Phytochemical Constituents, Antioxidant Activity, and Toxicity Assessment of the Aerial Part Extracts from the Infraspecific Taxa of Matthiola fruticulosa (Brassicaceae) Endemic to Sicily
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phytochemical Investigations
2.1.1. Determination of Polyphenolic Compounds by HPLC–PDA/ESI–MS
2.1.2. Identification of Volatile Compounds by SPME–GC/MS
2.2. Antioxidant Activity
2.3. Artemia salina Leach Lethality Bioassay
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Plant Material and Extraction Procedure
3.3. Phytochemical Investigations
3.3.1. Identification of Phenolic Compounds by HPLC–PDA/ESI–MS
3.3.2. Identification of Volatile Compounds by SPME–GC/MS
3.4. Antioxidant Activity
3.4.1. DPPH Assay
3.4.2. Reducing Power Assay
3.4.3. Ferrous Ion (Fe2+) Chelating Activity Assay
3.5. Artemia salina Leach Lethality Bioassay
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Favela-González, K.M.; Hérnandez-Almanza, A.; De la Fuente-Salcido, N.M. The value of bioactive compounds of cruciferous vegetables (Brassica) as antimicrobials and antioxidants: A review. J. Food Biochem. 2020, 44, e13414. [Google Scholar] [CrossRef]
- Miceli, N.; Cavò, E.; Ragusa, S.; Cacciola, F.; Dugo, P.; Mondello, L.; Marino, A.; Cincotta, F.; Condurso, C.; Taviano, M.F. Phytochemical characterization and biological activities of a hydroalcoholic extract obtained from the aerial parts of Matthiola incana (L.) R. Br. subsp. incana (Brassicaceae) growing wild in Sicily (Italy). Chem. Biodivers. 2019, 16, e1800677. [Google Scholar]
- Pignatti, S. Matthiola R. Br. In Flora d’Italia; Edagricole: Milano, Italy, 2017; Volume 2, pp. 912–916. ISBN 8850652437. [Google Scholar]
- Raimondo, F.M.; Domina, G.; Spadaro, V. Checklist of the vascular flora of Sicily. Quad. Bot. Amb. Appl. 2010, 21, 189–252. [Google Scholar]
- Ball, P.W. Matthiola R. Br. In Flora Europaea; Tutin, T.G., Heywood, V.H., Burges, N.A., Moore, D.M., Valentine, D.H., Walters, S.M., Webb, D.A., Eds.; Cambridge University Press: Cambridge, UK, 1964; Volume I, pp. 279–280. [Google Scholar]
- Marhold, K. Brassicaceae. Euro+Med Plantbase-The Information Resource for Euro-Mediterranean Plant Diversity. Available online: http://www.emplantbase.org/home.html (accessed on 21 April 2021).
- The Plant List. Version 1.1. 2013. Available online: http://www.theplantlist.org (accessed on 21 April 2021).
