nanotubes and dispersion in PLA: Structural and physical properties and controlled release analysis. Eur. Polym. J. 2017, 93, 495–506. [Google Scholar] [CrossRef]
- Gorrasi, G. Dispersion of halloysite loaded with natural antimicrobials into pectins: Characterization and controlled release analysis. Carbohydr. Polym. 2015, 127, 47–53. [Google Scholar] [CrossRef]
- Jang, S.S.; Jang, S.S.; Lee, G.; Ryu, J.; Park, S.; Park, N. Halloysite Nanocapsules Containing Thyme Essential Oil: Preparation, Characterization, and Application in Packaging Materials. J. Food Sci. 2017, 82, 2113–2120. [Google Scholar] [CrossRef]
- Krepker, M.; Shemesh, R.; Danin Poleg, Y.; Kashi, Y.; Vaxman, A.; Segal, E. Active food packaging films with synergistic antimicrobial activity. Food Control 2017, 76, 117–126. [Google Scholar] [CrossRef]
- Shemesh, R.; Krepker, M.; Nitzan, N.; Vaxman, A.; Segal, E. Active packaging containing encapsulated carvacrol for control of postharvest decay. Postharvest Biol. Technol. 2016, 118, 175–182. [Google Scholar] [CrossRef]
- Maruthupandy, M.; Seo, J. Allyl isothiocyanate encapsulated halloysite covered with polyacrylate as a potential antibacterial agent against food spoilage bacteria. Mater. Sci. Eng. C 2019, 105, 110016–110025. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.H.; Seo, H.-S.; Park, H.J. Thyme Oil Encapsulated in Halloysite Nanotubes for Antimicrobial Packaging System. J. Food Sci. 2017, 82, 922–932. [Google Scholar] [CrossRef] [PubMed]
- Shemesh, R.; Krepker, M.; Natan, M.; Danin-Poleg, Y.; Banin, E.; Kashi, Y.; Nitzan, N.; Vaxman, A.; Segal, E. Novel LDPE/halloysite nanotube films with sustained carvacrol release for broad-spectrum antimicrobial activity. Rsc Adv. 2015, 5, 87108–87117. [Google Scholar] [CrossRef]
- Krepker, M.; Zhang, C.; Nitzan, N.; Prinz-Setter, O.; Massad-Ivanir, N.; Olah, A.; Baer, E.; Segal, E. Antimicrobial LDPE/EVOH Layered Films Containing Carvacrol Fabricated by Multiplication Extrusion. Polym. (Basel). 2018, 10, 864. [Google Scholar] [CrossRef] [Green Version]
- Hallaj-Nezhadi, S.; Hassan, M. Nanoliposome-based antibacterial drug delivery. Drug Deliv. 2015, 22, 581–589. [Google Scholar] [CrossRef] [Green Version]
- Khorasani, S.; Danaei, M.; Mozafari, M.R. Nanoliposome technology for the food and nutraceutical industries. Trends Food Sci. Technol. 2018, 79, 106–115. [Google Scholar] [CrossRef]
- Valencia-Sullca, C.; Jiménez, M.; Jiménez, A.; Atarés, L.; Vargas, M.; Chiralt, A. Influence of liposome encapsulated essential oils on properties of chitosan films. Polym. Int. 2016, 65, 979–987. [Google Scholar] [CrossRef]
- Wu, J.; Liu, H.; Ge, S.; Wang, S.; Qin, Z.; Chen, L.; Zheng, Q.; Liu, Q.; Zhang, Q. The preparation, characterization, antimicrobial stability and invitro release evaluation of fish gelatin films incorporated with cinnamon essential oil nanoliposomes. Food Hydrocoll. 2015, 43, 427–435. [Google Scholar] [CrossRef]
- Pabast, M.; Shariatifar, N.; Beikzadeh, S.; Jahed, G. Effects of chitosan coatings incorporating with free or nano-encapsulated Satureja plant essential oil on quality characteristics of lamb meat. Food Control 2018, 91, 185–192. [Google Scholar] [CrossRef]
- Cui, H.; Yuan, L.; Lin, L. Novel chitosan film embedded with liposome-encapsulated phage for biocontrol of Escherichia coli O157:H7 in beef. Carbohydr. Polym. 2017, 177, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Yuan, L.; Li, W.; Lin, L. Edible film incorporated with chitosan and Artemisia annua oil nanoliposomes for inactivation of Escherichia coli O157:H7 on cherry tomato. Int. J. Food Sci. Technol. 2017, 52, 687–698. [Google Scholar] [CrossRef]
- Lin, L.; Dai, Y.; Cui, H. Antibacterial poly(ethylene oxide) electrospun nanofibers containing cinnamon essential oil/beta-cyclodextrin proteoliposomes. Carbohydr. Polym. 2017, 178, 131–140. [Google Scholar] [CrossRef]
- Cui, H.Y.; Wu, J.; Li, C.Z.; Lin, L. Anti-listeria effects of chitosan-coated nisin-silica liposome on Cheddar cheese. J. Dairy Sci. 2016, 99, 8598–8606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazari, M.; Majdi, H.; Milani, M.; Abbaspour-Ravasjani, S.; Hamishehkar, H.; Lim, L.T. Cinnamon nanophytosomes embedded electrospun nanofiber: Its effects on microbial quality and shelf-life of shrimp as a novel packaging. Food Packag. Shelf Life 2019, 21, 100349–100359. [Google Scholar] [CrossRef]
- Wu, Z.; Zhou, W.; Pang, C.; Deng, W.; Xu, C.; Wang, X. Multifunctional chitosan-based coating with liposomes containing laurel essential oils and nanosilver for pork preservation. Food Chem. 2019, 295, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Thompson, D.H. Stimuli-responsive liposomes for drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017, 9, e1450. [Google Scholar] [CrossRef]
