Anti-Adipogenic and Anti-Inflammatory Activities of (−)-epi-Osmundalactone and Angiopteroside from Angiopteris helferiana C.Presl
Abstract
:1. Introduction
2. Results and Discussion
2.1. Isolation and Identification of Compounds
2.2. Quantification of Isolated Compounds in Plant A. helferiana
2.3. Anti-Adipogenic Activity of Isolated Compounds
2.4. Anti-Inflammatory Activity of Isolated Compounds
3. Conclusions
4. Material and Methods
4.1. General Experimental Procedure
4.2. Reagents and Cells
4.3. Plant Material
4.4. Extraction, Fractionation, and Isolation of Compounds
4.5. Quantification of Compounds 1 and 2 in Extract of rhizomes of A. helferiana
- Column—Halo C18, 2.7 μm, 4.6 × 100 mm
- Solvent system—Acetonitrile and 0.1% H3PO4 in Water
- Injection volume—2 μL
- Column temperature—40 °C
- Flow rate—1 mL/min
- Gradient Solvent system: Acetonitrile: 0% (0 min), 10% (6 min), 15% (6.5 min), 20% (10 min), 30% (12 min), 50% (14 min), 100% (16 min)
- UV absorption—220 nm
4.6. Cell Viability Assay
4.7. Anti-Adipogenic Activity (Differentiation of 3T3-L1 cells) Assay
4.8. Oil Red O Staining Assay
4.9. Triacylglycerol (TG) Content Assay
4.10. Anti-inflammatory Activity Assay
4.11. Statistical Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Giampaoli, S.; Vannucchi, S. Obesity and diabetes, a global problem: What does recent data tell us? Ig. E Sanita Pubblica 2016, 72, 561–570. [Google Scholar]
- Rodríguez-Hernández, H.; Simental-Mendía, L.E.; Rodríguez-Ramírez, G.; Reyes-Romero, M.A. Obesity and inflammation: Epidemiology, risk factors, and markers of inflammation. Int. J. Endocrinol. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation on Obesity, Geneva, 3–5 June 1997; World Health Organization: Geneva, Switzerland, 1998. [Google Scholar]
- Björntorp, P.; Sjöström, L. Number and size of adipose tissue fat cells in relation to metabolism in human obesity. Metab. Clin. Exp. 1971, 20, 703–713. [Google Scholar] [CrossRef]
- Singla, P.; Bardoloi, A.; Parkash, A.A. Metabolic effects of obesity: A review. World J. Diabetes 2010, 1, 76. [Google Scholar] [CrossRef]
- Barnes, D.E.; Yaffe, K. The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol. 2011, 10, 819–828. [Google Scholar] [CrossRef] [Green Version]
- Derdemezis, C.; Voulgari, P.; Drosos, A.; Kiortsis, D. Obesity, adipose tissue and rheumatoid arthritis: Coincidence or more complex relationship. Clin. Exp. Rheumatol. 2011, 29, 712–727. [Google Scholar]
- Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 2011, 11, 85. [Google Scholar] [CrossRef]
- Amin, M.N.; Hussain, M.S.; Sarwar, M.S.; Moghal, M.M.R.; Das, A.; Hossain, M.Z.; Chowdhury, J.A.; Millat, M.S.; Islam, M.S. How the association between obesity and inflammation may lead to insulin resistance and cancer. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 1213–1224. [Google Scholar] [CrossRef]
- Hotamisligil, G.S.; Budavari, A.; Murray, D.; Spiegelman, B.M. Reduced tyrosine kinase activity of the insulin receptor in obesity-diabetes. Central role of tumor necrosis factor-alpha. J. Clin. Investig. 1994, 94, 1543–1549. [Google Scholar] [CrossRef]
- Nakata, M.; Yada, T.; Soejima, N.; Maruyama, I. Leptin promotes aggregation of human platelets via the long form of its receptor. Diabetes 1999, 48, 426–429. [Google Scholar] [CrossRef]
- McGill, J.B.; Schneider, D.J.; Arfken, C.L.; Lucore, C.L.; Sobel, B.E. Factors responsible for impaired fibrinolysis in obese subjects and NIDDM patients. Diabetes 1994, 43, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Arita, Y.; Kihara, S.; Ouchi, N.; Takahashi, M.; Maeda, K.; Miyagawa, J.-I.; Hotta, K.; Shimomura, I.; Nakamura, T.; Miyaoka, K. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem. Biophys. Res. Commun. 1999, 257, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Hotta, K.; Funahashi, T.; Arita, Y.; Takahashi, M.; Matsuda, M.; Okamoto, Y.; Iwahashi, H.; Kuriyama, H.; Ouchi, N.; Maeda, K. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 1595–1599. [Google Scholar] [CrossRef] [Green Version]