- Livaniou-Tiniakou, A. Matthiola R. Br. In Flora Hellenica; Strid, A., Tan, K., Eds.; Koeltz Scientific Books: Königstein, Germany, 2002; Volume 2, pp. 265–268. [Google Scholar]
- Giardina, G.; Raimondo, F.M.; Spadaro, V. A catalogue of plants growing in Sicily. Bocconea 2007, 20, 5–582. [Google Scholar]
- El-Mokasabi, F.M.; Al-Sanousi, A.F.; El-Mabrouk, R.M. Taxonomy and ethnobotany of medicinal plants in eastern region of Libya. J. Environ. Sci. Toxicol. Food Technol. 2018, 12, 14–23. [Google Scholar]
- Daxenbichler, M.E.; Spencer, G.F.; Carlson, D.G.; Rose, G.B.; Brinker, A.M.; Powell, R.G. Glucosinolate composition of seeds from 297 species of wild plants. Phytochemistry 1991, 30, 2623–2638. [Google Scholar] [CrossRef]
- Gmelin, R.; Kjær, A. Glucosinolates in Matthiola fruticulosa and related species: A reinvestigation. Phytochemistry 1970, 9, 569–573. [Google Scholar] [CrossRef]
- Wieczorek, M.N.; Jeleń, H.H. Volatile compounds of selected raw and cooked Brassica vegetables. Molecules 2019, 24, 391. [Google Scholar] [CrossRef] [Green Version]
- Fenwick, G.R.; Heaney, R.K.; Mullin, W.J.; VanEtten, C.H. Glucosinolates and their breakdown products in food and food plants. CRC Crit. Rev. Food Sci. Nutr. 1983, 18, 123–201. [Google Scholar] [CrossRef] [PubMed]
- Speranza, J.; Taviano, M.F.; Ragusa, S.; Condurso, C.; Cincotta, F.; Verzera, A.; Day-Walsh, P.; Kroon, P.; Miceli, N. Characterization of volatile components and in vitro inhibitory effect on gut microbial TMA production of the leaf hydroalcoholic extract of Brassica incana Ten. (Brassicaceae) growing wild in Sicily (Italy). In Proceedings of the 115th Congresso della Società Botanica Italiana, Online, 9–11 September 2020; p. 194. [Google Scholar]
- Moerkercke, A.V.; Schauvinhold, I.; Pichersky, E.; Haring, M.A.; Schuurink, R.C. A plant thiolase involved in benzoic acid biosynthesis and volatile benzenoid production. Plant. J. 2009, 60, 292–302. [Google Scholar] [CrossRef]
- Schulz, S.; Yildizhan, S.; Van Loon, J.J. The biosynthesis of hexahydrofarnesylacetone in the butterfly Pieris brassicae. J. Chem. Ecol. 2011, 37, 360–363. [Google Scholar] [CrossRef]
- Miceli, N.; Cavò, E.; Spadaro, V.; Raimondo, F.M.; Ragusa, S.; Cacciola, F.; Oulad El Majdoub, Y.; Arena, K.; Mondello, L.; Condurso, C.; et al. Phytochemical profile and antioxidant activity of the aerial part extracts from Matthiola incana subsp. rupestris and subsp. pulchella (Brassicaceae) endemic to Sicily. Chem. Biodivers. 2021, 18, e2100167. [Google Scholar]
