Role of Ascorbic acid, Glutathione and Proline Applied as Singly or in Sequence Combination in Improving Chickpea Plant through Physiological Change and Antioxidant Defense under Different Levels of Irrigation Intervals
Abstract
:1. Introduction
2. Results and Discussion
2.1. Changes in Morphological Characteristics
2.2. Changes in Yield Attribute
2.3. Changes in Photosynthetic Pigments
2.4. Changes in Proline, Protein and non-Enzymatic Antioxidants
2.5. Changes in Enzymatic Antioxidants
2.6. Discriminate Analysis
3. Materials and Methods
3.1. Plant Material
3.2. Experimental Procedures
- Irrigation interval (every 7 days tap water).
- Irrigation interval every 7 days + AsA
- Irrigation interval every 7 days + GSH
- Irrigation interval every 7 days + Pro
- Irrigation interval every 7 days + combined in sequence (AsA+ GSH+ Pro)
- Irrigation interval (every 14 days tap water).
- Irrigation interval every 14 days + AsA
- Irrigation interval every 14 days + GSH
- Irrigation interval every 14 days + Pro
- Irrigation interval every 14 days + combined in sequence (AsA+ GSH+ Pro)
- Irrigation interval (every 28 days tap water).
- Irrigation interval every 28 days + AsA
- Irrigation interval every 28 days + GSH
- Irrigation interval every 28 days + Pro
- Irrigation interval every 28 days + combined (AsA+ GSH+ Pro)
3.2.1. Estimation of Photosynthetic Pigments
3.2.2. Free Proline Content
3.2.3. Determination of Ascorbic acid (AsA)
3.2.4. Determination Reduced Glutathione (GSH)
3.2.5. Determination of Total Soluble Protein
3.2.6. Enzyme Extracts Preparation
3.2.7. Determination of Antioxidant Enzymes
3.3. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- García-Caparros, P.; Romero, M.J.; Llanderal, A.; Cermeno, P.; Lao, M.T.; Segura, M.L. Effects of drought stress on biomass, essential oil content, nutritional parameters, and costs of production in six Lamiaceae species. Water 2019, 11, 573. [Google Scholar] [CrossRef] [Green Version]
- Shehab, G.G.; Ahmed, O.A.; El-Beltagi, H.S. Effects of various chemical agents for alleviation of drought stress in rice plants (Oryza sativa L.). Not. Bot. HortiAgrobot. Cluj Napoca 2010, 38, 139–148. [Google Scholar]
- Al-Khateeb, S.A.; Al-Khateeb, A.A.; El-Beltagi, H.S.; Sattar, M.N. Genotypic variation for drought tolerance in three date palm (Phoenix dactylifera L.) cultivars. Fresenius Environ. Bull. 2019, 28, 2957–2967. [Google Scholar]
- Ashraf, M.; Foolad, M.R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 2007, 59, 206–216. [Google Scholar] [CrossRef]
- Sperdouli, I.; Moustakas, M. Interaction of proline, sugars, and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress. J. Plant Physiol. 2012, 169, 577–585. [Google Scholar] [CrossRef]
- El-Rahman, S.S.A.; Mazen, M.M.; Mohamed, H.I.; Mahmoud, N.M. Induction of defence related enzymes and phenolic compounds in lupin (Lupinus albus L.) and their effects on host resistance against Fusarium wilt. Eur. J. Plant Pathol. 2012, 134, 105–116. [Google Scholar] [CrossRef]
- Singh, R.; Singh, S.; Parihar, P.; Mishra, R.K.; Tripathi, D.K.; Singh, V.P.; Chauhan, D.K.; Prasad, S.M. Reactive oxygen species (ROS): Beneficial companions of plants’ developmental processes. Front. Plant Sci. 2016, 7, 1299. [Google Scholar] [CrossRef] [Green Version]
- Dobra, J.; Vankova, R.; Havlova, M.; Burman, A.J.; Libus, J.; Storchova, H. Tobacco leaves and roots differ in the expression of proline metabolism-related genes in the course of drought stress and subsequent recovery. J. Plant Physiol. 2011, 168, 1588–1597. [Google Scholar] [CrossRef]
