In Vitro Evaluation of Antiproliferative Properties of Novel Organotin(IV) Carboxylate Compounds with Propanoic Acid Derivatives on a Panel of Human Cancer Cell Lines
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.2. Cytotoxic Activity
2.3. Drug Uptake
2.4. Morphological Study
2.5. Flow Cytometry Analysis
3. Materials and Methods
3.1. Measurements
3.2. Synthesis of Ligands Precursors
3.3. Synthesis of Organotin(IV) Compounds
3.4. Cell Lines, General Conditions and IC50 Determination
3.5. Metal Uptake
3.6. Morphological Analysis (AO and DAPI Staining)
3.7. Activation of Caspases
3.8. Autophagy Analysis
3.9. Cell Cycle Analysis
3.10. Investigation of ROS/RNS Production
3.11. Investigation of NO Production
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Liao, J.B. Viruses and Human Cancer. Yale J. Biol. Med. 2006, 79, 115–122. [Google Scholar]
- Chernyavskiy, P.; Edmondson, E.F.; Weil, M.M.; Little, M.P. High-energy particle beam and gamma radiation exposure, familial relatedness and cancer in mice. Br. J. Cancer 2017, 117, 41–50. [Google Scholar] [CrossRef]
- Adam, M.A.A.; Tabana, Y.M.; Musa, K.B.; Sandai, D.A. Effects of different mycotoxins on humans, cell genome and their involvement in cancer (Review). Oncol. Rep. 2017, 37, 1321–1336. [Google Scholar] [CrossRef] [Green Version]
- Ksouri, R. Food components and diet habits: Chief factors of cancer development (Review). Food Qual. Saf. 2019, 3, 227–231. [Google Scholar] [CrossRef] [Green Version]
- Kritchenkov, A.S.; Stanishevskii, Y.M.; Skorik, Y.A. Search for new drugs design and antitumour activity of platinum complexes. Pharm. Chem. J. 2019, 53, 6–14. [Google Scholar] [CrossRef]
- Kang, B.W.; Kim, J.G.; Kwon, O.-K.; Chung, H.Y.; Yu, W. Non-platinum-based chemotherapy for treatment of advanced gastric cancer: 5-fluorouracil, taxanes, and irinotecan. World J. Gastroenterol. 2014, 20, 5396–5402. [Google Scholar] [CrossRef] [PubMed]
- Ott, I.; Gust, R. Non platinum metal complexes as anti-cancer drugs. Arch. Pharm. 2007, 340, 117–126. [Google Scholar] [CrossRef]
- Alama, A.; Tasso, B.; Novelli, F.; Sparatore, F. Organometallic compounds in oncology: Implications of novel organotins as antitumour agents. Drug Discov. Today 2009, 14, 500–508. [Google Scholar] [CrossRef] [PubMed]
- Hadjikakou, S.K.; Hadjiliadis, N. Antiproliferative and anti-tumour activity of organotin compounds. Coordin. Chem. Rev. 2009, 253, 235–249. [Google Scholar] [CrossRef]
- Bulatović, M.Z.; Maksimović-Ivanić, D.; Bensing, C.; Gomez-Ruiz, S.; Steinborn, D.; Schmidt, H.; Mojić, M.; Korać, A.; Golić, I.; Perez-Quintanilla, D.; et al. Organotin(IV)-loaded mesoporous silica as a biocompatible strategy in cancer treatment. Angew. Chem. Int. Edit. 2014, 53, 5982–5987. [Google Scholar] [CrossRef]
- Esmail, S.A.A.; Shamsi, M.; Chen, T.; Al-asbahy, W.M. Design, synthesis and characterization of Tin-based cancer chemotherapy drug entity: In vitro DNA binding, cleavage, induction of cancer cell apoptosis by triggering DNA damage-mediated p53 phosphorylation and molecular docking. Appl. Organomet. Chem. 2019, 33, 4651. [Google Scholar] [CrossRef] [Green Version]
- Banti, C.N.; Hadjikakou, S.K.; Sismanoglu, T.; Hadjiliadis, N. Anti-proliferative and antitumour activity of organotin(IV) compounds. An overview of the last decade and future perspectives. J. Inorg. Biochem. 2019, 194, 114–152. [Google Scholar] [CrossRef]