- Cui, H.; Zhao, C.; Lin, L. The specific antibacterial activity of liposome-encapsulated Clove oil and its application in tofu. Food Control 2015, 56, 128–134. [Google Scholar] [CrossRef]
- Fathi, M.; Mozafari, M.R.; Mohebbi, M. Nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Sci. Technol. 2012, 23, 13–27. [Google Scholar] [CrossRef]
- Pu, C.; Tang, W. A chitosan-coated liposome encapsulating antibacterial peptide, Apep10: Characterisation, triggered-release effects and antilisterial activity in thaw water of frozen chicken. Food Funct. 2016, 7, 4310–4322. [Google Scholar] [CrossRef]
- Cui, H.Y.; Wu, J.; Lin, L. Inhibitory effect of liposome-entrapped lemongrass oil on the growth of Listeria monocytogenes in cheese. J. Dairy Sci. 2016, 99, 6097–6104. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Zhang, X.; Zhao, C.; Cui, H. Liposome containing nutmeg oil as the targeted preservative against Listeria monocytogenes in dumplings. Rsc Adv. 2016, 6, 978–986. [Google Scholar] [CrossRef]
- Sarkar, P.; Choudhary, R.; Panigrahi, S.; Syed, I.; Sivapratha, S.; Dhumal, C.V. Nano-inspired systems in food technology and packaging. Environ. Chem. Lett. 2017, 15, 607–622. [Google Scholar] [CrossRef]
- Šumiga; Šumiga; Ravnjak; Boh Podgornik Antimicrobial Paper Coatings Containing Microencapsulated Cymbopogon citratus Oil. Coatings 2019, 9, 470. [CrossRef] [Green Version]
- Marturano, V.; Marcille, H.; Cerruti, P.; Bandeira, N.A.; Giamberini, M.; Trojanowska, A.; Tylkowski, B.; Carfagna, C.; Ausanio, G.; Ambrogi, V. Visible-Light Responsive Nanocapsules for Wavelength-Selective Release of Natural Active Agents. Acs Appl. Nano Mater. 2019, 2, 4499–4506. [Google Scholar] [CrossRef]
- Marturano, V.; Bizzarro, V.; Ambrogi, V.; Cutignano, A.; Tommonaro, G.; Abbamondi, G.R.; Giamberini, M.; Tylkowski, B.; Carfagna, C.; Cerruti, P. Light-Responsive Nanocapsule-Coated Polymer Films for Antimicrobial Active Packaging. Polym. (Basel). 2019, 11, 68. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Huang, C.; Zhang, L.; Wang, J.; Huang, X.; Zhao, Y.; Liu, Y.; Li, C. Application of chlorine dioxide microcapsule sustained-release antibacterial films for preservation of mangos. J. Food Sci. Technol. 2019, 56, 1095–1103. [Google Scholar] [CrossRef]
- Medina, E.; Caro, N.; Abugoch, L.; Gamboa, A.; Díaz-Dosque, M.; Tapia, C. Chitosan thymol nanoparticles improve the antimicrobial effect and the water vapour barrier of chitosan-quinoa protein films. J. Food Eng. 2019, 240, 191–198. [Google Scholar] [CrossRef]
- Caro, N.; Medina, E.; Díaz-Dosque, M.; López, L.; Abugoch, L.; Tapia, C. Novel active packaging based on films of chitosan and chitosan/quinoa protein printed with chitosan-tripolyphosphate-thymol nanoparticles via thermal ink-jet printing. Food Hydrocoll. 2016, 52, 520–532. [Google Scholar] [CrossRef]
- Cui, H.; Bai, M.; Rashed, M.M.A.; Lin, L. The antibacterial activity of clove oil/chitosan nanoparticles embedded gelatin nanofibers against Escherichia coli O157:H7 biofilms on cucumber. Int. J. Food Microbiol. 2018, 266, 69–78. [Google Scholar] [CrossRef]
- Lin, L.; Gu, Y.; Cui, H. Moringa oil/chitosan nanoparticles embedded gelatin nanofibers for food packaging against Listeria monocytogenes and Staphylococcus aureus on cheese. Food Packag. Shelf Life 2019, 19, 86–93. [Google Scholar] [CrossRef]
- Melendez-Rodriguez, B.; Figueroa-Lopez, K.J.; Bernardos, A.; Martínez-Máñez, R.; Cabedo, L.; Torres-Giner, S.; Lagaron, J.M. Electrospun antimicrobial films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) containing eugenol essential oil encapsulated in mesoporous silica nanoparticles. Nanomaterials 2019, 9, 227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, Y.H.; Yang, Y.N.; Ho, Y.C.; Tsai, M.L.; Mi, F.L. Drug release and antioxidant/antibacterial activities of silymarin-zein nanoparticle/bacterial cellulose nanofiber composite films. Carbohydr. Polym. 2018, 180, 286–296. [Google Scholar] [CrossRef]
- Basu, A.; Kundu, S.; Sana, S.; Halder, A.; Abdullah, M.F.; Datta, S.; Mukherjee, A. Edible nano-bio-composite film cargo device for food packaging applications. Food Packag. Shelf Life 2017, 11, 98–105. [Google Scholar] [CrossRef]
- Hu, S.; Yu, J.; Wang, Z.; Li, L.; Du, Y.; Wang, L.; Liu, Y. Effects of Sorbic Acid-Chitosan Microcapsules as Antimicrobial Agent on the Properties of Ethylene Vinyl Alcohol Copolymer Film for Food Packaging. J. Food Sci. 2017, 82, 1451–1460. [Google Scholar] [CrossRef] [PubMed]