- Wu, H.H.; Zou, Y.N.; Rahman, M.M.; Ni, D.; Wu, Q.S. Mycorrhizas alter sucrose and proline metabolism in trifoliate orange exposed to drought stress. Sci. Rep. 2017, 7, 42389. [Google Scholar] [CrossRef] [Green Version]
- Merwad, A.M.A.; Desoky, E.M.; Rady, M.M. Response of water deficit-stressed Vigna unguiculata performances to silicon, proline or methionine foliar application. Sci. Hortic. 2018, 228, 132–144. [Google Scholar] [CrossRef]
- Akram, N.A.; Shafiq, F.; Ashraf, M. Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front. Plant Sci. 2017, 8, 613. [Google Scholar] [CrossRef] [PubMed]
- Prasad, V.; Upadhyay, R.S. Ascorbate and glutathione: Saviours against oxidative stress. In Oxidative Stress in Plants: Causes, Consequences and Tolerance; Anjum, N.A., Umar, S., Eds.; International Publishing House Pvt. Ltd.: New Delhi, India, 2011; pp. 149–176. [Google Scholar]
- Mohamed, H.I.; Akladious, S.A.; El-Beltagi, H.S. Mitigation the harmful effect of salt stress on physiological, biochemical and anatomical traits by foliar spray with trehalose on wheat cultivars. Fresenius Environ. Bull. 2018, 27, 7054–7065. [Google Scholar]
- Podgórska, A.; Burian, M.; Szal, B. Extra-cellular but extra-ordinarily important for cells: Apoplastic reactive oxygen species metabolism. Front. Plant Sci. 2017, 8, 1353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aziz, A.; Akram, N.A.; Ashraf, M. Influence of natural and synthetic vitamin C (ascorbic acid) on primary and secondary metabolites and associated metabolism in quinoa (Chenopodium quinoa Willd.) plants under water deficit regimes. Plant. Physiol. Biochem. 2018, 123, 192–203. [Google Scholar] [CrossRef]
- Foyer, C.H.; Noctor, G. Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. Plant Cell 2005, 17, 1866–1875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, S.S.; Dietz, K.J. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J. Exp. Bot. 2006, 57, 711–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nahar, K.; Hasanuzzaman, M.; Alam, M.M.; Fujita, M. Glutathione-induced drought stress tolerance in mung bean: Coordinated roles of the antioxidant defence and methylglyoxal detoxification systems. AoB Plants 2015, 7, plv069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.H.; Jiang, H.W.; Hsieh, E.J.; Chen, H.Y.; Chien, C.T.; Hsieh, H.L.; Lin, T.P. Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiol. 2012, 158, 340–351. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, M.; Sharma, S.; Kaur, N.; Pathania, D.; Bhandhari, K.; Kaushal, N.; Kaur, R.; Singh, K.; Srivastava, A.; Nayyar, H. Exogenous proline application reduces phytotoxic effects of selenium by minimising oxidative stress and improves growth in bean (Phaseolus vulgaris L.) seedlings. Biol. Trace Elem. Res. 2011, 140, 354–367. [Google Scholar] [CrossRef]
- Ben Ahmed, C.; Ben Rouina, B.; Sensoy, S.; Boukhriss, M.; Ben Abdullah, F. Exogenous proline effects on photosynthetic performance and antioxidant defense system of young olive tree. J. Agric. Food Chem. 2010, 58, 4216–4222. [Google Scholar] [CrossRef]
- Szabados, L.; Savoure, A. Proline: A multifunctional amino acid. Trends Plant Sci. 2010, 15, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Verbruggen, N.; Hermans, C. Proline accumulation in plants: A review. Amino Acids 2008, 35, 753–759. [Google Scholar] [CrossRef] [PubMed]
