Chemical Characterization of Capsule-Brewed Espresso Coffee Aroma from the Most Widespread Italian Brands by HS-SPME/GC-MS
Abstract
:1. Introduction
2. Results
2.1. Volatile Compounds in Espresso Coffees (EC) Brewed by Capsules
2.2. Selection of Volatile Markers for EC Samples Classification Among Brands
2.2.1. Principal Component Analysis (PCA)
2.2.2. Partial Least Squares–Discriminant Analysis (PLS-DA)
3. Discussion
3.1. Aldehydes and Ketones
3.2. Pyrazines and Furans
3.3. Phenolic and Sulfur Compounds
4. Materials and Methods
4.1. Materials
4.2. Preparation of Espresso Coffee
4.3. Determination of Volatile Profile of ECs
4.3.1. Headspace Solid-Phase Microextraction (HS-SPME)/GCMS
4.3.2. Identification of Volatiles in ECs
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Caprioli, G.; Cortese, M.; Cristalli, G.; Maggi, F.; Odello, L.; Ricciutelli, M.; Sagratini, G.; Sirocchi, V.; Tomasoni, G.; Vittori, S. Optimization of espresso machine parameters through the analysis of coffee odorants by HS-SPME/GC/MS. Food Chem. 2012, 135, 1127–1133. [Google Scholar] [CrossRef]
- Gloess, A.N.; Schonbachler, B.; Klopprogge, B.; D’Ambrosio, L.; Chatelain, K.; Bongartz, A.; Strittmatter, A.; Rast, M.; Yeretzian, C. Comparison of nine common coffee extraction methods: Instrumental and sensory analysis. Eur. Food Res. Technol. 2013, 236, 607–627. [Google Scholar] [CrossRef] [Green Version]
- International Coffee Organization. Available online: http://www.ico.org/Market-Report-19-20-e.asp (accessed on 8 January 2020).
- Wanga, X.; William, J.; Fu, Y.; Lima, L.T. Effects of capsule parameters on coffee extraction in single-serve brewer. Food Res. Int. 2016, 89, 797–805. [Google Scholar] [CrossRef]
- Lopes, G.R.; Ferreira, A.S.; Pinto, M.; Passos, C.P.; Coelho, E.; Rodrigues, C.; Figueira, C.; Rocha, S.M.; Nunes, F.M.; Coimbra, M.A. Carbohydrate content, dietary fibre and melanoidins: Composition of espresso from single-dose coffee capsules. Food Res. Int. 2016, 89, 989–996. [Google Scholar] [CrossRef]
- Di Bella, G.; Potortì, A.G.; Lo Turco, V.; Saitta, M.; Dugo, G. Plasticizer residues by HRGC–MS in espresso coffees from capsules, pods and moka pots. Food Control. 2014, 41, 185–192. [Google Scholar] [CrossRef]
- Angelino, D.; Tassotti, M.; Brighenti, F.; Del Rio, D.; Mena, P. Niacin, alkaloids and (poly)phenolic compounds in the most widespread Italian capsule-brewed coffees. Sci. Rep. 2018, 8, 17874. [Google Scholar] [CrossRef] [PubMed]
- Coppola, D. Market Share of Coffee Pods and Capsules for Offices in Italy from 2014 to 2018. Available online: https://www.statista.com/statistics/693074/market-share-of-coffee-pods-and-capsule-for-offices-in-italy/ (accessed on 26 January 2020).
- Dong, W.; Hu, R.; Long, Y.; Li, H.; Zhang, Y.; Zhu, K.; Chu, Z. Comparative evaluation of the volatile profiles and taste properties of roasted coffee beans as affected by drying method and detected by electronic nose, electronic tongue, and HS-SPME/GC-MS. Food Chem. 2019, 272, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Pua, A.; Lau, H.; Liu, S.Q.; Tan, L.P.; Goh, R.M.V.; Lassabliere, B.; Leong, K.C.; Sun, J.; Cornuz, M.; Yu, B. Improved detection of key odourants in Arabica coffee using gas chromatography-olfactometry in combination with low energy electron ionisation gas chromatography-quadrupole time-of-flight mass spectrometry. Food Chem. 2020, 1, 125370. [Google Scholar] [CrossRef] [PubMed]