- Taviano, M.F.; Miceli, N.; Acquaviva, R.; Malfa, G.A.; Ragusa, S.; Giordano, D.; Cásedas, G.; Les, F.; López, V. Cytotoxic, antioxidant, and enzyme inhibitory properties of the traditional medicinal plant Matthiola incana (L.) R. Br. Biology 2020, 9, 163. [Google Scholar] [CrossRef] [PubMed]
- Abdelshafeek, K.A.; Abdelmohsen, M.M.; Hamed, A.; Shahat, A.A. Investigation of some chemical constituents and antioxidant activity extracts of Matthiola longipetala subsp. longipetala. Chem. Nat. Compd. 2013, 49, 539–543. [Google Scholar] [CrossRef]
- Singh, D.P.; Verma, S.; Prabh, R. Investigations on antioxidant potential of phenolic acids and flavonoids: The common phytochemical ingredients in plants. J. Plant. Biochem. Physiol. 2018, 6, 1000219. [Google Scholar] [CrossRef]
- Kasote, D.M.; Katyare, S.S.; Hegde, M.V.; Bae, H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int. J. Biol. Sci. 2015, 11, 982–991. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Panchon, M.S.; Villano, D.; Troncoso, A.M.; Garcia-Parrilla, M.C. Antioxidant activity of phenolic compounds: From in vitro results to in vivo evidence. Crit. Rev. Food Sci. Nutr. 2008, 48, 649–671. [Google Scholar] [CrossRef]
- Ntungwe, N.E.; Domínguez-Martín, E.M.; Roberto, A.; Tavares, J.; Isca, V.M.S.; Pereira, P.; Cebola, M.-J.; Rijo, P. Artemia species: An important tool to screen general toxicity samples. Curr. Pharm. Des. 2020, 26, 2892–2908. [Google Scholar] [CrossRef] [PubMed]
- Libralato, G.; Prato, E.; Migliore, L.; Cicero, A.M.; Manfra, L. A review of toxicity testing protocols and endpoints with Artemia spp. Ecol. Indic. 2016, 69, 35–49. [Google Scholar] [CrossRef] [Green Version]
- Clarkson, C.; Maharaj, V.J.; Crouch, N.R.; Grace, O.M.; Pillay, P.; Matsabisa, M.G.; Bhagwandin, N.; Smith, P.J.; Folb, P.I. In vitro antiplasmodial activity of medicinal plants native to or naturalised in South Africa. J. Ethnopharmacol. 2004, 92, 177–191. [Google Scholar] [CrossRef]
- Oulad El Majdoub, Y.; Alibrando, F.; Cacciola, F.; Arena, K.; Pagnotta, E.; Matteo, R.; Micalizzi, G.; Dugo, L.; Dugo, P.; Mondello, L. Chemical characterization of three accessions of Brassica juncea L. extracts from different plant tissues. Molecules 2020, 25, 5421. [Google Scholar] [CrossRef] [PubMed]
- Cincotta, F.; Verzera, A.; Tripodi, G.; Condurso, C. Non-intentionally added substances in PET bottled mineral water during the shelf-life. Eur. Food Res. Technol. 2018, 244, 433–439. [Google Scholar] [CrossRef]