- Alves, V.L.C.D.; Rico, B.P.M.; Cruz, R.M.S.; Vicente, A.A.; Khmelinskii, I.; Vieira, M.C. Preparation and characterization of a chitosan film with grape seed extract-carvacrol microcapsules and its effect on the shelf-life of refrigerated Salmon (Salmo salar). Lwt - Food Sci. Technol. 2018, 89, 525–534. [Google Scholar] [CrossRef] [Green Version]
- Yin, C.; Huang, C.; Wang, J.; Liu, Y.; Lu, P.; Huang, L. Effect of Chitosan- and Alginate-Based Coatings Enriched with Cinnamon Essential Oil Microcapsules to Improve the Postharvest Quality of Mangoes. Materials 2019, 12, 2039. [Google Scholar] [CrossRef] [Green Version]
- Cui, H.; Wu, J.; Li, C.; Lin, L. Improving anti-listeria activity of cheese packaging via nanofiber containing nisin-loaded nanoparticles. Lwt - Food Sci. Technol. 2017, 81, 233–242. [Google Scholar] [CrossRef]
Antimicrobial Class | Antimicrobial Agent | Packaging Material | Main Microorganisms | Food Product | Ref. |
---|---|---|---|---|---|
Organic acids | Lactic acid | Polyamide | Escherichia coli O157:H7 | Fresh beef cuts | [10] |
Lactic acid | Chitosan pectin starch biocomposite | Bacillus subtilis Listeria monocytogenes | NA | [11] | |
Sodium benzoate Citric acid | Polyvinyl alcohol (PVA) | Staphylococcus aureus Escherichia coli Candida albicans | NA | [12] | |
Potassium sorbate | Fish collagen and polyvinyl alcohol (PVA) composite | Escherichia coli Staphylococcus aureus | NA | [13] | |
Bacteriocins | Sakacin-A | PE coated paper | Listeria monocytogenes | Thin-cut meat | [14] |
Sakacin-A | Cellulose nanofibres | Listeria monocytogenes | Smoked salmon fillets | [15] | |
Nisin | Starch-halloysite nanocomposites | Listeria monocytogenes Clostridium perfringens | NA | [16] | |
Pediocin | Starch-halloysite nanocomposites | Listeria monocytogenes Clostridium perfringens | NA | [16] | |
Nisin | Chitosan-carboxymethylchitosan composite films | Listeria monocytogenes | NA | [17] | |
Bacteriocin 7293 | Poly (lactic acid)/sawdust particle biocomposite film | Listeria monocytogenes Staphylococcus aureus Pseudomonas aeruginosa Aeromonas hydrophila Escherichia coli Salmonella Typhimurium | Pangasius fish fillets | [18] | |
Bacteriocin-like substances | Starch | Listeria monocytogenes | Cheese | [19] | |
Bacteriocin-like substances | Triticale flour films | Listeria innocua | Cheese | [20] | |
Bacteriocin-producer living bacteria | Poly (ethylene terephthalate) (PET) coated with polyvinyl alcohol (PVOH) | Listeria monocytogenes | Precooked chicken fillets | [21] | |
Enzymes | Lysozyme | Nonwoven regenerated cellulose with carbon nanotubes and graphene oxide | Micrococcus lysodeikticus | NA | [22] |
Lysozyme+ lactoferrin | Carboxymethyl cellulose-coated paper | Listeria innocua Escherichia coli | Veal carpaccio | [23] | |
Lysozyme | Polyamide 11 (PA11) with halloysite nanotubes (HNTs) | Pseudomonads | Chicken slices | [24] | |
Glucose oxidase | Whey protein isolate | Listeria innocua Brochothrix thermosphacta Escherichia coli Enterococcus faecalis | NA | [25] | |
Lactoperoxidase | Chitosan | Shewanella putrefaciens Pseudomonas fluorescens Psychrotrophs Mesophiles | Rainbow trout | [26] | |
Biopolymers | Chitosan | Chitosan/ethylene copolymer | Escherichia coli Salmonella Enteritidis Listeria monocytogenes | NA | [27] |
Hydroxyethyl cellulose/sodium alginate | NA | Escherichia coli Staphylococcus aureus | NA | [28] | |
Bacteriophages | ϕIBB-PF7A | Alginate | Pseudomonas fluorescens | Chicken fillets | [29] |
vB_EcoMH2W | Chitosan | Escherichia coli O157:H7 | Tomatoes | [30] | |
LISTEX™ P100 | Cellulose membranes | Listeria monocytogenes | Ready-to-eat turkey | [31] | |
Other | LAE | Cellulose nanofibres | Listeria monocytogenes | NA | [32] |
Sulphur nanoparticles | Chitosan | Listeria monocytogenes Escherichia coli | NA | [33] | |
Chlorine dioxide | PLA | Staphylococcus aureus Escherichia coli | NA | [34] | |
Quaternary ammonium salt | PVA/starch | Staphylococcus aureus Bacillus subtilis Escherichia coli Pseudomonas aeruginosa | NA | [35] |
Compound | E Number |
---|---|
Sorbic acid | E200 |
Potassium sorbate | E202 |
Calcium sorbate | E203 |
Benzoic acid | E210 |
Sodium benzoate | E211 |
Potassium benzoate | E212 |
Calcium benzoate | E213 |
Ethyl p-hydroxybenzoate | E214 |
Sodium ethyl p-hydroxybenzoate | E215 |
Methyl p-hydroxybenzoate | E218 |
Sodium methyl p-hydroxybenzoate | E219 |
Acetic acid | E260 |
Potassium acetate | E261 |
Sodium acetate | E262 |
Calcium acetate | E263 |
Lactic acid | E270 |
Propionic acid | E280 |
Sodium propionate | E281 |
Calcium propionate | E282 |
Potassium propionate | E283 |
Bacteriocin | Characteristics | Producer | Target Microorganisms | Ref. |
