Complexes of Ectoine with the Anionic Surfactants as Active Ingredients of Cleansing Cosmetics with Reduced Irritating Potential
Abstract
:1. Introduction
2. Result and Discussion
2.1. Determination of Irritant Potential
2.2. Cytotoxicity
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Solubility of Model Sebum
3.2.2. Determination of Irritant Potential–Zein Volume
3.2.3. DPPH Radical Scavenging Assay
3.2.4. Cell Culture
3.2.5. Cell Viability Assay
3.2.6. Statistical Analysis
Author Contributions
Conflicts of Interest
References
- Graf, R.; Anzali, S.; Buenger, J.; Pfluecker, F.; Driller, H. The multifunctional role of ectoine as a natural cell protectant. Clin. Dermatol. 2008, 26, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Bownik, A.; Stępniewska, Z. Ectoine as a promising protective agent in humans and animals. Arh. Hig. Rada. Toksikol. 2016, 67, 260–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Driller, H.; Bunger, J.; Degwert, J. The protective function of compatible solute ectoine on the skin cells and its biomolecules with respect to UV-radiation, immunosuppression and membrane damage. IFSCC Mag. 2001, 4, 1–6. [Google Scholar]
- Pastor, J.M.; Salvador, M.; Argandoña, M.; Bernal, Y.; Reinabueno, M.L.; Iborra, J.L.; Nieto, J.J.; Cánovas, M. Ectoines in cell stress protection: Uses and biotechnological production. Biotechnol. Adv. 2010, 28, 782–801. [Google Scholar] [CrossRef]
- Kempf, B.; Bremer, E. Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch. Microbiol. 1998, 170, 319–330. [Google Scholar] [CrossRef]
- Buommino, E.; Schiraldi, C.; Baroni, A.; Paoletti, I.; Lamberti, M.; De Rosa, M.; Tufano, M.A. Ectoine from halophilic microorganisms induces the expression of hsp70 and hsp70B′ in human keratinocytes modulating the proinflammatory response. Cell Stress Chaperon 2005, 10, 197–203. [Google Scholar] [CrossRef]
- Harishchandra, R.K.; Sachan, A.K.; Kerth, A.; Lentzen, G.; Neuhaus, T.; Galla, H.J. Compatible solutes: Ectoine and hydroxyectoine improve functional nanostructures in artificial lung a surfactants. Biochim. Biophys. Acta 2011, 1808, 2830–2840. [Google Scholar] [CrossRef] [Green Version]
- Buenger, J.; Driller, H. Ectoin: An effective natural substance to prevent UVA-induced premature photoaging. Skin Pharmacol. Physiol. 2004, 17, 232–237. [Google Scholar] [CrossRef]
- Marini, A.; Reinelt, K.; Krutmann, J.; Bilstein, A. Ectoine containing cream in the treatment of mild to moderate atopic dermatitis: A randomised, comparator-controlled, intra-individual double-blind, multi-center trial. Skin. Pharmacol. Physiol. 2014, 27, 57–65. [Google Scholar] [CrossRef]
- Bownik, A.; Stepniewska, Z.; Skowroński, T. Protective effects of ectoine on behavioral, physiological and biochemical parameters of Daphnia magna subjected to hydrogen peroxide. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2015, 170, 38–49. [Google Scholar] [CrossRef]
- Brand-Williamis, W.; Cuvelier, M.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Farn, R.J. Chemistry and Technology of Surfactants; Blackwell Publishing: Hoboken, NY, USA, 2006; pp. 46–90. [Google Scholar]
- Dominguez, J.G.; Balaguer, F.; Parra, J.L.; Pelejero, C.M. The inhibitory effect of some amphoteric surfactants on the irritation potential of alkylsulphates. Int. J. Cosmet. Sci. 1981, 3, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Rosen, M.J. Surfactants and Interfacial Phenomena, 3rd ed.; John Wiley & Sons Inc.: New York, NY, USA, 2006. [Google Scholar]
- Moore, P.N.; Puvvada, S.; Blankschtein, D. Challenging the surfactant monomer skin penetration model: Penetration of sodium dodecyl sulfate micelles into the epidermis. J. Cosmet. Sci. 2003, 54, 29–46. [Google Scholar] [PubMed]