- Gomez-Ruiz, S.; Kaluđerovic, G.N.; Prashar, S.; Hey-Hawkins, E.; Eric, A.; Zizak, Z.; Juranic, Z.D. Study of the cytotoxic activity of di and triphenyltin(IV) carboxylate complexes. J. Inorg. Biochem. 2008, 102, 2087–2096. [Google Scholar] [CrossRef] [PubMed]
- Kaluđerović, G.N.; Kommera, H.; Hey-Hawkins, E.; Paschke, R.; Gomez-Ruiz, S. Synthesis and biological applications of ionic triphenyltin(IV) chloridecarboxylate complexes with exceptionally high cytotoxicity. Metallomics 2010, 2, 419–428. [Google Scholar] [CrossRef]
- Pantelić, N.Đ.; Zmejkovski, B.B.; Žižak, Ž.; Banjac, N.R.; Božić, B.Đ.; Stanojković, T.P.; Kaluđerović, G.N. Design and In Vitro Biological Evaluation of a Novel Organotin(IV) Complex with 1-(4-Carboxyphenyl)-3-ethyl-3-methylpyrrolidine-2,5-dione. J. Chem. 2019, 2019, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Pantelić, N.Đ.; Zmejkovksi, B.B.; Božić, B.; Dojčinović, B.; Banjac, N.; Wessjohann, L.A.; Kaluđerović, G.N. Synthesis, characterization and in vitro biological evaluation of novel organotin(IV) compounds with derivatives of 2-(5-arylidene-2,4-dioxothiazolidin-3-yl)propanoic acid. J. Inorg. Biochem. 2020, 211, 111207. [Google Scholar] [CrossRef] [PubMed]
- Kaluđerović, G.N.; Paschke, R.; Prashar, S.; Gómez-Ruiz, S. Synthesis, characterization and biological studies of 1–D-polymeric triphenyltin(IV) carboxylates. J. Organomet. Chem. 2010, 695, 1883–1890. [Google Scholar] [CrossRef]
- Deacon, G.B.; Phillips, R.J. Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord. Chem. Rev. 1980, 33, 227–250. [Google Scholar] [CrossRef]
- Pantelić, N.Đ.; Lerbs, M.; Wolf, K.; Wessjohann, L.A.; Kaluđerović, G.N. In vitro anticancer evaluation of novel triphenyltin(IV) compounds with some N-acetyl-S-naphthoquinonylcysteine derivatives. J. Serb. Chem. Soc. 2019, 84, 1119–1127. [Google Scholar] [CrossRef]
- Božić, B.D.; Rogan, J.R.; Poleti, D.D.; Trišović, N.P.; Božić, B.D.; Ušćumlić, G.S. Synthesis, characterization and antiproliferative activity of transition metal complexes with 3-(4,5-diphenyl-1,3-oxazol-2-yl)propanoic acid (oxaprozin). Chem. Pharm. Bull. (Tokyo) 2012, 60, 865–869. [Google Scholar] [CrossRef]
- Śliwka, L.; Wiktorska, K.; Suchocki, P.; Milczarek, M.; Mielczarek, S.; Lubelska, K.; Cierpiał, T.; Łyżwa, P.; Kiełbasiński, P.; Jaromin, A.; et al. The comparison of MTT and CVS assays for the assessment of anticancer agent interactions. PLoS ONE 2016, 11, e0155772. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Tan, C.-P.; Zhang, W.; He, L.; Ji, L.-N.; Mao, Z.-W. Phosphorescent iridium (III)-bis-N-heterocyclic carbene complexes as mitochondria-targeted theranostic and photodynamic anticancer agents. Biomaterials 2015, 39, 95–104. [Google Scholar] [CrossRef]
- Hara, K.; Kasahara, E.; Takahashi, N.; Konishi, M.; Inoue, J.; Jikumaru, M.; Kubo, S.; Okamura, H.; Sato, E.; Inoue, M. Mitochondria determine the efficacy of anticancer agents that interact with DNA but not the cytoskeleton. J. Pharmacol. Exp. Ther. 2011, 337, 838–845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, J.-L.; Shen, W.-Y.; Chen, Z.-F.; Zhao, L.-F.; Qin, Q.-P.; Yu, Y.-C.; Liang, H. Oxoaporphine metal complexes (CoII, NiII, ZnII) with high antitumour activity by inducing mitochondria-mediated apoptosis and S-phase arrest in HepG2. Sci. Rep. 2017, 7, 46056. [Google Scholar] [CrossRef] [Green Version]