---|---|---|---|---|
Nisin | Heat stable at 121 °C (pH = 2) Less stable at pH 5–7 | Lactobacillus lactis subsp. lactis | Streptococcus thermophilus Lactobacillus spp. Listeria monocytogenes Lactobacillus lactis Staphylococcus aureus Clostridium botulinum Bacillus cereus | [43] |
Lacticin 3147A | Heat stable at 100 °C (10 min at pH 5) Stable at room and low temperature Most stable at acid and neutral pH | Lactobacillus lactis DPC3147 | Bacillus subtilis Staphylococcus aureus Listeria monocytogenes Lactobacillus fermentum | [44] |
Pediocin PA-1 | Stable at pH 4 to 6, becomes less stable as pH increases. Heat stable at 80 °C (10 min) | Pediococcus acidilactici | Lactobacillus helveticus Pediococcus pentosaceus Listeria monocytogenes | [43] |
Enterocin AS-48 | Remarkably stable to extremes of pH and denaturing agents Inactivated by heat at 65 °C and alkaline pH Compatible with several chemical compounds such as EDTA, lactic acid and sodium hypochlorite | Enterococcus faecalis subsp. liquefaciens S-48 | Corynebacterium spp. Mycobacterium spp. Nocardia spp. Micrococcus spp. Staphylococcus spp. Listeria monocytogenes Brochothrix thermosphacta Lactic acid bacteria Bacillus cereus Bacillus coagulans Bacillus subtilis Clostridium perfringens Clostridium sporogenes Clostridium tetani Myxococcus spp. Escherichia coli Rhizobium spp. Agrobacterium spp. Salmonella spp. Shigella spp. Pseudomonas spp. Klebsiella spp. | [45] |
Sakacin-A | Heat-stable (100 °C, 20 min) Active at pH 2–9 Most stable at pH 3–5 Stable during frozen storage | Lactobacillus sakei Lb706 | Listeria monocytogenes Listeria innocua Lactic acid bacteria | [43,46] |
Bacteriocin 7293 | Stable in organic solvents and high ranges of pH and temperature | Weisella hellenica BCC 7293 | Pseudomonas aeruginosa Aeromonas hydrophila Salmonella Typhimurium Escherichia coli | [42] |
Natural Compound | Packaging Material | Antimicrobial Activity | Food Preservation Data | Ref. |
---|---|---|---|---|
Gallic acid | Chitosan coating | Total viable counts | The addition of 0.2% gallic acid to chitosan films for pork loin coating showed antioxidant and antimicrobial properties under high oxygen MAP storage at 4 °C | [61] |
Lignign | Hydroxypropylmethylcellulose composite | Brochotrix thermosphacta Pseudomonas fluorescens | NA | [67] |
Curcumin | Chitosan | Staphylococcus aureus Escherichia coli | NA | [60] |
Pinosylvin | Cellulose/polypropylene absorbent pads | Campylobacter jejuni Campylobacter coli Total viable counts Pseudomonads Psychrotrophs Lactic acid bacteria | At 4 °C, pads with 0.4 mg pinosylvin/cm2 exhibited anti-Campylobacter activity in chicken fillets and exudates Active coated pads were not able to reduce pseudomonads but caused reductions in lactic acid bacteria, psychrotrophs and total viable counts | [68] |
Resveratrol | Polyethylene (PE) film polypropylene (PP) film | Staphylococcus aureus Escherichia coli | NA | [69] |
Murta fruit extract | Methyl cellulose films | Listeria innocua | NA | [70] |
Green tea extract | Chitosan | Total viable counts, Yeasts Moulds Lactic acid bacteria | Decreased number of total viable counts, lactic acid bacteria, yeasts and moulds in film-wrapped pork sausages stored at 4 °C for 20 days | [71] |
Allium ursinum L. extract | Poly(lactic acid) (PLA) film | Staphylococcus aureus Escherichia coli | NA | [72] |
Ginkgo biloba extract | Gelatine film | Staphylococcus aureus Candida albicans | NA | [73] |
Spirulina extract | Chitosan film | Escherichia coli Staphylococcus aureus Pseudomonas aeruginosa Listeria monocytogenes Salmonella typhimurium Bacillus subtilis Bacillus cereus | NA | [74] |
Turmeric extract | Chitosan film | Staphylococcus aureus Salmonella spp. | NA | [75] |
Grapefruit seed extract | Poly(lactide)/poly(butylene adipate-co- terephthalate) composite film | Listeria monocytogenes | NA | [76] |
Olive leaf powder and extract | Gelatine | Listeria monocytogenes | Films with 5.63% (w/w) of olive leaf extract decreased L. monocytogenes growth rate on inoculated RTE cold-cold-smoked salmon | [77] |
Citrus extract | Chitosan | Listeria innocua | NA | [78] |
Kombucha tea extract | Chitosan | Staphylococcus aureus Escherichia coli Total viable counts Staphylococcus spp. | Decrease in total viable and staphylococci counts in minced beef packaged with active films at 4 °C The shelf life of stored minced beef packaged in chitosan/kombucha tea can be extended up to 6 days | [79] |
Propolis extract | Chitosan/cellulose nanoparticles film | Total viable count Psychrotrophic bacteria Pseudomonas spp. Lactic acid bacteria Enterobacteriaceae | Films containing propolis extract 2% and cellulose nanoparticles delayed microbial growth as well as lipid and protein oxidation of minced beef meat | [80] |