- Jukanti1, K.; Gaur, P.M.; Gowda, C.L.L.; Chibbar, R.N. Nutritional quality and health benefits of chickpea (Cicer arietinum L.). British J. Nutr. 2012, 108, 11–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, M.; Kumar, S. Major technology advances in Pulses. J. Food Legumes 2009, 23, 169–185. [Google Scholar]
- Hameed, A.; Wu, Q.S.; Abd Allah, E.F.; Hashem, A.; Kumar, A.; Lone, H.A.; Ahmad, P. Role of am fungi in alleviating drought stress in plants. In Use of Microbes for the Alleviation of Soil Stresses; Miransari, M., Ed.; Springer: New York, NY, USA, 2014. [Google Scholar]
- Abass, S.M.; Mohamed, H.I. Alleviation of adverse effects of drought stress on common bean (Phaseolus vulgaris L.) by exogenous application of hydrogen peroxide. Bangladesh J. Bot. 2011, 41, 75–83. [Google Scholar] [CrossRef] [Green Version]
- Sofy, R.M. Application of salicylic acid and zinc improves wheat yield through physiological processes under different levels of irrigation intervals. Int. J. Plant Res. 2015, 5, 136–156. [Google Scholar]
- Mohamed, H.I.; Akladious, S.A. Influence of garlic extract on enzymatic and non enzymatic antioxidants in soybean plants (Glycine max) grown under drought stress. Life Sci. J. 2014, 11, 46–58. [Google Scholar]
- Mohamed, H.I.; Latif, H.H. Improvement of drought tolerance of soybean plants by using methyl jasmonate. Physiol. Mol. Biol. Plants 2017, 23, 545–556. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, H.I.; Akladious, S.A.; Ashry, N.A. Evaluation of water stress tolerance of soybean using physiological parameters and retrotransposon-basedmarkers. Gesunde Pflanz. 2018, 70, 205–215. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant drought stress: Effects, mechanisms and management Agron. Sustain. Dev. 2009, 29, 153–188. [Google Scholar]
- Naz, H.; Akram, N.A.; Ashraf, M. Impact of ascorbic acid on growth and some physiological attributes of cucumber (Cucumis sativus) plants under water–deficit conditions. Pak J. Bot. 2016, 48, 877–883. [Google Scholar]
- Anjum, S.A.; Xie, X.-Y.; Wang, L.-C.; Saleem, M.F.; Man, C.; Lei, W. Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agric. Res. 2011, 6, 2026–2032. [Google Scholar]
- Pandey, P.; Ramegowda, V.; Senthilkumar, M. Shared and unique responses of plants to multiple individual stresses and stress combinations: Physiological and molecular mechanisms. Front. Plant Sci. 2015, 6, 723–736. [Google Scholar] [CrossRef] [Green Version]
- Awasthi, R.; Kaushal, N.; Vadez, V.; Turner, N.C.; Berger, J.; Siddique, K.H.M.; Nayyar, H. Individual and combined effects of transient drought and heat stress on carbon assimilation and seed filling in chickpea. Funct. Plant Biol. 2014, 41, 1148–1167. [Google Scholar] [CrossRef] [Green Version]
- Zlatev, Z.; Lidon, F.C. An overview on drought induced changes in plant growth, water relations and photosynthesis. Emir. J. Food Agric. 2012, 24, 57–72. [Google Scholar]
- Smirnoff, N. Ascorbate biosynthesis and function in photoprotection. Biol. Sci. 2000, 355, 1455–1464. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Nahar, K.; Anee, T.I.; Fujita, M. Exogenous silicon attenuates cadmium-induced oxidative stress in Brassica napus L. by modulating AsA-GSH pathway and glyoxalase system. Front. Plant Sci. 2017, 8, 1061. [Google Scholar] [CrossRef]