- Kagawa, S.; Gu, J.; Honda, T.; McDonnell, T.J.; Swisher, S.G.; Roth, J.A.; Fang, B. Deficiency of Caspase-3 in MCF7 Cells Blocks Bax-mediated Nuclear Fragmentation but not Cell Death. Clin. Cancer Res. 2001, 7, 1474–1480. [Google Scholar]
- Yang, X.H.; Sladek, T.L.; Liu, X.; Butler, B.R.; Froelich, C.J.; Thor, A.D. Reconstitution of caspase 3 sensitizes MCF-7 breast cancer cells to doxorubicin- and etoposide-induced apoptosis. Cancer Res. 2001, 61, 348–354. [Google Scholar] [PubMed]
- Kaluđerović, G.N.; Krajnović, T.; Momčilović, M.; Stošić-Grujičić, S.; Mijatović, S.; Maksimović-Ivanić, D.; Hey-Hawkins, E. Ruthenium(II) p-cymene complex bearing 2,2′-dipyridylamine targets caspase 3 deficient MCF-7 breast cancer cells without disruption of antitumour immune response. J. Inorg. Biochem. 2015, 153, 315–321. [Google Scholar] [CrossRef]
- Dalby, K.N.; Tekedereli, I.; Lopez-Berestein, G.; Ozpolat, B. Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer. Autophagy 2010, 6, 322–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Tang, X.; Liu, H.; Li, L.; Hou, Q.; Gao, J. Autophagy induced by baicalin involves downregulation of CD147 in SMMC-7721 cells in vitro. Oncol. Rep. 2012, 27, 1128–1134. [Google Scholar] [CrossRef] [Green Version]
- Mucha, P.; Hikisz, P.; Gwoździński, K.; Krajewska, U.; Leniart, A.; Budzisz, E. Cytotoxic effect, generation of reactive oxygen/nitrogen species and electrochemical properties of Cu(II) complexes in comparison to half-sandwich complexes of Ru(II) with aminochromone derivatives. RSC Adv. 2019, 9, 31943–31952. [Google Scholar] [CrossRef] [Green Version]
- Sies, H.; Berndt, C.; Jones, D.P. Oxidative stress. Annu. Rev. Biochem. 2017, 86, 715–748. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.J. The oxidative environment and protein damage. Biochim. Biophys. Acta 2005, 1703, 93–109. [Google Scholar] [CrossRef]
- Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free radicals: Properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem. 2015, 30, 11–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moldogazieva, N.T.; Mokhosoev, I.M.; Feldman, N.B.; Lutsenko, S.V. ROS and RNS signalling: Adaptive redox switches through oxidative/nitrosative protein modifications. Free Radic. Res. 2018, 52, 507–543. [Google Scholar] [CrossRef]
- Lushchak, V.I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Biol. Interact. 2015, 224, 164–165. [Google Scholar] [CrossRef]
- Božić, B.; Rogan, J.; Poleti, D.; Rančić, M.; Trišović, N.; Božić, B.; Ušćumlić, G. Synthesis, characterization and biological activity of 2-(5-arylidene-2,4-dioxotetrahydrothiazole-3-yl)propanoic acid derivatives. Arab. J. Chem. 2017, 10, S2637–S2643. [Google Scholar] [CrossRef]
- Pantelić, N.; Stanojković, T.P.; Zmejkovski, B.B.; Sabo, T.J.; Kaluđerović, G.N. In vitro activity of gold(III) complexes with some esters of (S,S)-ethylenediamine-N,N′-di-2-propanoic acid. Eur. J. Med. Chem. 2015, 90, 766–774. [Google Scholar] [CrossRef] [PubMed]
- Sladowski, D.; Steer, S.J.; Clothier, R.H.; Balls, M. An improved MTT assay. J. Immunol. Methods 1993, 157, 203–207. [Google Scholar] [CrossRef]
- Krajnović, T.; Kaluđerović, G.N.; Wessjohann, L.A.; Mijatović, S.; Maksimović-Ivanić, D. Versatile antitumour potential of isoxanthohumol: Enhancement of paclitaxel activity in vivo. Pharmacol. Res. 2016, 105, 62–73. [Google Scholar] [CrossRef]