- Dasilva, S.C.; Sahu, R.P.; Konger, R.L.; Perkins, S.M.; Kaplan, M.H.; Travers, J.B. Increased skin barrier disruption by sodium lauryl sulfate in mice expressing a constitutively active STAT6 in T cells. Arch. Dermatol. Res. 2012, 304, 65–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faucher, J.A.; Goddard, E.D. Interaction of keratinous substrates with sodium lauryl sulfate. I. Sorption. J. Soc. Cosmet. Chem. 1978, 29, 323–337. [Google Scholar]
- Hall-Manning, T.J.; Holland, G.H.; Rennie, G.; Revell, P.; Hines, J.; Barratt, M.D.; Basketter, D.A. Skin irritation potential of mixed surfactant systems. Food Chem. Toxicol. 1998, 36, 233–238. [Google Scholar] [CrossRef]
- Nielsen, G.D.; Nielsen, J.B.; Andersen, K.E.; Grandjean, P. Effects of industrial detergents on the barier function of human skin. Int. J. Occup. Environ. Health 2000, 6, 138–142. [Google Scholar] [CrossRef]
- Bujak, T.; Nizioł-Łukaszewska, Z.; Wasilewski, T. Sodium lauryl sulfate vs. sodium coco sulfate. Study of the Safety of Use Anionic Surfactants with Respect to Their Interaction with the Skin. Tens. Surf. Det. 2019, 56, 126–133. [Google Scholar] [CrossRef]
- Bujak, T.; Wasilewski, T.; Nizioł-Łukaszewska, Z. Role of macromolecules in the safety of use of body wash cosmetics. Colloids Surf. B 2015, 135, 497–503. [Google Scholar] [CrossRef]
- Bujak, T.; Nizioł-Łukaszewska, Z.; Wasilewski, T. Effect of Molecular Weight of Polymers on the Properties of Delicate Facial Foams. Tens. Surf. Det. 2018, 55, 96–102. [Google Scholar] [CrossRef]
- Bujak, T.; Wasilewski, T.; Nizioł-Łukaszewska, Z. Effect of molecular weight of polyvinylpyrrolidone on the skin irritation potential and properties of body wash cosmetics in the coacervate form. Pure Appl. Chem. 2019, 91, 1521–1532. [Google Scholar] [CrossRef]
- Wasilewski, T.; Seweryn, A.; Bujak, T. Supercritical carbon dioxide blackcurrant seed extract as an anti-irritant additive for hand dishwashing liquids. Green Chem. Lett. Rev. 2016, 9, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Nizioł-Łukaszewska, Z.; Osika, P.; Wasilewski, T.; Bujak, T. Hydrophilic Dogwood Extracts as Materials for Reducing the Skin Irritation Potential of Body Wash Cosmetics. Molecules 2017, 22, 320. [Google Scholar] [CrossRef] [PubMed]
- Bujak, T.; Nizioł-Łukaszewska, Z.; Zań, A. Amphiphilic cationic polymers as effective substances improving the safety of use of body wash gels. Int. J. Biol. Macromol. 2020, 15, 973–979. [Google Scholar] [CrossRef]
- Moore, P.N.; Puvvada, S.; Blankschtein, D. Role of the Surfactant Polar Head Structure in Protein− Surfactant Complexation: Zein Protein Solubilization by SDS and by SDS/C12En Surfactant Solutions. Langmuir 2003, 19, 1009–1016. [Google Scholar] [CrossRef]
- Pezron, I.; Galet, L.; Clausse, D. Surface interaction between a protein monolayer and surfactants and its correlation with skin irritation by surfactants. J. Colloid Interface Sci. 1996, 180, 285–289. [Google Scholar] [CrossRef]
- Deo, N.; Jockusch, S.; Turro, N.J.; Somasundaran, P. Surfactant interactions with zein protein. Langmuir 2003, 19, 5083–5088. [Google Scholar] [CrossRef]
- Stańczyk, M.; Gromadzińska, J.; Wasowicz, W. Roles of reactive oxygen species and selected antioxidants in regulation of cellular metabolism. Int. J. Occup. Med. Environ. Health 2005, 18, 15–26. [Google Scholar]
- Merck KgaA. Ronacare Ectoin: The Natural Cell Protection Factor. 2003. Available online: https://www.ulprospector.com/en/eu/PersonalCare/Detail/824/34445/RonaCare-Ectoin (accessed on 13 January 2020).