- Hamilton, E.W.; Heckathorn, S.A. Mitochondrial adaptations to NaCl. Complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiol. 2001, 126, 1266–1274. [Google Scholar] [CrossRef] [Green Version]
- Sivakumar, P.; Sharmila, P.; Pardha, S.P. Prolinealleviates salt-stress-induced enhancement in ribulose-1,5biphosphate oxygenase activity. Biochem. Biophys. Res. Commun. 2000, 279, 512–515. [Google Scholar] [CrossRef]
- Kattab, H. Role of glutathione and polyadenylic acid on the oxidative defense systems of two different cultivars of canola seedlings grown under saline condition. Aust. J. Basic Appl. Sci. 2007, 1, 323–332. [Google Scholar]
- Hasanuzzaman, M.; Alam, M.D.M.; Rahman, A.; Hasanuzzaman, M.D.; Nahar, K.; Fujita, M. Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (Oryza sativa L.) varieties. BioMed Res. Int. 2014, 2014, 757219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, N.; Bhardwaj, R.D. Ascorbic acid alleviates water deficit induced growth inhibition in wheat seedlings by modulating levels of endogenous antioxidants. Biologia 2016, 71, 402–413. [Google Scholar] [CrossRef]
- Molla, M.R.; Ali, M.R.; Hasanuzzaman, M.; Al-Mamun, M.H.; Ahmed, A.; Nazim-Ud-Dowla, M.A.N.; Rohman, M.M. Exogenous proline and betaine-induced upregulation of glutathione transferase and glyoxalase I in lentil (Lens culinaris) under drought stress. Not. Bot. Horti Agrobot. Cluj Napoca 2014, 42, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.C. Regulation of glutathione synthesis. Mol. Asp. Med. 2009, 30, 42–59. [Google Scholar] [CrossRef] [Green Version]
- Foyer, C.H.; Halliwell, B. The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta 1976, 133, 21–25. [Google Scholar] [CrossRef]
- Sara, K.; Abbaspour, H.; Sinaki, J.M.; Makarian, H. Effects of water deficit and chitosan spraying on osmotic adjustment and soluble protein of cultivars Castor bean (Ricinus communis L.). J. Stress Physiol. Biochem. 2012, 8, 160–169. [Google Scholar]
- Kabiri, R.; Nasibi, F.; Farahbakhsh, H. Effect of exogenous salicylic acid on some physiological parameters and alleviation of drought stress in Nigella sativa plant under hydroponic culture. Plant Prot. 2014, 50, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Mohammadkhani, N.; Heidari, R. Effects of Drought Stress on Soluble Proteins in two Maize varieties. Turk. J. Biol. 2008, 32, 23–30. [Google Scholar]
- Costa, D.L.C.R.; Lobato, S.D.K.A.; Silvera, D.G.A.J.; Laughinghousevi, D.H. ABA mediated proline synthesis in cowpea leaves exposed to water deficiency and rehydration. Turk. J. Agric. For. 2011, 35, 309–317. [Google Scholar]
- Bayramov, M.S.; Babayen, G.H.; Khaligzade, N.M.; Guliyev, M.N.; Raines, A.C. Effect of water stress on protein content of some calvin cycle enzymes in different wheat genotypes. Biol. Sci. 2010, 65, 106–111. [Google Scholar]
- Hayat, S.; Hayat, Q.; Alyemeni, M.N.; Wani, A.S.; Pichtel, J.; Ahmad, A. Role of proline under changing environments: A review. Plant Signal. Behav. 2012, 7, 1456–1466. [Google Scholar] [CrossRef] [Green Version]
- Ignatova, Z.; Gierasch, L.M. Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant. Proc. Natl. Acad. Sci. USA 2006, 103, 13357–13361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaleel, C.A.; Manivannan, P.; Wahid, A.; Farooq, M.; Somasundaram, R.; Panneerselvam, R. Drought stress in plants: A review on morphological characteristics and pigments composition. Int. J. Agric. Biol. 2009, 11, 100–105. [Google Scholar]