- Pischon, T.; Girman, C.J.; Hotamisligil, G.S.; Rifai, N.; Hu, F.B.; Rimm, E.B. Plasma adiponectin levels and risk of myocardial infarction in men. JAMA 2004, 291, 1730–1737. [Google Scholar] [CrossRef] [Green Version]
- Ouchi, N.; Kihara, S.; Arita, Y.; Nishida, M.; Matsuyama, A.; Okamoto, Y.; Ishigami, M.; Kuriyama, H.; Kishida, K.; Nishizawa, H. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation 2001, 103, 1057–1063. [Google Scholar] [CrossRef]
- Ryo, M.; Nakamura, T.; Kihara, S.; Kumada, M.; Shibazaki, S.; Takahashi, M.; Nagai, M.; Matsuzawa, Y.; Funahashi, T. Adiponectin as a biomarker of the metabolic syndrome. Circ. J. 2004, 68, 975–981. [Google Scholar] [CrossRef] [Green Version]
- Pandey, G.; Shihabudeen, M.S.; David, H.P.; Thirumurugan, E.; Thirumurugan, K. Association between hyperleptinemia and oxidative stress in obese diabetic subjects. J. Diabetes Metab. Disord. 2015, 14, 24. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, A.; Mukherjee, S.; Biswas, J.; Roy, M. Phytochemicals in obesity control. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 558–567. [Google Scholar]
- Chandrasekaran, C.; Vijayalakshmi, M.; Prakash, K.; Bansal, V.; Meenakshi, J.; Amit, A. Herbal approach for obesity management. Am. J. Plant Sci. 2012, 3, 1003. [Google Scholar] [CrossRef] [Green Version]
- Lamichhane, R.; Kim, S.-G.; Kang, S.; Lee, K.-H.; Pandeya, P.R.; Jung, H.-J. Exploration of underlying mechanism of anti-adipogenic activity of sulfuretin. Biol. Pharm. Bull. 2017, 40, 1366–1373. [Google Scholar] [CrossRef] [Green Version]
- Rayalam, S.; Della-Fera, M.A.; Baile, C.A. Phytochemicals and regulation of the adipocyte life cycle. J. Nutr. Biochem. 2008, 19, 717–726. [Google Scholar] [CrossRef]
- Fraser-Jenkins, C.R.; Kandel, D.R.; Pariyar, S. Ferns and Fern-Allies of Nepal; National Herbarium and Plant Laboratories, Department of Plant Resources, Ministry of Forest and Soil Conservation: Kahmandu, Nepal, 2015; Volume 1.
- Wu, Z.Y.; Raven, P.H. Flora of China; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MI, USA, 2013. [Google Scholar]
- Shaikh, S.D.; Masal, V.P.; Shaikh, A.S. Ethnomedicinal uses of some pteridophytes from Konkan region of Maharashtra, India. Int. J. Pharm. Chem. Sci. 2014, 3, 63–65. [Google Scholar]
- Chen, Y.; Tao, Y.; Lian, X.; Wang, L.; Zhao, Y.; Jiang, J.; Zhang, Y. Chemical constituents of Angiopteris esculenta including two new natural lactones. Food Chem. 2010, 122, 1173–1175. [Google Scholar] [CrossRef]
- Lamichhane, R.; Pandeya, P.R.; Lee, K.-H.; Kim, S.-G.; Kandel, D.R.; Jung, H.-J. Angiopteris helferiana, a fern with great potential medicinal value: Antiadipogenic, anti-inflammatory, and anti-diabetic activity. Pharmacogn. Mag. 2019, 15, 423. [Google Scholar]
- Blume, F.; Liu, Y.-C.; Thiel, D.; Deska, J. Chemoenzymatic total synthesis of (+)-& (−)-cis-osmundalactone. J. Mol. Catal. B Enzym. 2016, 134, 280–284. [Google Scholar]
- Hollenbeak, K.; Kuehne, M. The isolation and structure determination of the fern glycoside osmundalin and the synthesis of its aglycone osmundalactone. Tetrahedron 1974, 30, 2307–2316. [Google Scholar] [CrossRef]
- Buchanan, M.S.; Hashimoto, T.; Takaoka, S.; Asakawa, Y. (+)-Osmundalactone, γ-lactones and spiromentins from the fungus Paxillus atrotomentosus. Phytochemistry 1995, 40, 1251–1257. [Google Scholar] [CrossRef]