- Petisca, C.; Pérez-Palacios, T.; Pinho, O.; Ferreira, I.M.P.L.V.O. Optimization and Application of a HS-SPME/GC-MS Methodology for Quantification of Furanic Compounds in Espresso Coffee. Food Anal. Methods 2014, 7, 81–88. [Google Scholar] [CrossRef]
- Toledo, P.R.A.B.; Pezza, L.; Pezza, H.R.; Toci, T. Relationship Between the Different Aspects Related to Coffee Quality and Their Volatile Compounds. Comprehensive Reviews in Food Science and Food Safety. Compr. Rev. Food Sci. Food Saf. 2016, 15, 705–719. [Google Scholar] [CrossRef] [Green Version]
- Melo Pereira, G.V.; de Carvalho Neto, D.P.; Magalhães Júnior, A.I.; Vásquez, Z.S.; Medeiros, A.B.P.; Vandenberghe, L.P.S.; Soccol, C.R. Exploring the impacts of postharvest processing on the aroma formation of coffee beans—A review. Food Chem. 2019, 272, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Illy, A.; Viani, R. Espresso Coffee: The Science of Quality, 2nd ed.; Elsevier Academic Press: London, UK, 2005; pp. 1–20. [Google Scholar]
- Kulapichitr, F.; Borompichaichartkul, C.; Suppavorasatit, I.; Cadwallader, K.R. Impact of drying process on chemical composition and key aroma components of Arabica coffee. Food Chem. 2019, 291, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Bressanello, D.; Liberto, E.; Cordero, C.; Rubiolo, P.; Pellegrino, G.; Ruosi, M.R.; Bicchia, C. Coffee aroma: Chemometric comparison of the chemical information provided by three different samplings combined with GC–MS to describe the sensory properties in cup. Food Chem. 2017, 214, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Pickard, S.; Becker, I.; Merz, K.H.; Richling, E. Determination of the Alkylpyrazine Composition of Coffee Using Stable Isotope Dilution-Gas Chromatography-Mass Spectrometry (SIDA-GC-MS). J. Agric. Food Chem. 2013, 61, 6274–6281. [Google Scholar] [CrossRef] [PubMed]
- Maetzu, L.; Sanz, C.; Andueza, S.; Paz De Pena, M.; Bello, J.; Cid, C. Characterization of Espresso Coffee Aroma by Static Headspace GC-MS and Sensory Flavour Profile. J. Agric. Food Chem. 2001, 49, 5437–5444. [Google Scholar]
- Caporaso, N.; Whitworth, M.B.; Cuic, C.; Fiska, I.D. Variability of single bean coffee volatile compounds of Arabica and robusta roasted coffees analysed by SPME-GC-MS. Food Res. Int. 2018, 108, 628–640. [Google Scholar] [CrossRef]
- Ochiai, N.; Tsunokawa, J.; Kikuo Sasamoto, K.; Hoffmann, A. Multi-volatile method for aroma analysis using sequential dynamic headspace sampling with an application to brewed coffee. J. Chromatogr. A 2014, 1371, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Bonvehí, J.S. Investigation of aromatic compounds in roasted cocoa powder. Eur. Food Res. Technol. 2005, 221, 19–29. [Google Scholar] [CrossRef]
- Flament, I. Coffee Flavor Chemistry, 1st ed.; John Wiley and Sons: Hoboken, NY, USA, 2002; pp. 81–335. [Google Scholar]
- Toci, A.T.; Farah, A. Volatile fingerprint of Brazilian defective coffee seeds: Corroboration of potential marker compounds and identification of new low-quality indicators. Food Chem. 2014, 153, 298–314. [Google Scholar] [CrossRef]