- Ohnishi, M.; Morishita, H.; Iwahashi, H.; Shitzuo, T.; Yoshiaki, S.; Kimura, M.; Kido, R. Inhibitory effects of chlorogenic acid on linoleic acid peroxidation and haemolysis. Phytochemistry 1994, 36, 579–583. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on products of browning reaction: Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J. Nutr. Diet. 1986, 44, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Decker, E.A.; Welch, B. Role of ferritin as a lipid oxidation catalyst in muscle food. J. Agric. Food Chem. 1990, 38, 674–677. [Google Scholar] [CrossRef]
- Meyer, B.N.; Ferrigni, N.R.; Putnam, J.E.; Jacobson, L.B.; Nichols, D.E.; McLaughlin, J.L. Brine shrimp: A convenient general bioassay for active plant constituents. Planta Med. 1982, 45, 31–34. [Google Scholar] [CrossRef]
No | tR (min) | UVmax (nm) | [M − H]− | [M + H]+ | Tentative Identification | mg/g Extract | |
---|---|---|---|---|---|---|---|
A | B | ||||||
1 | 9.3 | 260 | 299 | - | Hydroxybenzoic acid-hexoside | 6.21 ± 1.73 | n.d. |
2 | 10.4 | 276 | 359 | - | Syringic acid-hexoside | n.d. | 1.64 ± 0.03 |
3 | 11.0 | 264, 297 | 418 | - | 4-(methylthio)but-3-enyl glucosinolate | n.q. | n.d. |
4 | 11.7 | 293 | 418 | - | 4-(methylthio)but-3-enyl glucosinolate isomer | n.q. | n.d. |
5 | 13.8 | 257, 295 | 387 | - | Unknown | n.q. | n.d. |
6 | 15.3 | 277 | 325 | - | 5-hydroxyferuloylmalate | 1.71 ± 0.30 | n.d. |
7 | 15.5 | 315 | 289 | - | Unknown | n.q. | n.d. |
8 | 15.6 | 308 | 413 | - | Unknown | n.d. | n.q. |
9 | 16.0 | 232 | 329 | - | Unknown | n.q. | n.d. |
10 | 17.6 | 330 | 517 | - | Feruloyl-dihexoside | 3.01 ± 0.67 | n.d. |
11 | 17.9 | 329 | 355 | - | Ferulic acid-dihexoside | 3.23 ± 0.78 | n.d. |
12 | 19.0 | 330 | 385 | - | Sinapoylhexoside | 3.91 ± 0.72 | n.d. |
13 | 19.7 | 269sh, 329 | 437 | - | Unknown | n.d. | n.q. |
14 | 20.0 | 267sh, 314 | 725,433,285 | 595 | Kaempferol derivative | n.d. | 1.82 ± 0.01 |
15 | 20.2 | 267sh, 328 | 411 | - | Unknown | n.d. | n.q. |
16 | 20.9 | 268sh, 329 | 423,379 | - | Unknown | n.d. | n.q. |
17 | 21.2 | 337 | 371 | - | Hydroxyferuloyl-hexoside | n.d. | 1.62 ± 0.07 |
18 | 21.4 | 349 | 755,609,285 | 449 | Kaempferol derivative | 1.93 ± 0.36 | n.d. |
19 | 21.6 | 269sh, 328 | 595,440,285 | 339 | Kaempferol-dihexoside | n.d. | 10.99 ± 0.26 |
20 | 21.8 | 269sh, 318 | 739,579,285 | - | Kaempferol-trihexoside | n.d. | 3.23 ± 0.15 |
21 | 22.5 | 329 | 739,579 | 595 | Sinapoylhydroxyferuloyl-dihexoside | n.d. | 1.53 ± 0.18 |
22 | 22.6 | 349 | 741,301 | - | Quercetin derivative | n.d. | 3.03 ± 0.37 |
23 | 22.8 | 266, 337 | 185 | - | Unknown | n.q. | n.d. |
24 | 23.0 | 329 | 739,579 | 595 | Sinapoylhydroxyferuloyl-dihexoside isomer | 4.93 ± 1.25 | n.d. |
25 | 23.2 | 268sh, 336 | 387,501 | 438 | Unknown | n.d. | n.q. |
26 | 23.5 | 269sh, 314 | 387 | - | Unknown | n.d. | n.q. |
27 | 23.9 | 311 | 251 | - | Unknown | n.d. | n.q. |