- Hseu, T. Structure of angiopteroside (4-O-β-d-glucopyranosyl-l-threo-2-hexen-5-olide) monohydrate, a fern glycoside from Angiopteris lygodiifolla Ros. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1981, 37, 2095–2098. [Google Scholar] [CrossRef]
- Yu, Y.-M.; Yang, J.-S.; Peng, C.-Z.; Caer, V.; Cong, P.-Z.; Zou, Z.-M.; Lu, Y.; Yang, S.-Y.; Gu, Y.-C. Lactones from Angiopteris caudatiformis. J. Nat. Prod. 2009, 72, 921–924. [Google Scholar] [CrossRef]
- Bakhtiar, A. Chemical constituents and antibacterial activities of leaves of Sumatran king fern (Angiopteris evecta G. Forst HOFFM.). J. Farm. Indones. 2015, 7. [Google Scholar] [CrossRef]
- Taveepanich, S.; Kamthong, N.; Sawasdipuksa, N.; Roengsumran, S. Inhibitory activities of angiopteroside for HIV-1 reverse transcriptase and lung cancer cell-line. J. Sci. Res. Chulalongkorn Univ. 2005, 30, 187–192. [Google Scholar]
- Kamitakahara, H.; Okayama, T.; Agusta, A.; Tobimatsu, Y.; Takano, T. Two-dimensional NMR analysis of Angiopteris evecta rhizome and improved extraction method for angiopteroside. Phytochem. Anal. 2019, 30, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, T.; Asaoka, K.; Numata, A. Osmundalin (lactone glucoside) stimulates receptor cells, associated with deterrency, of Bombyx mori. Z. Nat. C 1995, 50, 463–466. [Google Scholar] [CrossRef]
- Lee, B.-H.; Choi, S.-H.; Kim, H.-J.; Jung, S.-W.; Hwang, S.-H.; Pyo, M.-K.; Rhim, H.; Kim, H.-C.; Kim, H.-K.; Lee, S.-M. Differential effects of quercetin and quercetin glycosides on human α7 nicotinic acetylcholine receptor-mediated ion currents. Biomol. Ther. 2016, 24, 410. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Samples of the compounds 1 and 2 are available from the authors upon request. |
Position | (−)-epi-Osmundalactone (1) | Angiopteroside (2) | ||
---|---|---|---|---|
δC | δH, mult. (J in Hz) | δC | δH, mult. (J in Hz) | |
2 | 164.0 | 163.6 | ||
3 | 121.6 | 5.98, d (9.6) | 122.8 | 6.09, d (9.8) |
4 | 146.8 | 7.01, dd (5.7, 9.6) | 144.7 | 7.13, dd (9.8, 5.1) |
5 | 61.5 | 3.93, m | 67.1 | 4.36, dd (3.4,5.1) |
6 | 77.1 | 4.48, dq (2.8, 6.6) | 76.5 | 4.66, dq (3.4, 6.6) |
7 | 16.1 | 1.29, d (6.6) | 16.3 | 1.34, d (6.6) |
1′ | 101.5 | 4.3, d (7.8) | ||
2′ | 73.8 | 2.94–3.04, m | ||
3′ | 77.3 | 3.12, m | ||
4′ | 70.6 | 2.94–3.04, m | ||
5′ | 77.6 | 3.12, m | ||
6′ | 61.8 | 3.43, m |
Analytes | Regression Equation | Correlation Coefficient | Content in Dried Rhizome (mg/g of Dried Rhizome) | Content in Dried Rhizome (%) |
---|---|---|---|---|
Compound 1 | y = 4085.5x + 86.49 | 0.994 | 15.40 | 1.54 |
Compound 2 | y = 2232.7x + 77.64 | 0.994 | 32.05 | 3.20 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamichhane, R.; Pandeya, P.R.; Lee, K.-H.; Kim, S.-G.; Devkota, H.P.; Jung, H.-J. Anti-Adipogenic and Anti-Inflammatory Activities of (−)-epi-Osmundalactone and Angiopteroside from Angiopteris helferiana C.Presl. Molecules 2020, 25, 1337. https://doi.org/10.3390/molecules25061337
Lamichhane R, Pandeya PR, Lee K-H, Kim S-G, Devkota HP, Jung H-J. Anti-Adipogenic and Anti-Inflammatory Activities of (−)-epi-Osmundalactone and Angiopteroside from Angiopteris helferiana C.Presl. Molecules. 2020; 25(6):1337. https://doi.org/10.3390/molecules25061337
Chicago/Turabian StyleLamichhane, Ramakanta, Prakash Raj Pandeya, Kyung-Hee Lee, Se-Gun Kim, Hari Prasad Devkota, and Hyun-Ju Jung. 2020. "Anti-Adipogenic and Anti-Inflammatory Activities of (−)-epi-Osmundalactone and Angiopteroside from Angiopteris helferiana C.Presl" Molecules 25, no. 6: 1337. https://doi.org/10.3390/molecules25061337
APA StyleLamichhane, R., Pandeya, P. R., Lee, K. -H., Kim, S. -G., Devkota, H. P., & Jung, H. -J. (2020). Anti-Adipogenic and Anti-Inflammatory Activities of (−)-epi-Osmundalactone and Angiopteroside from Angiopteris helferiana C.Presl. Molecules, 25(6), 1337. https://doi.org/10.3390/molecules25061337