- Akiyama, M.; Murakami, K.; Ikeda, M.; Iwatsuki, K.; Kokubo, S.; Wada, A.; Tokuno, K.; Onishi, M.; Iwabuchi, H.; Tanaka, K. Characterization of flavour compounds released during grinding of roasted Robusta coffee beans. Food Sci. Technol. Res. 2005, 11, 298–307. [Google Scholar] [CrossRef] [Green Version]
- Sanz, C.; Czerny, M.; Cid, C.; Schieberle, P. Comparison of potent odorants in a filtered coffee brew and in an instant coffee beverage by aroma extract dilution analysis (AEDA). Eur. Food Res. Technol. 2002, 214, 299–302. [Google Scholar] [CrossRef]
- Czerny, M.; Mayer, F.; Grosch, W. Sensory study on the character impact odorants of roasted Arabica coffee. J. Agric. Food Chem. 1999, 47, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Rahn, A.; Yeretzian, C. Impact of consumer behavior on furan and furan-derivative exposure during coffee consumption. A comparison between brewing methods and drinking preferences. Food Chem. 2019, 272, 514–522. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority. Update on furan levels in food from monitoring years 2004–2010 and exposure assessment. EFSA J. 2011, 9, 2347. [Google Scholar]
- Altaki, M.S.; Santos, F.J.; Galceran, M.T. Occurrence of furan in coffee from Spanish market: Contribution of brewing and roasting. Food Chem. 2011, 126, 1527–1532. [Google Scholar] [CrossRef]
- Tressl, R.; Solwar, R. Investigation of sulfur-containing components in roasted coffee. J. Agric. Food Chem. 1981, 29, 1078–1082. [Google Scholar] [CrossRef]
- Jiemin, L.; Ning, L.; Meijuan, W.; Guibin, J. Determination of Volatile Sulfur Compounds in Beverage and Coffee Samples by Purge-and-Trap On-Line Coupling with a Gas Chromatography-Flame Photometric Detector. Microchim. Acta 2004, 148, 43–47. [Google Scholar] [CrossRef]
- Chong, I.G.; Jun, C.H. Performance of some variable selection methods when multicollinearity is present. Chemometr. Intell. Lab. Syst. 2005, 78, 103–112. [Google Scholar] [CrossRef]
- Marco-Ramell, A.; Palau-Rodriguez, M.; Alay, A.; Tulipani, S.; Urpi-Sarda, M.; Sanchez-Pla, A.; Andres-Lacueva, C. Evaluation and comparison of bioinformatic tools for the enrichment analysis of metabolomics data. BMC Bioinform. 2018, 19, 1. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Compound | KI 1 | ID 2 | Compound | KI 1 | ID 2 |
---|---|---|---|---|---|
ALDEHYDES | ESTERS | ||||
2-methylpropanal | 827 | B | methyl acetate | 838 | B |
2-methylbutanal | 919 | B | ethyl acetate | 898 | B |
3-methylbutanal | 921 | A | propanoic acid, 3-methyl-, methyl ester | 1008 | C |
furfural | 1472 | B | methyl isovalerate | 1020 | C |
benzaldehyde | 1527 | A | butyl butanoate | 1229 | C |
5-methyl-2-furfural | 1580 | B | prenyl acetate | 1256 | C |
2-methylbenzaldehyde | 1596 | C | furfuryl formate * | 1504 | B |
2-methyl-3-(2-furyl)acrolein | 1682 | C | 2-oxobutyl acetate | 1533 | C |
1H-pyrrole-2-carboxaldehyde | 2034 | A | 2-furfuryl-propanoate | 1602 | B |
KETONES | PYRAZINES | ||||
2-butanone | 906 | B | pyrazine | 1210 | B |
2-pentanone | 979 | B | 2-methyllpyrazine * | 1266 | B |
2,3-butandione | 982 | B | 2,5-dimethylpyrazine * | 1320 | B |
2,3-pentanedione | 1063 | B | 2,6-dimethylpyrazine * | 1325 | B |