28 | 24.4 | 266, 349 | 725 | 433 | Dihydroxyferuloyl-hexoside | n.d. | 10.83 ± 0.04 |
29 | 25.5 | 255, 350 | 725 | 433 | Dihydroxyferuloyl-hexoside isomer | 5.63 ± 1.30 | n.d. |
30 | 25.6 | 330 | 755,515,435,285 | - | Kaempferol derivative | n.d. | 11.93 ± 0.82 |
31 | 26.0 | 353 | 579,303,285 | 449 | Kaempferol-trihexoside | 2.74 ± 1.79 | n.d. |
32 | 26.5 | 266, 346 | 458 | - | Unknown | n.q. | n.d. |
33 | 26.6 | 338 | 593,447 | - | Isoorientin-hexoside | n.d. | 2.76 ± 0.68 |
34 | 27.0 | 352 | 771,301 | 303 | Quercetin-p-coumaroylhexoside | 3.65 ± 0.47 | n.d. |
35 | 27.0 | 339 | 695 | 433 | Unknown | n.d. | n.q. |
36 | 27.3 | 266, 346 | 709,563,431 | 287 | Feruloylhydroxyferuloyl-dihexoside | 26.74 ± 2.48 | n.d. |
37 | 27.9 | 318 | 725,563,593 | - | Dihydroxyferuloyl-dihexoside isomer | n.d. | 2.77 ± 0.52 |
38 | 28.2 | 265, 347 | 755,609,285 | - | Kaempferol derivative | 10.12 ± 3.28 | n.d. |
39 | 28.5 | 329 | 739,579 | - | Sinapoylhydroxyferuloyl-dihexoside isomer | 4.74 ± 0.88 | n.d. |
40 | 29.2 | 254, 351 | 593,285 | 463,287 | Luteolin-dihexoside | 3.75 ± 2.36 | n.d. |
41 | 29.8 | 329 | 613,518 | - | Unknown | n.d. | n.q. |
42 | 29.8 | 265,348 | 785,755,593,285 | 287 | Kaempferol-feruloyldihexoside | 19.85 ± 3.16 | n.d. |
43 | 30.2 | 265,348 | 785,755,593,285 | - | Kaempferol-feruloyldihexoside isomer | 10.25 ± 2.86 | n.d. |
44 | 31.3 | 265, 345 | 593,285 | 287 | Kaempferol-dihexoside | 6.16 ± 0.85 | n.d. |
45 | 31.5 | 329 | 759,449 | - | Unknown | n.d. | n.q. |
46 | 31.5 | 254, 352 | 623,447,315 | 479,317 | Isorhamnetin-dihexoside | 12.96 ± 3.94 | n.d. |
47 | 32.1 | 254, 352 | 623,447,315 | 479,317 | Isorhamnetin-dihexoside isomer | 17.63 ± 1.85 | n.d. |
48 | 34.4 | 330 | 447,409,285 | 181 | Kaempferol-hexoside | 3.14 ± 0.26 | n.d. |
49 | 35.9 | 330 | 535 | 495,287 | Unknown | n.q. | n.d. |
50 | 36.2 | 330 | 539 | 317,287 | Unknown | n.q. | n.d. |
51 | 39.2 | 310 | 674 | 339 | Unknown | n.q. | n.d. |
Compound | LRI * on DB-5ms | LRI * on VF-AXms | M. fruticulosa Subsp. fruticulosa | M. fruticulosa Subsp. coronopifolia | ||
---|---|---|---|---|---|---|
Amount † X ± Dev St | Percentage X ± Dev St | Amount † X ± Dev St | Percentage X ± Dev St | |||
Aldehydes | ||||||
2-Methylbutanal | 675 | 913 | -§ | - | 1262 ± 143 | 3.73 ± 0.39 |
Heptanal | 903 | 1198 | - | - | 51 ± 7 | 0.15 ± 0.02 |
(E)-2-Heptenal | 957 | 1338 | - | - | 396 ± 43 | 1.17 ± 0.19 |
Benzaldehyde | 962 | 1529 | 261 ± 47 | 0.22 ± 0.02 | 298 ± 38 | 0.88 ± 0.11 |
Octanal | 1004 | 1298 | 508 ± 51 | 0.43 ± 0.05 | 101 ± 19 | 0.30 ± 0.05 |
(E,E)-2,4-Heptadienal | 1014 | 1497 | - | - | 247 ± 34 | 0.73 ± 0.14 |