- Akladious, S.A.; Mohamed, H.I. Ameliorative effects of calcium nitrate and humic acid on the growth, yield component and biochemical attribute of pepper (Capsicum annuum) plants grown under salt stress. Sci. Hortic. 2018, 236, 244–250. [Google Scholar] [CrossRef]
- Medeiros, M.J.L.; Silva, M.M.A.; Granja, M.M.C.; De Souza, S.J.G.; Camara, T.; Willadino, L. Effect of exogenous proline in two sugarcane genotypes grown in vitro under salt stress. Acta Biológica Colomb. 2015, 20, 57–63. [Google Scholar] [CrossRef]
- Hemmati, K.; Ebadi, A.; Khomari, S.; Sedghi, M. Influence of ascorbic acid and 24-epibrassinolide on physiological characteristics of pot marigold under water-stress condition. J. Plant Interact. 2018, 13, 364–372. [Google Scholar] [CrossRef] [Green Version]
- Radhakrishnan, R.; Lee, I. Spermine promotes acclimation to osmotic stress by modifying antioxidant, abscisic acid, and jasmonic acid signals in soybean. J. Plant Growth Regul. 2013, 32, 22–30. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants: A review. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef] [PubMed]
- Desoky, E.M.; Merwad, A.M.; Rady, M.M. Natural biostimulants improve saline soil characteristics and salt stressed-sorghum performance. Commun. Soil Sci. Plant Anal. 2018, 49, 967–983. [Google Scholar] [CrossRef]
- de Freitas, P.A.F.; de Souza Miranda, R.; Marques, E.C.; Prisco, J.T.; Gomes Filho, E. Salt tolerance induced by exogenous proline in maize is related to low oxidative damage and favorable ionic homeostasis. J. Plant Growth Regul. 2018, 37, 911–924. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Hossain, M.A.; da Silva, J.A.T.; Fujita, M. Plant responses and tolerance to abiotic oxidative stress: Antioxidant defense is a key factor. In Crop Stress and Its Management: Perspectives and Strategies; Bandi, V., Shanker, A.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 261–316. [Google Scholar]
- Navari-Izzo, F.; Meneguzzo, S.; Loggini, B. The role of the glutathione system during dehydration of Boea hygroscopeia. Physiol. Plant 1997, 99, 23–30. [Google Scholar] [CrossRef]
- Foyer, C.H.; Noctor, G. Ascorbate and glutathione: The heart of the redox hub. Plant Physiol. 2011, 155, 12–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kocsy, G.; Galiba, G.; Brunold, C. Role of glutathione in adaptation and signaling during chilling and acclimation in plant. Physiol. Plant 2001, 113, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Liu, S.; Zhou, F.; Ding, C.; Hua, C. Exogenous ascorbic acid and glutathione alleviate oxidative stress induced by salt stress in the chloroplasts of Oryza sativa L. Z. Nat. C 2014, 69, 226–236. [Google Scholar] [CrossRef] [PubMed]
- El-Beltagi, H.S.; Mohamed, H.I. Alleviation of cadmium toxicity in Pisum sativum, L. Seedlings by calcium chloride. Not. Bot. Horti. Agrobot. 2013, 411, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Mollica, A.; Stefanucci, A.; Feliciani, F.; Torino, D.; Cacciatore, I.; Pinnen, F.; Lucente, G. Facile transformation of glutamic acid into proline residue inside a tripeptide backbone. Tetrahedron Lett. 2010, 51, 1333–1335. [Google Scholar] [CrossRef]