3-penten-2-one | 1127 | B | 2-ethylpirazine * | 1334 | B |
2,3-hexanedione | 1134 | B | 2,3-dimethylpyrazine * | 1345 | B |
1-(furan-2-yl)ethanone * | 1512 | B | 2-ethyl-6-methylpyrazine * | 1385 | B |
1-(furan-2-yl)butan-2-one | 1604 | B | 2-ethyl-5-methylpyrazine * | 1390 | B |
1-(1-methylpyrrol-2-yl)ethanone | 1659 | B | 2,3,5-trimethylpyrazine | 1404 | A |
2-ethyl-3-methylpyrazine | 1419 | C | |||
furfural acetone derivative | 1910 | C | 2,6-diethylpyrazine * | 1433 | B |
3-ethyl-2,5-dimethylpyrazine * | 1441 | B | |||
TERPENES | SULFUR COMPOUNDS | ||||
β-linalool | 1550 | B | dimetilsulfide | 1070 | B |
p-menthene monoterpenoid derivative | 1650 | C | 2-(methylsulfanylmethyl)furan (furfuryl methyl sulfide) | 1490 | B |
p-menthene monoterpenoid derivative 2 | 1694 | C | |||
PYRROLES | PHENOLIC COMPOUNDS | ||||
1-methyl-1H-pyrrole | 1141 | B | 2-methoxyphenol (guaiacol) | 1867 | B |
1H-pyrrole derivative * | 1801 | C | 2-methoxy-4-methylphenol | 1871 | B |
1-furfurylpyrrole | 1837 | B | 4-ethylguaiacol | 2034 | B |
2-acetyl-1H-pyrrole | 1979 | B | 2-methylphenol (o-cresol) | 2092 | B |
1-methyl-1H-pyrrole-2-carbaldehyde derivative * | 2107 | C | 3-methylphenol (m-cresol) | 2171 | B |
p-vinylguaiacol (2-methoxy-4-vinylvinylphenol) | 2193 | B | |||
FURANS | OTHERS | ||||
2-methylfuran | 879 | B | unknown 1 | 1459 | - |
2,5-dimethylfuran | 956 | B | benzyl alcohol | 1880 | C |
Vinylfuran | 1074 | B | 2-furanmethanol | 1667 | B |
2-(methoxymethyl)furan | 1243 | B | 2-furanmethanolacetate (furfuryl alcohol acetate) | 1542 | B |
2-butylfuran derivative | 1524 | C | unknown 2 * | 2030 | - |
furan,2,2′-methylenbis | 1614 | B | unknown 3 * | 2038 | - |
furfurylammine derivative | 2236 | C | |||
difurfuryl ether (2,2′-[oxybis(methylene)]) bisfuran | 1992 | C | unknown 4 | 2253 | - |
indole | 2386 | B | |||
3-methylindole | 2450 | B | |||
PYRIDINES | |||||
Pyridine | 1181 | B | |||
4(H)-pyridine, n-acetyl | 1724 | B |
BRAND A (N = 23) | BRAND B (N = 15) | BRAND C (N = 10) | BRAND D (N = 10) | BRAND E (N = 7) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Compound | Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | Mean |
ALDEHYDES | |||||||||||||||
2-methylpropanal | 50.0 | 770.0 | 202.6 a,b | 50.0 | 510.0 | 158.7 a | 100.0 | 260.0 | 143 a | 130.0 | 570.0 | 323.3 b | 90.0 | 240.0 | 148.6 a |
2-methylbutanal | 120.0 | 920.0 | 400.4 a,b | 80.0 | 1120.0 | 329.4 a,b | 140.0 | 430.0 | 225.0 a | 180.0 | 800.0 | 494.4 b | 130.0 | 370.0 | 217.1 a |
3-methylbutanal | 130.0 | 1690.0 | 494.3 | 100.0 | 980.0 | 357.5 | 110.0 | 510.0 | 228.0 | 170.0 | 760.0 | 486.7 | 100.0 | 350.0 | 180.0 |
furfural | 580.0 | 4020.0 | 1774.3 a | 690.0 | 3890.0 | 1696.2 a | 850.0 | 2930.0 | 1772.0 a | 1640.0 | 7500.0 | 3676.7 b | 800.0 | 2580.0 | 1385.7 a |
benzaldehyde | 130.0 | 920.0 | 386.1 | 190.0 | 880.0 | 390.0 | 320.0 | 730.0 | 460.0 | 320.0 | 1090.0 | 587.8 | 330.0 | 730.0 | 472.9 |
5-methyl-2-furfural | 910.0 | 5460.0 | 2456.5 a | 780.0 | 5440.0 | 2291.9 a | 1480.0 | 4260.0 | 2754.0 a | 2270.0 | 8830.0 | 4786.7 b | 1300.0 | 3980.0 | 2345.7 a |
2-methybenzaldehyde | 80.0 | 750.0 | 300.4 a,b | 70.0 | 400.0 | 226.9 a | 130.0 | 560.0 | 284.0 a,b | 250.0 | 930.0 | 432.2 b | 160.0 | 320.0 | 225.7 a |