- Pantelić, N.; Zmejkovski, B.B.; Kolundžija, B.; Đorđić Crnogorac, M.; Vujić, J.M.; Dojčinović, B.; Trifunović, S.R.; Stanojković, T.P.; Sabo, T.J.; Kaluđerović, G.N. In vitro antitumour activity, metal uptake and reactivity with ascorbic acid and BSA of some gold(III) complexes with N,N′-ethylenediamine bidentate ester ligands. J. Inorg. Biochem. 2017, 172, 55–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banda, N.K.; Satterfield, W.C.; Dunlap, A.; Steimer, K.S.; Kurrle, R.; Finkel, T.H.E. Lack of gp120-induced anergy and apoptosis in chimpanzees is correlated with resistance to AIDS. Apoptosis 1996, 1, 49–62. [Google Scholar] [CrossRef]
- Kntayya, S.B.; Ibrahim, M.D.; Ain, N.M.; Iori, R.; Ioannides, C.; Razis, A.F.A. Induction of apoptosis and cytotoxicity by isothiocyanate sulforaphene in human hepatocarcinoma HepG2 cells. Nutrients 2018, 10, 718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lennicke, C.; Rahn, J.; Lichtenfels, R.; Wessjohann, L.A.; Seliger, B. Hydrogen peroxide-production, fate and role in redox signaling of tumour cells. Cell Commun. Signal. 2015, 13, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
PC-3 | HT-29 | MCF-7 | HepG2 | NIH3T3 | |
---|---|---|---|---|---|
HL1-HL3 (MTT/CV) | >100 | >100 | >100 | >100 | >100 |
Ph3SnL1 (MTT) | 0.181 ± 0.027 | 0.237 ± 0.012 | 0.132 ± 0.021 | 0.146 ± 0.028 | 2.17 ± 0.53 |
Ph3SnL1 (CV) | 0.556 ± 0.038 | 0.465 ± 0.046 | 0.218 ± 0.025 | 0.366 ± 0.051 | 2.66 ± 0.52 |
Ph2SnL2 (MTT) | 0.575 ± 0.043 | 0.453 ± 0.063 | 0.309 ± 0.059 | 0.223 ± 0.084 | 1.99 ± 1.12 |
Ph3SnL2 (CV) | 0.785 ± 0.018 | 0.727 ± 0.018 | 0.543 ± 0.026 | 0.628 ± 0.165 | 2.61 ± 0.52 |
Ph3SnL3 (MTT) | 0.211 ± 0.042 | 0.218 ± 0.015 | 0.131 ± 0.017 | 0.100 ± 0.030 | 1.82 ± 0.99 |
Ph3SnL3 (CV) | 0.458 ± 0.029 | 0.471 ± 0.048 | 0.219 ± 0.016 | 0.255 ± 0.085 | 2.09 ± 1.03 |
cisplatin (MTT) | 14.30 ± 0.26 | 14.18 ± 0.73 | 15.16 ± 1.04 | 3.47 ± 0.46 | 8.81 ± 0.51 |
cisplatin (CV) | 12.95 ± 0.45 | 15.97 ± 0.95 | 15.83 ± 0.55 | 3.65 ± 0.35 | 14.21 ± 1.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pantelić, N.Đ.; Božić, B.; Zmejkovski, B.B.; Banjac, N.R.; Dojčinović, B.; Wessjohann, L.A.; Kaluđerović, G.N. In Vitro Evaluation of Antiproliferative Properties of Novel Organotin(IV) Carboxylate Compounds with Propanoic Acid Derivatives on a Panel of Human Cancer Cell Lines. Molecules 2021, 26, 3199. https://doi.org/10.3390/molecules26113199
Pantelić NĐ, Božić B, Zmejkovski BB, Banjac NR, Dojčinović B, Wessjohann LA, Kaluđerović GN. In Vitro Evaluation of Antiproliferative Properties of Novel Organotin(IV) Carboxylate Compounds with Propanoic Acid Derivatives on a Panel of Human Cancer Cell Lines. Molecules. 2021; 26(11):3199. https://doi.org/10.3390/molecules26113199
Chicago/Turabian StylePantelić, Nebojša Đ., Bojan Božić, Bojana B. Zmejkovski, Nebojša R. Banjac, Biljana Dojčinović, Ludger A. Wessjohann, and Goran N. Kaluđerović. 2021. "In Vitro Evaluation of Antiproliferative Properties of Novel Organotin(IV) Carboxylate Compounds with Propanoic Acid Derivatives on a Panel of Human Cancer Cell Lines" Molecules 26, no. 11: 3199. https://doi.org/10.3390/molecules26113199
APA StylePantelić, N. Đ., Božić, B., Zmejkovski, B. B., Banjac, N. R., Dojčinović, B., Wessjohann, L. A., & Kaluđerović, G. N. (2021). In Vitro Evaluation of Antiproliferative Properties of Novel Organotin(IV) Carboxylate Compounds with Propanoic Acid Derivatives on a Panel of Human Cancer Cell Lines. Molecules, 26(11), 3199. https://doi.org/10.3390/molecules26113199