- Cacciatore, I.; Cornacchia, C.; Baldassarre, L.; Fornasari, E.; Mollica, A.; Stefanucci, A.; Pinnen, F. GPE and GPE Analogues as Promising Neuroprotective Agents. Med. Chem. 2012, 12, 13–23. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Carbon and organic matte. In Methods of Soil Analysis Part 3; Soil Science Society of American: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Vernon, L.P.; Seely, G.R. The Chlorophylls; Academic Press: New York, NY, USA; London, UK, 1966. [Google Scholar]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic membranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Mukherjee, S.P.; Choudhuri, M.A. Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol. Plant 1983, 58, 166–170. [Google Scholar] [CrossRef]
- Silber, R.; Farber, M.; Papopoulos, E.; Nervla, D.; Liebes, L.; Bruch, M.; Bron, R. Glutathione depletion in chronic lymphocytic leukemia B-lymphocytes. Blood 1992, 80, 2038–2040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the folin reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [PubMed]
- Bergmeyer, H.U.; Graßl, M. Methods of Enzymatic Analysis. Verl. Chem. Weinh. 1983, 8, 273–277. [Google Scholar]
- Beauchamp, C.; Fridovich, I. Superoxide dismutase: Improved assays and assay applicable to acrylamide gels. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef]
- Velikova, V.; Yordanov, I.; Edreva, A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Sci. 2000, 151, 59–66. [Google Scholar] [CrossRef]
- Nakano, Y.; Asada, K. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981, 22, 867–880. [Google Scholar]
- Jiang, M.; Zhang, J. Involvement of plasma-membrane NADPH oxidase in abscisic acid and water stress-induced antioxidant defense in leaves of maizeseedlings. Planta 2002, 215, 1022–1030. [Google Scholar] [CrossRef]
- Snedecor, G.M.; Cochran, W.G. Statistical Methods, 7th ed.; Lowa State Univ. Press: Ames, ID, USA, 1982; pp. 325–330. [Google Scholar]
Sample Availability: Not available. |
Different Levels of Irrigation Interval | Treatments | Shoot Length (cm) | Root Length (cm) | Shoot Fresh Weight FW (g) | Shoot Dry Weight DW (g) | Root Fresh Weight FW (g) | Root Fresh Weight DW (g) | |
---|---|---|---|---|---|---|---|---|
7 d | 0 | 20.29 ± 1.8 d | 9.32 ± 1.11 cd | 5.10 ± 0.32 e | 2.36 ± 0.22 cd | 3.91 ± 0.29 ab | 1.4 ± 0.19 d | |
AsA | 27.64 ± 1.21 bc | 12.58 ± 1.61 b | 7.88 ± 0.45 c | 2.99 ± 0.07 bc | 4.98 ± 0.32 ab | 1.75 ± 0.1 bc | ||
Control | GSH | 29.29 ± 1.19 ab | 12.52 ± 1.2 b | 8.00 ± 0.62 c | 3.25 ± 0.31 bc | 4.83 ± 0.53 b | 2.07 ± 0.24 b | |
Pro | 28.43 ± 1.87 abc | 13.00 ± 1.72 b | 7.23 ± 0.33 c | 3.11 ± 0.23 bc | 5.10 ± 0.48 a | 2.03 ± 0.22 b | ||
Co | 31.33 ± 1.84 a | 17.00 ± 1.61 a | 10.59 ± 0.64a | 6.33 ± 0.33 a | 5.60 ± 0.47 a | 2.59 ± 0.15 a | ||
Water irrigation | 14 d | 0 | 12.87 ± 1.03 ef | 5.16 ± 1.14 f | 3.75 ± 0.8 g | 1.38 ± 0.04 e | 2.88 ± 0.37 e | 0.82 ± 0.26 f |
AsA | 18.58 ± 1.72 d | 8.32 ± 1.51 de | 6.55 ± 0.43 d | 2.09 ± 0.3 cd | 3.76 ± 0.54 d | 1.4 ± 0.28 d | ||
GSH | 18.67 ± 1.56 d | 8.67 ± 1.72 de | 6.88 ± 0.23 d | 2.09 ± 0.25 cd | 3.82 ± 0.39 d | 1.28 ± 0.2 e | ||
Pro | 19.47 ± 1.56 d | 8.44 ± 1.21 de | 6.43 ± 0.56 d | 2.02 ± 0.27 cd | 3.89 ± 0.46 d | 1.27 ± 0.25 e | ||
Co | 25 ± 1.32 c | 12.00 ± 1.66 bc | 9.18 ± 0.29 b | 3.97 ± 0.55 b | 4.10 ± 0.51 c | 1.63 ± 0.27 c | ||
28 d | 0 | 9.25 ± 2.1 f | 3.35 ± 1.82 g | 2.21 ± 0.49 h | 0.86 ± 0.34 f | 1.95 ± 0.64 g | 0.63 ± 0.16 f | |
AsA | 13.25 ± 1.36 e | 6.58 ± 1.56 def | 4.46 ± 0.24fg | 1.57 ± 0.07 d | 2.88 ± 0.51 e | 1.07 ± 0.18 g | ||
GSH | 14.54 ± 1.33 e | 5.96 ± 1.27 ef | 4.77 ± 0.77 f | 1.57 ± 0.05 d | 2.92 ± 0.4 e | 1.00 ± 0.07 g | ||
Pro | 14.12 ± 1.66 e | 6.00 ± 1.51 ef | 4.89 ± 0.62 f | 1.58 ± 0.24 d | 2.96 ± 0.43 e | 0.96 ± 0.05 g | ||