2-methyl-3-(2-furyl)acrolein | 250.0 | 1120.0 | 601.7 a | 160.0 | 740.0 | 432.5 a | 210.0 | 740.0 | 445.0 a | 560.0 | 2040.0 | 1121.1 b | 270.0 | 530.0 | 414.3 a |
1H-pyrrole-2-carboxaldehyde | 60.0 | 1610.0 | 297.4 a,b | 40.0 | 350.0 | 188.1 a | 150.0 | 360.0 | 229.0 a | 210.0 | 970.0 | 564.4 b | 180.0 | 430.0 | 265.7 a |
KETONES | |||||||||||||||
2-butanone | 30.0 | 260.0 | 100.4 a | 40.0 | 250.0 | 85.6 a | 50.0 | 140.0 | 74.0 a | 80.0 | 320.0 | 173.3 b | 50.0 | 150.0 | 82.9 a |
2-pentanone | 10.0 | 100.0 | 43.0 a,b | 10.0 | 110.0 | 34.4 a,b | 10.0 | 70.0 | 27.0 a | 20.0 | 140.0 | 61.1 b | 30.0 | 70.0 | 45.7 a,b |
2,3-butandione | 10.0 | 170.0 | 62.6 a,b | 20.0 | 140.0 | 55.0 a | 20.0 | 70.0 | 36.0 a | 20.0 | 180.0 | 97.8 b | 20.0 | 60.0 | 34.3 a |
2,3-pentanedione | 40.0 | 450.0 | 135.2 a,b | 60.0 | 280.0 | 118.2 a,b | 50.0 | 130.0 | 89.0 a | 50.0 | 400.0 | 197.8 b | 40.0 | 140.0 | 75.7 a |
3-penten-2-one | 0.0 | 60.0 | 20.0 a | 10.0 | 30.0 | 15.0 a | 10.0 | 40.0 | 18.0 a | 30.0 | 90.0 | 47.8 b | 10.0 | 20.0 | 12.9 a |
2,3-hexanedione | 20.0 | 150.0 | 61.7 | 20.0 | 580.0 | 81.9 | 0.0 | 70.0 | 38.0 | 40.0 | 130.0 | 83.3 | 0.0 | 50.0 | 18.6 |
1-(furan-2-yl)ethanone | 170.0 | 1410.0 | 597.9 a | 150.0 | 1080.0 | 566.9 a | 220.0 | 1090.0 | 574.0 a | 590.0 | 2720.0 | 1402.2 b | 360.0 | 1190.0 | 641.4 a |
1-(furan-2-yl)butan-2-one | 60.0 | 390.0 | 163.9 | 40.0 | 340.0 | 151.3 | 100.0 | 340.0 | 173.0 | 110.0 | 460.0 | 241.1 | 60.0 | 220.0 | 148.6 |
1-(1-methylpyrrol-2-yl)ethanone | 260.0 | 1550.0 | 680.0 | 220.0 | 1130.0 | 537.5 | 390.0 | 1270.0 | 742.0 | 0.0 | 2200.0 | 933.3 | 480.0 | 980.0 | 695.7 |
furfural acetone derivative | 70.0 | 420.0 | 182.6 a,b | 30.0 | 290.0 | 137.5 a | 100.0 | 230.0 | 151.0 a | 130.0 | 680.0 | 294.4 b | 120.0 | 230.0 | 175.7 a |
ESTERS | |||||||||||||||
methyl acetate | 30.0 | 370.0 | 107.0 a,b | 30.0 | 290.0 | 87.5 a | 50.0 | 160.0 | 77.0 a | 100.0 | 500.0 | 196.7 b | 50.0 | 210.0 | 102.9 a |
ethyl acetate | 50.0 | 370.0 | 168.3 | 50.0 | 220.0 | 116.3 | 40.0 | 500.0 | 140.0 | 50.0 | 330.0 | 170.0 | 40.0 | 170.0 | 74.3 |
propanoic acid, 3-methyl-, methyl ester | 60.0 | 620.0 | 244.8 a | 100.0 | 630.0 | 255.0 a | 120.0 | 340.0 | 234.0 a | 240.0 | 1020.0 | 564.4 b | 100.0 | 340.0 | 180.0 a |
methyl isovalerate | 0.0 | 30.0 | 13.5 | 10.0 | 30.0 | 16.3 | 0.0 | 20.0 | 13.0 | 10.0 | 40.0 | 17.8 | 0.0 | 20.0 | 10.0 |
prenyl acetate | 10.0 | 120.0 | 51.7 a | 20.0 | 130.0 | 50.0 a | 0.0 | 100.0 | 52.0 a | 0.0 | 310.0 | 138.9 b | 20.0 | 110.0 | 47.1 a |
furfuryl formate | 0.0 | 420.0 | 128.7 a | 0.0 | 290.0 | 105.6 a | 30.0 | 300.0 | 138.0 a | 180.0 | 760.0 | 468.9 b | 50.0 | 280.0 | 152.9 a |
2-furfuryl-propanoate | 320.0 | 1750.0 | 752.6 | 220.0 | 1400.0 | 639.4 | 330.0 | 1410.0 | 770.0 | 580.0 | 2350.0 | 1030.0 | 460.0 | 1110.0 | 702.9 |
TERPENS | |||||||||||||||
β-linalool | 50.0 | 780.0 | 287.4 a | 80.0 | 490.0 | 261.3 a | 70.0 | 580.0 | 242.0 a | 130.0 | 1430.0 | 536.7 b | 70.0 | 340.0 | 184.3 a |
p-menthene monoterpenoid derivative | 200.0 | 1290.0 | 610.0 a,b | 140.0 | 890.0 | 471.9 a | 280.0 | 970.0 | 513.0 a | 440.0 | 1700.0 | 868.9 b | 300.0 | 640.0 | 452.9 a |