Phenylacetaldehyde | 1043 | 1640 | - | - | 213 ± 37 | 0.63 ± 0.11 |
Nonanal | 1105 | 1398 | 5554 ± 939 | 4.72 ± 0.74 | - | - |
(E)-2-Nonenal | 1161 | 1543 | 72 ± 12 | 0.06 ± 0.01 | - | - |
Decanal | 1206 | 1502 | 115 ± 19 | 0.10 ± 0.02 | 116 ± 14 | 0.34 ± 0.06 |
(E)-2-Decenal | 1263 | 1647 | - | - | 101 ± 12 | 0.30 ± 0.05 |
(Z)-9-Octadecenal | 2006 | 2693 | 242 ± 42 | 0.21 ± 0.03 | - | - |
All | 6752 ± 385 | 5.73 ± 0.30 | 2787 ± 55 | 8.24 ± 0.16 | ||
Acids | ||||||
Benzoic acid | 1165 | 2433 | 522 ± 60 | 0.47 ± 0.08 | - | - |
Octanoic acid | 1174 | 2072 | 262 ± 29 | 0.22 ± 0.04 | 636 ± 96 | 1.88 ± 0.31 |
Nonanoic acid | 1269 | 2178 | 180 ± 26 | 0.15 ± 0.02 | 231 ± 30 | 0.68 ± 0.09 |
Decanoic acid | 1366 | 2284 | - | - | 205 ± 36 | 0.61 ± 0.11 |
All | 995 ± 41 | 0.84 ± 0.05 | 1072 ± 62 | 3.17 ± 0.20 | ||
Alcohols | ||||||
(E)-2-Hepten-1-ol | 973 | 1515 | - | - | 409 ± 78 | 1.21 ± 0.19 |
1-Octen-3-ol | 980 | 1452 | - | - | 2719 ± 342 | 8.04 ± 1.09 |
2-Ethyl-1-hexanol | 1029 | 1489 | 164 ± 20 | 0.14 ± 0.02 | - | - |
(E)-2-Octen-1-ol | 1068 | 1617 | - | - | 244 ± 35 | 0.72 ± 0.14 |
1-Octanol | 1072 | 1561 | - | - | 393 ± 71 | 1.16 ± 0.21 |
2-Methyl-1-octanol | 1100 | - | - | - | 148 ± 27 | 0.44 ± 0.08 |
All | 164 ± 20 | 0.14 ± 0.02 | 3914 ± 161 | 11.58 ± 0.51 | ||
Ketones | ||||||
4-Methyl-2-pentanone | 736 | 1010 | - | - | 487 ± 90 | 1.44 ± 0.23 |
2-Hexanone | 790 | 1083 | - | - | 265 ± 36 | 0.78 ± 0.15 |
4-Methyl-3-penten-2-one | 801 | 1132 | 2267 ± 228 | 1.92 ± 0.39 | 4097 ± 746 | 12.12 ± 2.43 |
Acetylacetone | 815 | 1196 | - | - | 278 ± 50 | 0.82 ± 0.14 |
2-Heptanone | 891 | 1185 | - | - | 201 ± 29 | 0.60 ± 0.09 |
3-Methyl-2-heptanone | 936 | 1210 | 446 ± 77 | 0.38 ± 0.07 | 499 ± 77 | 1.48 ± 0.19 |
Acetophenone | 1066 | 1656 | 249 ± 39 | 0.21 ± 0.04 | - | - |
Hexahydrofarnesyl acetone | 1844 | 2121 | 318 ± 58 | 0.27 ± 0.04 | 4835 ± 717 | 14.3 ± 2.01 |
All | 3279 ± 125 | 2.78 ± 0.20 | 10663 ± 394 | 31.54 ± 1.20 | ||
Esters | ||||||
Methyl heptanoate | 1023 | 1293 | 693 ± 136 | 0.59 ± 0.09 | - | - |
Methyl benzoate | 1094 | 1628 | 6239 ± 1218 | 5.3 ± 1.02 | - | - |
Methyl octanoate | 1123 | 1394 | 363 ± 65 | 0.31 ± 0.05 | 94 ± 10 | 0.28 ± 0.05 |
Ethyl octanoate | 1196 | 1439 | 126 ± 19 | 0.11 ± 0.01 | 135 ± 14 | 0.40 ± 0.05 |
Methyl decanoate | 1323 | 1594 | 216 ± 34 | 0.18 ± 0.03 | 64 ± 8 | 0.19 ± 0.03 |
Ethyl 9-decenoate | 1386 | 1678 | 180 ± 24 | 0.15 ± 0.03 | 395 ± 66 | 1.17 ± 0.19 |
Ethyl decanoate | 1394 | 1639 | 1078 ± 128 | 0.92 ± 0.14 | 1193 ± 216 | 3.53 ± 0.56 |
Fumaric acid, pent-4-en-2-yl propyl ester | 1492 | - | 371 ± 55 | 0.32 ± 0.05 | 146 ± 18 | 0.43 ± 0.08 |