Co | 20 ± 1.29 d | 8.61 ± 1.23 de | 6.31 ± 0.54de | 2.3 ± 0.22 cd | 3.23 ± 0.26 f | 1.18 ± 0.1 dg | ||
Significant | ** | ** | ** | ** | ** | ** | ||
Treatments (T) | ** | ** | ** | ** | ** | ** | ||
Water irrigation (WI) | ** | ** | ** | ** | * | ** | ||
Interaction (T × WI) | ns | ns | ns | * | ns | ns |
Different Levels of Irrigation Interval | Treatments | No of Pods Plant−1 | Pods Weight (g Plant−1) | No of Seeds Plant−1 | 100-Seed Weight (g) | |
---|---|---|---|---|---|---|
7 d | 0 | 6 ± 0.35 e | 1.43 ± 0.04 f | 5.33 ± 0.03 d | 15.75 ± 0.25 d | |
AsA | 8 ± 0.03 c | 1.90 ± 0.03 bc | 7.33 ± 0.04 b | 18.98 ± 0.51 b | ||
Control | GSH | 8 ± 0.03 c | 1.95 ± 0.03 bc | 7.67 ± 0.06 b | 19.87 ± 0.32 b | |
Pro | 9 ± 0.03 b | 1.97 ± 0.03 bc | 7.33 ± 0.06 b | 19.45 ± 0.57 b | ||
Co | 11 ± 0.05 a | 2.20 ± 0.06 a | 9.33 ± 0.06 a | 22.58 ± 0.75 a | ||
Water irrigation | 14 d | 0 | 3 ± 0.34 g | 1.10 ± 0.03 g | 3.33 ± 0.03 e | 11.34 ± 0.33 f |
AsA | 5 ± 0.04 f | 1.65 ± 0.04 de | 5.33 ± 0.04 d | 15.34 ± 0.48 e | ||
GSH | 6 ± 0.06 e | 1.77 ± 0.06 cd | 5.67 ± 0.06 d | 15.98 ± 0.22 e | ||
Pro | 5 ± 0.06 f | 1.64 ± 0.06 de | 6.33 ± 0.06 c | 15.76 ± 0.46 e | ||
Co | 7 ± 0.03 d | 1.98 ± 0.03 b | 7.33 ± 0.04 b | 17.65 ± 0.33 c | ||
28 d | 0 | 2 ± 0.06 h | 0.78 ± 0.06h | 1.67 ± 0.06 f | 9.01 ± 0.01 h | |
AsA | 4 ± 0.03 g | 1.43 ± 0.03 f | 4.33 ± 0.06 e | 11.12 ± 0.36 f | ||
GSH | 6 ± 0.04 e | 1.54 ± 0.04 ef | 4.67 ± 0.03 e | 11.5 ± 0.42 f | ||
Pro | 5 ± 0.03 f | 1.65 ± 0.03 de | 5.33 ± 0.02 d | 11.3 ± 0.37 f | ||
Co | 7 ± 0.03 d | 1.94 ± 0.02 bc | 6.67 ± 0.02 c | 13.73 ± 0.26 d | ||
Significant | ** | ** | ** | ** | ||
Treatments (T) | ** | ** | ** | ** | ||
Water irrigation (WI) | ** | ** | ** | ** | ||
Interaction (T × WI) | ** | ns | ns | ns |
Total Suspended Solids (TSS) ppm | pH | Electrical Conductivity (EC) mm hos/cm | Cations meq/L | Anions meq/L | ||||||
---|---|---|---|---|---|---|---|---|---|---|
762 | 7.2 | 1.19 | Na+ | K+ | Ca2+ | Mg2+ | Cl− | SO4− | HCO3− | CO3− |
2.37 | 0.57 | 2.22 | 1 | 4.4 | 0.88 | 1 | Zero |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Beltagi, H.S.; Mohamed, H.I.; Sofy, M.R. Role of Ascorbic acid, Glutathione and Proline Applied as Singly or in Sequence Combination in Improving Chickpea Plant through Physiological Change and Antioxidant Defense under Different Levels of Irrigation Intervals. Molecules 2020, 25, 1702. https://doi.org/10.3390/molecules25071702
El-Beltagi HS, Mohamed HI, Sofy MR. Role of Ascorbic acid, Glutathione and Proline Applied as Singly or in Sequence Combination in Improving Chickpea Plant through Physiological Change and Antioxidant Defense under Different Levels of Irrigation Intervals. Molecules. 2020; 25(7):1702. https://doi.org/10.3390/molecules25071702
Chicago/Turabian StyleEl-Beltagi, Hossam S., Heba I. Mohamed, and Mahmoud R. Sofy. 2020. "Role of Ascorbic acid, Glutathione and Proline Applied as Singly or in Sequence Combination in Improving Chickpea Plant through Physiological Change and Antioxidant Defense under Different Levels of Irrigation Intervals" Molecules 25, no. 7: 1702. https://doi.org/10.3390/molecules25071702
APA StyleEl-Beltagi, H. S., Mohamed, H. I., & Sofy, M. R. (2020). Role of Ascorbic acid, Glutathione and Proline Applied as Singly or in Sequence Combination in Improving Chickpea Plant through Physiological Change and Antioxidant Defense under Different Levels of Irrigation Intervals. Molecules, 25(7), 1702. https://doi.org/10.3390/molecules25071702