- Ananthapadmanabhan, K.P.; Moore, D.J.; Subramanyan, K.; Misra, K.; Meyer, F. Cleansing without compromise: The impact of cleansers on the skin barrier and the technology of mild cleansing. Dermatol. Ther. 2004, 17, 16–25. [Google Scholar] [CrossRef]
- Mukherjee, S.; Edmunds, M.; Lei, X.; Ottaviani, M.F.; Ananthapadmanabhan, K.P.; Turro, N.J. Original Contribution: Stearic acid delivery to corneum from a mild and moisturizing cleanser. J. Cosmet. Dermatol. 2010, 9, 202–210. [Google Scholar] [CrossRef]
- Dharmendra, K.Y.; Surendra, K.; Eun-Ha, C.; Sandeep, C.; Mi-Hyun, K. Molecular dynamic simulations of oxidized skin lipid bilayer and permeability of reactive oxygen species. Sci. Rep. 2019, 9, 4496. [Google Scholar]
- Niki, E. Lipid oxidation in the skin. Free Radic Res. 2015, 49, 827–834. [Google Scholar] [CrossRef] [PubMed]
- Kunte, H.J.; Lentzen, G.; Galinski, E.A. Industrial Production of the Cell Protectant Ectoine: Protection Mechanisms, Processes, and Products. Curr. Biotechnol. 2014, 3, 10–25. [Google Scholar] [CrossRef] [Green Version]
- Katsarou, A.; Davoy, E.; Xenos, K.; Armenaka, M.; Theoharides, T.C. Effect of an antioxidant (quercetin) on sodium lauryl sulfate-induced skin irritation. Contact Dermatitis 2000, 42, 85–89. [Google Scholar] [CrossRef]
- Nimse, S.B.; Pal, D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 2015, 35, 27986–28006. [Google Scholar] [CrossRef] [Green Version]
- Zou, T.-B.; He, T.-P.; Li, H.-W.; Xia, E.-Q. The Structure-Activity Relationship of the Antioxidant Peptides from Natural Proteins. Molecules 2016, 21, 72. [Google Scholar] [CrossRef]
- Marcuse, E. Antioxidative Effect of Amino-Acids. Nature 1960, 186, 886–887. [Google Scholar] [CrossRef]
- Elias, R.J.; Kellerby, S.S.; Decker, E.A. Antioxidant Activity of Proteins and Peptides. Crit. Rev. Food Sci. Nutr. 2008, 8, 430–441. [Google Scholar] [CrossRef]
- Hwang, H.-S.; Winkler-Moser, J.K.; Doll, K.M.; Gadgil, M.; Liu, S.X. Factors Affecting Antioxidant Activity of Amino Acids in Soybean Oil at Frying Temperatures. Eur. J. Lipid Sci. Technol. 2019, 121, 1900091–1900101. [Google Scholar] [CrossRef]
- Rojas, M.; Miskolczy, Z.; Biczók, L.; Pavez, P. Effect of amino acid addition on the micelle formation of the surface-active ionic liquid 1-tetradecyl-3- methylimidazolium bromide in aqueous solution. J. Phys. Org. 2019, 32, e3814. [Google Scholar] [CrossRef] [Green Version]
- Afanas, I.B.; Dorozhko, A.I.; Brodskii, A.V.; Kostyuk, V.A.; Potapovitch, A.I. Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation. Biochem. Pharm. 1989, 38, 1763–1769. [Google Scholar] [CrossRef]
- Yuan, C.L.; Xu, Z.Z.; Fan, M.X.; Liu, X.Y.; Xie, Y.H.; Zhu, T. Study on characteristics and harm of surfactants. J. Chem. Pharm. Res. 2014, 6, 2233–2237. [Google Scholar]
- Benoit, J.; Cormier, M.; Wepierre, J. Comparative effects of four surfactants on growth, contraction and adhesion of cultured human fibroblasts. Cell Biol. Toxicol. 1988, 4, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Bigliardi, P.L.; Michael, J.; Herron, R.D.; Dahl, M. Effects of detergents on proliferation and metabolism of human keratinocytes. Exp. Dermatol. 1994, 3, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Liou, G.Y.; Storz, P. Reactive oxygen species in cancer. Free Radic. Res. 2010, 44, 479–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, M.J.; Kim, B.Y.; Yoon, S.O.; Chung, A.S. Cell proliferation induced by reactive oxygen species is mediated via mitogen-activated protein kinase in Chinese hamster lung fibroblast (V79) cells. Mol. Cells 2003, 15, 94–101. [Google Scholar]