p-menthene monoterpenoid derivative 2 | 180.0 | 1430.0 | 642.2 a | 130.0 | 750.0 | 487.5 a | 390.0 | 900.0 | 631.0 a | 420.0 | 2250.0 | 1023.3 b | 520.0 | 620.0 | 575.7 a |
PYRROLES | |||||||||||||||
1-methyl-1H-pyrrole | 40.0 | 560.0 | 190.4 a,b | 40.0 | 330.0 | 141.9 a,b | 30.0 | 240.0 | 156.0 a,b | 120.0 | 550.0 | 234.4 b | 30.0 | 200.0 | 94.3 a |
1H-pyrrole derivative | 200.0 | 1320.0 | 593.0 a | 170.0 | 1070.0 | 468.8 a | 370.0 | 880.0 | 596.0 a | 470.0 | 2040.0 | 1017.8 b | 490.0 | 920.0 | 675.7 a,b |
1-furfurylpyrrole | 920.0 | 4100.0 | 1847.0 a,b | 630.0 | 2670.0 | 1506.9 a | 1220.0 | 3040.0 | 1893.0 a,b | 1530.0 | 5050.0 | 2525.6 b | 900.0 | 2970.0 | 1531.4 a |
2-acetyl-1H-pyrrole | 220.0 | 1680.0 | 745.2 a | 170.0 | 1310.0 | 578.8 a | 410.0 | 1140.0 | 682.0 a | 600.0 | 3040.0 | 1385.6 b | 580.0 | 1280.0 | 858.6 a |
1-methyl-1H-pyrrole-2-carbaldehyde derivative | 230.0 | 1580.0 | 687.4 a | 290.0 | 1410.0 | 600.6 a | 420.0 | 1300.0 | 770.0 a | 640.0 | 2340.0 | 1431.1 b | 550.0 | 1400.0 | 901.4 a |
PYRIDINES | |||||||||||||||
Pyridine | 220.0 | 3490.0 | 1200.0 a | 360.0 | 1690.0 | 901.9 a | 580.0 | 2840.0 | 1244.0 a | 1230.0 | 7150.0 | 2568.9 b | 320.0 | 1990.0 | 994.3 a |
4(H)-pyridine, n-acetyl | 140.0 | 880.0 | 386.5 a | 130.0 | 720.0 | 328.8 a | 260.0 | 540.0 | 412.0 a | 270.0 | 1160.0 | 642.2 b | 330.0 | 510.0 | 420.0 a |
FURANS | |||||||||||||||
2-methylfuran | 70.0 | 530.0 | 187.8 | 50.0 | 480.0 | 161.9 | 50.0 | 280.0 | 104.0 | 90.0 | 430.0 | 211.1 | 50.0 | 180.0 | 100.0 |
2,5-dimethylfuran | 20.0 | 90.0 | 34.8 a,b | 20.0 | 70.0 | 35.0 a,b | 10.0 | 50.0 | 21.0 a | 30.0 | 110.0 | 53.3 b | 10.0 | 30.0 | 14.3 a |
vinylfuran | 10.0 | 80.0 | 34.3 b,c | 10.0 | 40.0 | 26.9 a,b,c | 0.0 | 40.0 | 17.0 a,b | 0.0 | 70.0 | 37.8 c | 0.0 | 30.0 | 10.0 a |
2-(methoxymethyl)furan | 40.0 | 340.0 | 123.0 a | 50.0 | 260.0 | 107.5 a | 30.0 | 210.0 | 98.0 a | 70.0 | 480.0 | 246.7 b | 60.0 | 170.0 | 101.4 a |
2-butylfuran derivative | 110.0 | 900.0 | 347.8 a | 120.0 | 420.0 | 273.7 a | 120.0 | 560.0 | 329.0 a | 360.0 | 1350.0 | 747.8 b | 120.0 | 430.0 | 215.7 a |
furan,2,2′-methylenbis | 420.0 | 1850.0 | 897.4 a,b | 310.0 | 1260.0 | 735.0 a | 450.0 | 1430.0 | 826.0 a,b | 770.0 | 2780.0 | 1283.3 b | 460.0 | 1200.0 | 624.3 a |
difurfuryl ether (2,2′-[oxybis(methylene)] bisfuran | 380.0 | 2750.0 | 1213.0 | 200.0 | 1730.0 | 833.1 | 520.0 | 2040.0 | 986.0 | 860.0 | 4290.0 | 1515.6 | 760.0 | 1470.0 | 1055.7 |
PYRAZINES | |||||||||||||||
pyrazine | 30.0 | 350.0 | 136.5 a | 60.0 | 240.0 | 124.4 a | 50.0 | 210.0 | 109.0 a | 110.0 | 390.0 | 263.3 b | 40.0 | 130.0 | 80.0 a |
2-methyllpyrazine | 210.0 | 2110.0 | 808.3 a | 400.0 | 2030.0 | 796.3 a | 550.0 | 1510.0 | 782.0 a | 960.0 | 3580.0 | 2131.1 b | 540.0 | 1270.0 | 810.0 a |
2,5-dimethylpyrazine | 140.0 | 1290.0 | 488.7 a | 220.0 | 1350.0 | 513.7 a | 400.0 | 1010.0 | 555.0 a | 490.0 | 2220.0 | 1225.6 b | 400.0 | 950.0 | 574.3 a |
2,6-dimethylpyrazine | 130.0 | 1220.0 | 468.3 a | 240.0 | 1210.0 | 480.0 a | 350.0 | 890.0 | 513.0 a | 570.0 | 2300.0 | 1255.6 b | 360.0 | 810.0 | 480.0 a |
2-ethylpirazine | 90.0 | 960.0 | 348.3 a | 160.0 | 1050.0 | 359.4 a | 260.0 | 680.0 | 376.0 a | 330.0 | 1510.0 | 841.1 b | 270.0 | 700.0 | 454.3 a |