Essential oil Component | Encapsulation Strategy | Packaging Material | Food Product | Antimicrobial Effectiveness in vivo | Ref. |
---|---|---|---|---|---|
Cinnamon | NA | Polyvinyl alcohol electrospun fibres | Strawberries | When compared to control films, EO films stopped fungal rotting for up to 6 days of storage at 21 °C | [89] |
Oregano | Nanoemulsion | Mandarin fibre edible coating | Low-fat cut cheese | Decreased Staphylococcus microbial population by 1.4 and 1.5 log CFU/g in coated cheese pieces containing 2.0% or 2.5% w/w of EO, respectively, during 15 days of refrigerated storage | [90] |
Lemongrass | NA | Zein edible coating | Cold-smoked sunshine bass fillets | LG-treated samples reduced L. monocytogenes counts by 2.5 log in polyvinyl chlorine and 1.7 log in vacuum-packaged samples, respectively | [91] |
Ginger | NA | Soy protein/zein electrospun fibres | Fresh Minas cheese | Significant reductions of L. monocytogenes were observed on the 3rd and 9th day of storage At day 9, L. monocytogenes counts decreased from 4.39 log CFU/g to 3.62 log CFU/g for the stored cheeses in the package containing EO-fibres when compared to the cheese stored in the fiberless package at 4 °C | [92] |
Thymol Carvacarol | Montmorillonite | Themoplastic starch films | Strawberries | In vivo additive/synergistic antimicrobial effect over Botrytis cinerea-inoculated strawberries was observed when carvacrol+thymol were both included in the films with respect to the films containing only carvacrol A drastic reduction of 2.4-fold on EO inhibitory concentration against Botrytis cinerea in strawberries stored at room temperature for 5 days: IC50 values dropped from 14.16 g/kg film (only carvacrol) to 5.90 g/kg film (carvacrol: thymol 50:50) in indirect contact with the films | [93] |
Paulownia tomentosa | Chitosan nanoparticles | Chitosan edible coating | Pork chop slices | EO-chitosan coatings decreased microbial growth (total viable counts, Pseudomonads and lactic acid bacteria) on pork chops compared to the control during 16 days of refrigerated storage Microbial shelf-life extension from 6 to 9 days | [94] |
Thyme Cinnamon Lemongrass | NA | Chitosan film | Peanut kernels | Peanut kernels packed in chitosan films incorporated with 4% cinnamon EO showed complete inhibition of Aspergillus flavus and Penicillium citrinum growth at 4 and 28 °C after 24 days of storage compared with all other treatments Thyme and lemongrass EOs were less effective in reducing fungal growth at all concentrations and conditions tested | [95] |
Chamomile Ginger | NA | Whey protein isolate edible coating | Rainbow trout fillets | Significant reduction in total viable counts and psychrotrophs was observed in trout fillets during 15 days of refrigerated storage when coated with ginger and camomile alone or in combination The best results were obtained when both oils were used in combination These films did not show a significant reduction in lactic acid bacteria counts and Pseudomonads | [96] |
Oregano Tea tree Peppermint | Nanoemulsion | Cellulose nanocrystals (CNCs) reinforced chitosan | Rice | Of the 3 combinations tested (thyme:oregano, thyme:tea tree and thyme:peppermint), thyme:oregano nanoemulsions were the most effective against A. niger, A. flavus, A. parasiticus and P. chrysogenum Thyme:oregano films caused a significant reduction in all moulds growth during the 8 weeks of storage at room temperature This antifungal activity was improved when active films were used in combination with irradiation treatment | [97] |
Geraniol α-Terpilenol | NA | Ethylene–vinyl alcohol copolymer (EVOH) | Fish slices | On day 8 of 10 days of refrigerated storage, the total viable counts cut down 1.98 ± 0.02 log units for fish samples packaged in geraniol/EVOH films Active films containing 6% (w/w) of geraniol and terpineol effectively extended shelf life by 4–5 days under cold-storage conditions compared with the control group | [98] |
Eugenol Carvacrol Thymol | NA | Zein edible coating | Melons | The coating of melons with zein-2% eugenol mixtures caused a marked and similar decrease in both L. innocua and E. coli counts on melon surface during storage at 4 °C for 10 days | [99] |
Cumin | NA | PET films coated with chitosan and alginate | Chicken meat | No significant growth reduction was obtained for total viable counts and psychrotrophs in active film chicken samples during refrigerated storage during 6 days | [100] |