- Mizutani, T.; Mori, R.; Hirayama, M.; Sagawa, Y.; Shimizu, K.; Okano, Y.; Masaki, H. sodium lauryl sulfate Stimulates the Generation of Reactive Oxygen Species through Interactions with Cell Membranes. J. Oleo Sci. 2016, 65, 993–1001. [Google Scholar] [CrossRef] [Green Version]
- Evans, M.D.; Griffiths, H.R.; Lunec, J. Reactive Oxygen Species and their Cytotoxic Mechanisms. Adv. Mol. Cell Biol. 1997, 20, 25–73. [Google Scholar]
- Gloxhuber, C.; Klunstler, K. (Eds.) Anionic Surfactants: Biochemistry, Toxicology, Dermatology, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1992; Volume 43, pp. 11–42. [Google Scholar]
- Mehlhorn, R.J.; Packer, L. Inactivation and reactivation of mitochondrial respiration by charged detergents. Biochem. Biophys Acta 1976, 423, 382–397. [Google Scholar] [CrossRef]
- Prottey, C.; Ferguson, T.F.M. The effect of surfactants upon rat peritoneal mast cells in vitro. Food Cosmet. Toxicol. 1976, 14, 425–430. [Google Scholar] [CrossRef]
- Shalel, S.; Streichman, S.; Marmur, A. The mechanism of hemolysis by surfactants: Effect of solution composition. J. Colloid Interface Sci. 2002, 252, 66–76. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: The tested samples are available from the authors. |
Concentration [%] | ||||||||
---|---|---|---|---|---|---|---|---|
E | SLS | SCS | SLES | SARKO | SLS + E | SCS + E | SLES + E | |
Aqua | Ad. 100 | |||||||
Sodium lauryl sulfate | - | 1.0 | - | - | - | 1.0 | - | - |
Sodium coco sulfate | - | - | 1.0 | - | - | 1.0 | - | |
Sodium laureth sulfate | - | - | 1.0 | - | - | - | 1.0 | |
Sodium lauroyl sarcosinate | - | - | - | - | 1.0 | - | - | - |
Ectoine | 2.50 | - | - | - | - | 2.50 | 2.50 | 2.50 |
Citric acid | To pH 5.5 ± 0.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bujak, T.; Zagórska-Dziok, M.; Nizioł-Łukaszewska, Z. Complexes of Ectoine with the Anionic Surfactants as Active Ingredients of Cleansing Cosmetics with Reduced Irritating Potential. Molecules 2020, 25, 1433. https://doi.org/10.3390/molecules25061433
Bujak T, Zagórska-Dziok M, Nizioł-Łukaszewska Z. Complexes of Ectoine with the Anionic Surfactants as Active Ingredients of Cleansing Cosmetics with Reduced Irritating Potential. Molecules. 2020; 25(6):1433. https://doi.org/10.3390/molecules25061433
Chicago/Turabian StyleBujak, Tomasz, Martyna Zagórska-Dziok, and Zofia Nizioł-Łukaszewska. 2020. "Complexes of Ectoine with the Anionic Surfactants as Active Ingredients of Cleansing Cosmetics with Reduced Irritating Potential" Molecules 25, no. 6: 1433. https://doi.org/10.3390/molecules25061433
APA StyleBujak, T., Zagórska-Dziok, M., & Nizioł-Łukaszewska, Z. (2020). Complexes of Ectoine with the Anionic Surfactants as Active Ingredients of Cleansing Cosmetics with Reduced Irritating Potential. Molecules, 25(6), 1433. https://doi.org/10.3390/molecules25061433