2,3-dimethylpyrazine | 30.0 | 350.0 | 116.1 a | 50.0 | 330.0 | 142.5 a | 70.0 | 230.0 | 133.0 a | 130.0 | 430.0 | 260.0 b | 90.0 | 220.0 | 128.6 a |
2-ethyl-6-methylpyrazine | 150.0 | 1310.0 | 492.2 a | 240.0 | 1420.0 | 485.0 a | 440.0 | 1080.0 | 607.0 a,b | 410.0 | 1660.0 | 981.1 b | 420.0 | 1260.0 | 721.4 a,b |
2-ethyl-5-methylpyrazine | 120.0 | 960.0 | 349.6 a | 170.0 | 1000.0 | 351.9 a | 330.0 | 770.0 | 448.0 a,b | 290.0 | 1210.0 | 705.6 b | 310.0 | 880.0 | 501.4 a,b |
2,3,5-trimethylpyrazine | 100.0 | 2930.0 | 563.5 a,b | 250.0 | 1090.0 | 478.7 a | 440.0 | 1140.0 | 612.0 a,b | 380.0 | 1860.0 | 1001.1 b | 450.0 | 580.0 | 517.1 a,b |
2-ethyl-3-methylpyrazine | 20.0 | 180.0 | 66.1 a | 30.0 | 160.0 | 65.0 a | 50.0 | 150.0 | 74.0 a,b | 40.0 | 260.0 | 118.9 b | 50.0 | 100.0 | 72.9 a,b |
2,6-diethylpyrazine | 70.0 | 950.0 | 227.0 a,b | 90.0 | 530.0 | 198.1 a | 180.0 | 470.0 | 278.0 a,b | 150.0 | 780.0 | 410.0 b | 220.0 | 430.0 | 328.6 a,b |
3-ethyl-2,5-dimethylpyrazine | 190.0 | 2100.0 | 682.2 a | 200.0 | 1720.0 | 616.3 a | 530.0 | 1590.0 | 906.0 a,b | 270.0 | 2770.0 | 1335.6 b | 520.0 | 1710.0 | 908.6 a,b |
PHENOLIC COMPOUNDS | |||||||||||||||
2-methoxyphenol (guaiacol) | 270.0 | 1720.0 | 797.0 | 210.0 | 1290.0 | 656.3 | 470.0 | 1320.0 | 741.0 | 480.0 | 3010.0 | 1114.4 | 650.0 | 1560.0 | 978.6 |
2-methoxy-4-methylphenol | 230.0 | 1320.0 | 597.0 a | 100.0 | 1010.0 | 456.9 a | 280.0 | 760.0 | 540.0 a | 450.0 | 1860.0 | 1055.6 b | 300.0 | 680.0 | 494.3 a |
4-ethylguaiacol | 190.0 | 1610.0 | 697.0 | 180.0 | 1160.0 | 598.8 | 360.0 | 1350.0 | 677.0 | 400.0 | 2240.0 | 792.2 | 560.0 | 1440.0 | 930.0 |
2-methylphenol (o-cresol) | 70.0 | 820.0 | 225.7 a,b | 40.0 | 360.0 | 168.8 a | 120.0 | 330.0 | 189.0 a,b | 160.0 | 750.0 | 338.9 b | 120.0 | 290.0 | 198.6 a,b |
3-methilphenol (m-cresol) | 60.0 | 420.0 | 160.0 a,b | 30.0 | 170.0 | 103.1 a | 60.0 | 180.0 | 115.0 a | 110.0 | 620.0 | 248.9 b | 60.0 | 220.0 | 125.7 a |
p-vinylguaiacol (2-methoxy-4-vinylvinylphenol) | 490.0 | 2720.0 | 1021.7 | 320.0 | 1610.0 | 772.5 | 510.0 | 1360.0 | 1008.0 | 680.0 | 2200.0 | 1221.1 | 400.0 | 2050.0 | 1120.0 |
SULFUR COMPOUNDS | |||||||||||||||
dimethylsulfide | nq | nq | nq | nq | nq | nq | nq | nq | nq | nq | nq | nq | nq | nq | nq |
2-(methylsulfanylmethyl)furan (furfurylmethylsufide) | 0.0 | 1270.0 | 424.3 a,b | 0.0 | 740.0 | 306.25 a | 0.0 | 970.0 | 524.0 a,b | 0.0 | 1140.0 | 730.0 b | 150.0 | 1000.0 | 477.1 a,b |
OTHERS | |||||||||||||||
unknown 1 | 220.0 | 3490.0 | 1200 a | 360.0 | 1690.0 | 901.9 a | 580.0 | 2840.0 | 1244.0 a | 1230.0 | 7150.0 | 2568.9 b | 320.0 | 1990.0 | 994.3 a |
benzylalcohol | 120.0 | 520.0 | 237.8 a,b | 50.0 | 320.0 | 171.9 a | 150.0 | 310.0 | 213.0 a,b | 140.0 | 810.0 | 337.8 b | 170.0 | 280.0 | 231.4 a,b |
2-furanmethanol | 740.0 | 6340.0 | 2628.3 a | 1170.0 | 6030.0 | 2415.0 a | 1560.0 | 4870.0 | 2808.0 a | 2320.0 | 8690.0 | 4891.1 b | 1830.0 | 4300.0 | 2831.4 a |
2-furanmethanolacetate (furfuryl alcohol acetate) | 1160.0 | 8330.0 | 3427.4 a | 1170.0 | 3870.0 | 2829.4 a | 1790.0 | 7080.0 | 3843.0 a,b | 2870.0 | 11730.0 | 5692.2 b | 2260.0 | 6070.0 | 3641.4 a,b |
unknown 2 | 130.0 | 870.0 | 387.0 a | 80.0 | 850.0 | 320.6 a | 290.0 | 580.0 | 385.0 a | 310.0 | 1680.0 | 937.8 b | 280.0 | 730.0 | 421.4 a |