Thyme | NA | Silk fibroin electrospun fibres | Poultry (chicken and duck) meat | Active films caused a 2-fold reduction on Salmonella Typhimurium on chicken and duck meat stored at 25 and 4 °C Films antimicrobial activity was enhanced when combined with cold plasma | [101] |
EO mix (carvacrol:oregano:cinnamon 70:10:20) | Cyclodextrin Halloysite tubes | Cardboard | Tomatoes | Decay incidence of tomatoes within cyclodextrin−EOs boxes was reduced from 9−15% to 2% after a storage period of 6 days/8 °C+12 days/25 °C | [102] |
Carvacrol | Halloysite tubes | Chitosan-coated polyethylene | Chicken meat | Active films caused a 1.5 log reduction on total viable counts on chicken meat surface following 24h of incubation at 4 °C | [103] |
Metal NP. | Packaging Material | Food Product | Antimicrobial Effectiveness | Ref. |
---|---|---|---|---|
Bimetallic silver–copper (Ag–Cu) | Polylactide (PLA) + cinnamon EO films | Chicken meat | PLA films with 4% of bimetallic NPs reduced L. monocytogenes, S. typhimurium counts by 1 log CFU/g and C. jejuni counts by 3 log CFU/g during refrigerated storage for 150 days | [107] |
Zinc oxide (ZnO) | Starch films | Fresh-cut mushrooms | Films with 3% ZnO exhibited antimicrobial activity against L. monocytogenes, resulting in a reduction of 0.86 log CFU/g after 6 days of storage at 4 °C in polypropylene containers | [111] |
Titanium oxide (TiO2) | Low-density polyethylene (LDPE) | Fresh minced meat | ZnO nanoparticle (2%)-coated LDPE films were identified as the best case to improve shelf life and prevent E. coli growth in fresh calf minced meat during refrigerated storage for 72 h | [112] |
Silver | Polyvinyl alcohol-montmorillonite blend | Chicken sausages | Marked reduction (qualitative) of total viable cell counts in chicken sausage samples stored at 4 °C for 4 days | [113] |
Silver | Polyethylene (PE) + clay blend | Chicken breast | Films containing 5% Ag and 5% TiO2 had the greatest effect on decreasing the microbial load of the chicken sample contaminated with S. aureus for 5 days at 4 °C Films were more effective in inhibiting the growth of S. aureus than E. coli | [114] |
Zinc oxide | Polylactide/poly(ε-caprolactone) + clove EO | Scrambled eggs | The efficacy of the composite films was verified against S. aureus and E. coli inoculated in scrambled egg, and results indicated that the PLA/PEG/PCL/ZnO/CEO film exhibited the highest antibacterial activity during 21 days storage at 4 °C | [115] |
Zinc oxide | Gelatin-chitosan nanofibers composite film | Chicken Cheese | The results showed that the wrapping with nanocomposite film significantly decreased the growth of inoculation bacteria in chicken fillet and cheese samples stored at 4 °C for 12 days S. aureus and E. coli cell counts (chicken) were reduced by 2 log CFU/g during storage, whereas in cheese samples, P. aeruginosa and E. coli were reduced by only 1 log CFU/g | [116] |
Packaging Material | Encapsulated Antimicrobial | Surfactant | Food Application | Antimicrobial Activity | Ref. |
---|---|---|---|---|---|
Carboxymethyl chitosan film | Carvacrol | fatty alcohol polyoxyethylene ether carboxylic acid | Wheat bread exposed to active films without direct contact | Reduction of aerobic mesophilic bacteria, mould and yeast growth | [138] |
Chitosan film or edible coating | Allyl isothiocyanate (AIT) or lauric arginate ester (LAE) | Corn-bio-fibre gum | Packaged ready to eat deli turkey | Inhibition of inoculated Listeria innocua growth by AIT or LAE | [134] |
Coated strawberries | Reduction of the survival of inoculated Escherichia coli O157:H7 and Salmonella spp., especially with AIT films | ||||
Quinoa/chitosan edible coating | Thymol | Tween 80/Miglyol 812 | Coated strawberries | Reduction of yeast and fungal growth | [139] |
Sodium caseinate edible coating | Ginger EO | Tween 80 | Coated chicken fillets | Reduction of aerobic psychrophilic bacteria, moulds and yeasts growth | [140] |
Reinforced chitosan films with cellulose nanocrystals | Thyme-oregano EO mixture | Lecithin and Tween 80 | Packaged rice | Inhibition of fungal growth The inhibitory effect was increased when gamma irradiation was also applied | [97] |
Soybean polysaccharide edible coating | Cinnamon EO | Soy protein isolate and lecithin | Coated beef meat | Reduction of aerobic psychrophilic bacteria, moulds and yeasts growth | [141] |
Jujube gum (JG) edible coating | Nettle EO | Tween 40 | Coated beluga sturgeon fillets | Reduction in total and psychrotrophic bacterial counts | [142] |
Sodium alginate and mandarin fibre edible coating | Oregano EO | Tween 80 | Coated low-fat cheese pieces | Reduction of psychrophilic bacteria growth and inhibition of mould and yeast growth Lower Staphylococcus aureus survival in inoculated cheese | [90] |
Pectin edible coating | Cinnamon bark and garlic EOs and curcumin | Tween 80 | Coated breast chicken fillet | Reduction of total and psychrophilic bacteria, yeast and mould growth | [143] |
Emulsified Antimicrobial | Stabilizing Solid Particles | Antimicrobial Activity | Ref. |
---|---|---|---|
Rosemary EO | Carboxymethyl cellulose/polyvinyl alcohol | In vitro antifungal activity against Penicillium digitatum Inhibition of fungal growth in packaged bread slices | [155] |
Thymol | Zein/chitosan complex particles | Slight in vitro antimicrobial activity against Escherichia coli and Staphylococcus aureus | [156] |
Marjoran EO | Whey protein isolate/inulin | In vitro antimicrobial activity against Escherichia coli and Staphylococcus aureus | [154] |
Oregano EO | Soluble soybean polysaccharide/soluble soy protein | In vitro antimicrobial activity against Escherichia coli O157:H7, Pseudomonas aeruginosa and Staphylococcus aureus | [157] |
Antimicrobial | Nanofiber Material | Technique of Fabrication | Antimicrobial Release Performance | Antimicrobial Action | Ref. |
---|---|---|---|---|---|
Orange EO | Zein prolamine | Coaxial electrospinning | Higher retention of EO in the film as increasing the amount of zein prolamine | Antimicrobial activity in vitro against Escherichia coli | [163] |
Curcumin | poly(vinyl alcohol) - chitosan | Coaxial electrospinning | Extended release of curcumin from the material | Inhibition of methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis growth in vitro | [164] |
Phytoncide | poly(vinyl alcohol) | Emulsion electrospinning | Sustained release of phytoncide from the film over 14 days | Reduction of Staphylococcus aureus and Escherichia coli in vitro | [165] |
Cinnamon | Polyvinylpyrrolidone | Emulsion electrospinning | ND | Antibacterial activity against Staphylococcus aureus, Escherichia coli, and Candida albicans in vitro | [166] |
Thymol | Poly(lactide-co-glycolide) | Coaxial electrospinning | ND | Reduction of microbial growth and increase the shelf life of strawberries packaged in the active material | [167] |
Eugenol | Polyvinyl pyrrolidone (core) and shellac (shell) | Coaxial electrospinning | Slower release of thymol from the film | Extension of shelf life of strawberries packaged with the active fibrous film | [168] |
Nanofiber Material | Inclusion Complex | Antimicrobial Activity | Reference |
---|---|---|---|
Gelatine | Thyme EO/β-cyclodextrin ε-polylysine | Reduction in bacterial counts in coated chicken meat without adverse impact on colour, texture and sensory evaluation | [177] |
Polyvinyl alcohol | Cinnamon EO/β-cyclodextrin | Higher in vitro antibacterial against Staphylococcus aureus and Escherichia coli than nanofibers without cyclodextrins Reduction of bacterial counts and increasing of shelf life of wrapped mushrooms | [178] |
Poly(ethylene oxide) | Tea tree oil/β-cyclodextrin | Antibacterial activity against Escherichia coli O157:H7 After plasma treatment the film show enhanced antibacterial activity due a higher release rate | [177] |
Zein | Eucalyptus EO/β-cyclodextrin | In vitro antimicrobial activity Staphylococcus aureus and Listeria monocytogenes | [179] |
Zein | Thymol/γ-Cyclodextrin | Higher antimicrobial activity Escherichia coli and Staphylococcus aureus in vitro than nanofibers with non-encapsulated thymol Reduction of bacterial count in meat stored up to 5 days at 4 °C | [171] |
Polylactic acid | Cinnamon EO/β-cyclodextrin | Antimicrobial activity against Escherichia coli and Staphylococcus aureus in vitro and efficacy in reducing bacterial counts in packaged pork film | [176] |
Polyvinyl alcohol | Cinnamon EO/β-cyclodextrin | Antimicrobial activity against Escherichia coli and Staphylococcus aureus in vitro and extension of the shelf life of packaged strawberries | [89] |
Encapsulated Antimicrobial | Packaging Material | Food Application | Results | Ref. |
---|---|---|---|---|
Carvacrol | Polyamide film | Cherry tomatoes, lychee and grapes packaged in bags | Decay reduction in all foods except in cherry tomatoes packed in high concentrations of carvacrol | [191] |
Carvacrol | Low density polyethylene film | Inoculated sliced wheat bread exposed to active films in a vapour phase assay | Inhibition of fungal growth after 11 days at 25 °C Films containing encapsulated carvacrol showed better performance than those without encapsulation | [194] |
Lysozyme | Polyamide nanofibers | Chicken slices were stored on pads of active nanofibers | Reduction of Pseudomonas growth by 1-2 log CFU/g during storage at 4 °C | [24] |