uknown 3 | 90.0 | 420.0 | 189.1 a,b | 30.0 | 260.0 | 142.5 a | 80.0 | 290.0 | 170.0 a,b | 60.0 | 470.0 | 271.1 b | 110.0 | 280.0 | 177.1 a |
furfurylammine derivative | 230.0 | 1180.0 | 510.4 a | 100.0 | 700.0 | 359.4 a | 260.0 | 660.0 | 407.0 a | 360.0 | 1360.0 | 791.1 b | 300.0 | 1060.0 | 515.7 a,b |
unknown 4 | 70.0 | 360.0 | 153.0 a,b | 30.0 | 170.0 | 103.1 a | 60.0 | 180.0 | 114.0 a | 70.0 | 490.0 | 202.2 b | 70.0 | 240.0 | 131.4 a,b |
indole | 40.0 | 230.0 | 95.2 a,b | 20.0 | 120.0 | 63.8 a | 40.0 | 120.0 | 72.0 a | 70.0 | 250.0 | 133.3 b | 30.0 | 110.0 | 71.4 a |
3-methylindole | 50.0 | 350.0 | 135.7 | 30.0 | 240.0 | 94.4 | 40.0 | 190.0 | 114.0 | 70.0 | 380.0 | 153.3 | 40.0 | 240.0 | 145.7 |
% CV | |||||
---|---|---|---|---|---|
CHEMICAL CLASS | BRAND A | BRAND B | BRAND C | BRAND D | BRAND E |
ALDEHYDES | 52.9 | 44.4 | 34.0 | 45.2 | 34.5 |
KETONES | 54.6 | 43.2 | 35.6 | 50.7 | 35.1 |
ESTERS | 50.0 | 40.1 | 37.4 | 48.0 | 35.9 |
TERPENS | 42.4 | 34.8 | 34.8 | 51.8 | 19.0 |
PYRROLES | 49.0 | 37.6 | 29.4 | 46.5 | 32.8 |
PYRIDINES | 67.4 | 38.1 | 43.2 | 63.1 | 36.6 |
FURANS | 51.1 | 38.2 | 44.0 | 53.9 | 28.9 |
PYRAZINES | 70.2 | 49.3 | 35.1 | 48.9 | 30.0 |
PHENOLIC COMPOUNDS | 52.3 | 44.5 | 27.0 | 56.2 | 32.0 |
SULFUR COMPOUNDS | 74.4 | 37.3 | 52.0 | 69.7 | 53.8 |
OTHERS | 54.7 | 32.6 | 35.6 | 44.5 | 31.1 |
Compound | RI 1 | m/z | Description of Odour 2 | Typology of Contribution 2 |
ALDEHYDES | ||||
2-methylpropanale | 827 | 41–72 | Grassy, fermented | Negative |
2-methylbutanale | 919 | 57–58 | Malt, fermented | Negative |
3-methylbutanale | 921 | 57–58 | Almond, fruity | Positive |
KETONES | ||||
2,3-pentanedione | 1063 | 57–100 | Buttery, caramel like | Positive |
PYRAZINE | ||||
2-ethylpyrazine | 1334 | 107–108 | Earthy, musty | Negative |
2-ethyl-6-methylpyrazine | 1385 | 121–122 | Earthy, musty | Negative |
2-ethyl-3,5-dimethylpyrazine | 1459 | 135–136 | Woody, papery | Negative |
PHENOLIC COMPUNDS | ||||
2-methoxyphenol (guaiacol) | 1867 | 109–124 | Phenolic, spicy | Positive |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lolli, V.; Acharjee, A.; Angelino, D.; Tassotti, M.; Del Rio, D.; Mena, P.; Caligiani, A. Chemical Characterization of Capsule-Brewed Espresso Coffee Aroma from the Most Widespread Italian Brands by HS-SPME/GC-MS. Molecules 2020, 25, 1166. https://doi.org/10.3390/molecules25051166
Lolli V, Acharjee A, Angelino D, Tassotti M, Del Rio D, Mena P, Caligiani A. Chemical Characterization of Capsule-Brewed Espresso Coffee Aroma from the Most Widespread Italian Brands by HS-SPME/GC-MS. Molecules. 2020; 25(5):1166. https://doi.org/10.3390/molecules25051166
Chicago/Turabian StyleLolli, Veronica, Animesh Acharjee, Donato Angelino, Michele Tassotti, Daniele Del Rio, Pedro Mena, and Augusta Caligiani. 2020. "Chemical Characterization of Capsule-Brewed Espresso Coffee Aroma from the Most Widespread Italian Brands by HS-SPME/GC-MS" Molecules 25, no. 5: 1166. https://doi.org/10.3390/molecules25051166
APA StyleLolli, V., Acharjee, A., Angelino, D., Tassotti, M., Del Rio, D., Mena, P., & Caligiani, A. (2020). Chemical Characterization of Capsule-Brewed Espresso Coffee Aroma from the Most Widespread Italian Brands by HS-SPME/GC-MS. Molecules, 25(5), 1166. https://doi.org/10.3390/molecules25051166