carvacrol | Polyethylene coated with chitosan loaded with HNTs | Wrapped chicken meat | Reduction of bacterial counts in 1.4 log CFU/cm2 (1 log more than films without HNTs) | [103] |
Carvacrol and thymol mixtures | Low density polyethylene film | Inoculated and diluted hummus exposed to active films in a headspace assay | Inhibition of Escherichia coli growth after 22 h at 27 °C | [190] |
Carvacrol | Low density polyethylene/poly ethylene vinyl alcohol layered films | Inoculated cherry tomato exposed to active films using a packaged simulation | Inhibition of Alternaria alternata and Rhizopus spp. growth after 4 days at 23 °C | [195] |
Carvacrol, oregano and cinnamon EOs mixture | cardboard box coated with a lacquer loaded with HNTs | Fresh tomatoes stored in active cardboard boxes | Some microbial reduction after 6 days of storage | [102] |
Antimicrobial | Liposomes | Packaging Material | Food Application | Antimicrobial Activity | Reference |
---|---|---|---|---|---|
Escherichia coli 0157:H7 phage | Lecithin and cholesterol | Chitosan film | Wrapped beef | Extended antibacterial activity against Escherichia coli O157:H7 in inoculated beef Extension of beef shelf life without affect sensorial properties | [201] |
Artemisia annua oil | Lecithin and cholesterol | Chitosan edible film | Coated cherry tomatoes | Escherichia coli 0157:H7 growth reduction without changes in overall like mouthfeel and texture Changes in the colour were observed | [202] |
Cinnamon EO | Lecithin, cholesterol and casein | Poly(ethylene oxide) nanofibers | Packaged beef | Reduction of inoculated Bacillus cereus with no impact on sensorial properties | [203] |
Nisin or nisin-silica | Lecithin and cholesterol | Chitosan edible coating | Coated cheese | Extended antibacterial activity against inoculated Listeria monocytogenes maintaining the sensory properties of cheese | [204] |
Cinnamon | Lecithin | PVA electrospun nonwoven | Packaged shrimp | Antibacterial activity against total bacteria and Pseudomonas aeruginosa | [205] |
Laurel EO and lignin-silver nanoparticles | Phosphatidyl choline and choresterol | Chitosan coated in polyethylene films | Packaged pork meat | Increase of pork meat self-life by reduction of TVB-N values and keeping the quality of pork | [206] |
Particle Matrix | Encapsulated Antimicrobial | Antimicrobial Packaging | Food Application | Results | Reference |
---|---|---|---|---|---|
Chitosan microcapsules | Sorbic acid | Ethylene vinyl alcohol copolymer/polyethylene terephthalate film | Packaged snakehead | Increased the shelf life 4 days by reducing total volatile counts | [225] |
Chitosan microcapsules | Grape seed extract and carvacrol | Chitosan films | Packaged salmon | Lower total volatile basic nitrogen and bacterial counts for a longer period of time. | [226] |
Chitosan microcapsules | Cinnamon EO | Layer by layer edible coating of alginate and chitosan loaded with cinnamon microcapsules | Coated mangoes | Extension of mango shelf life. Reduction of black spots produced by moulds | [227] |
Poly-γ-glutamic acid/chitosan nanoparticles | Nisin | Polyethylene oxide nanofibers coated in aluminium foil | Packaged cheese | Antibacterial activity against Listeria monocytogenes on cheese, without impact on the sensory quality | [228] |
Chitosan nanoparticles | Clove oil | Krafted Gelatine nanofibers coating | Packaged cucumber | Inhibition of Escherichia coli O157:H7 biofilms in cucumber | [220] |
Zein nanoparticles | Silymarin | Bacterial cellulose nanofiber films | Packaged salmon | Reduction of total volatile basic nitrogen contents during storage | [223] |
Chitosan nanoparticles | Moringa oil | Gelatin nanofibers | Packaged cheese | Antibacterial effect against Listeria monocytogenes and Staphylococcus aureus on cheese at 4 °C and 25 °C without impact on the surface colour and sensory quality | [221] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becerril, R.; Nerín, C.; Silva, F. Encapsulation Systems for Antimicrobial Food Packaging Components: An Update. Molecules 2020, 25, 1134. https://doi.org/10.3390/molecules25051134
Becerril R, Nerín C, Silva F. Encapsulation Systems for Antimicrobial Food Packaging Components: An Update. Molecules. 2020; 25(5):1134. https://doi.org/10.3390/molecules25051134
Chicago/Turabian StyleBecerril, Raquel, Cristina Nerín, and Filomena Silva. 2020. "Encapsulation Systems for Antimicrobial Food Packaging Components: An Update" Molecules 25, no. 5: 1134. https://doi.org/10.3390/molecules25051134
APA StyleBecerril, R., Nerín, C., & Silva, F. (2020). Encapsulation Systems for Antimicrobial Food Packaging Components: An Update. Molecules, 25(5), 1134. https://doi.org/10.3390/molecules25051134