Ethyl dodecanoate | 1590 | 1840 | - | - | 60 ± 8 | 0.18 ± 0.04 |
Methyl tetradecanoate | 1726 | 1997 | - | - | 40 ± 6 | 0.12 ± 0.01 |
Methyl hexadecanoate | 1926 | 2199 | 264 ± 39 | 0.22 ± 0.02 | 192 ± 35 | 0.57 ± 0.09 |
Isopropyl hexadecanoate | 2023 | 2232 | - | - | 53 ± 8 | 0.16 ± 0.03 |
All | 9530 ± 412 | 8.09 ± 0.35 | 2373 ± 73 | 7.02 ± 0.19 | ||
Sulfur compounds | ||||||
Dimethyl disulfide | 743 | 1082 | 855 ± 111 | 0.73 ± 0.12 | 855 ± 137 | 2.53 ± 0.49 |
Dimethyl trisulfide | 968 | 1391 | 80953 ± 14196 | 68.73 ± 13.01 | 539 ± 97 | 1.6 ± 0.29 |
Dimethyl tetrasulfide | 1215 | 1750 | 9554 ± 1063 | 8.11 ± 1.29 | - | - |
All | 91362 ± 8219 | 77.57 ± 7.55 | 1395 ± 119 | 4.13 ± 0.40 | ||
Nitriles | ||||||
4-Methylpentanenitrile | 840 | 1253 | - | - | 778 ± 110 | 2.3 ± 0.47 |
Hexanenitrile | 877 | 1308 | - | - | 333 ± 61 | 0.98 ± 0.16 |
Heptanenitrile | 978 | 1408 | 855 ± 103 | 0.73 ± 0.09 | - | - |
4-(Methylthio)-butanenitrile | 1082 | 1806 | - | - | 1629 ± 257 | 4.79 ± 0.85 |
Benzyl nitrile | 1137 | 1893 | 409 ± 66 | 0.35 ± 0.07 | - | - |
All | 1264 ± 87 | 1.08 ± 0.08 | 2730 ± 165 | 8.08 ± 0.57 | ||
Terpenoids | ||||||
Isophorone | 1126 | 1621 | - | - | 35 ± 4 | 0.10 ± 0.01 |
Cryptone | 1175 | 1675 | - | - | 289 ± 37 | 0.85 ± 0.13 |
Safranal | 1200 | 1649 | 891 ± 127 | 0.76 ± 0.11 | 208 ± 39 | 0.61 ± 0.13 |
β-Cyclocitral | 1220 | 1626 | 246 ± 49 | 0.21 ± 0.03 | 179 ± 33 | 0.53 ± 0.09 |
Pulegone | 1233 | 1637 | - | - | 166 ± 22 | 0.49 ± 0.07 |
Thymoquinone | 1250 | - | - | - | 171 ± 19 | 0.50 ± 0.07 |
2-Isopropyl-5-methyl-3-cyclohexen-1-one | 1255 | - | - | - | 6605 ± 1113 | 19.54 ± 3.76 |
Carvacrol | 1291 | 2225 | - | - | 89 ± 14 | 0.26 ± 0.04 |
Geranylacetone | 1447 | 1857 | - | - | 86 ± 13 | 0.26 ± 0.05 |
All | 1136 ± 96 | 0.97 ± 0.08 | 7827 ± 372 | 23.15 ± 1.26 | ||
Hydrocarbons | ||||||
9-Octadecene | 1744 | 1795 | 554 ± 80 | 0.47 ± 0.07 | - | - |
9-Eicosene | 1948 | 1914 | 280 ± 38 | 0.24 ± 0.04 | 50 ± 7 | 0.15 ± 0.03 |
All | 834 ± 63 | 0.71 ± 0.06 | 50 ± 7 | 0.15 ± 0.03 | ||
Others | ||||||
All | 2463 ± 368 | 2.09 ± 0.42 | 995 ± 179 | 2.94 ± 0.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taviano, M.F.; Cavò, E.; Spadaro, V.; Raimondo, F.M.; Musolino, V.; Cacciola, F.; El Majdoub, Y.O.; Mondello, L.; Condurso, C.; Cincotta, F.; et al. Phytochemical Constituents, Antioxidant Activity, and Toxicity Assessment of the Aerial Part Extracts from the Infraspecific Taxa of Matthiola fruticulosa (Brassicaceae) Endemic to Sicily. Molecules 2021, 26, 4114. https://doi.org/10.3390/molecules26144114
Taviano MF, Cavò E, Spadaro V, Raimondo FM, Musolino V, Cacciola F, El Majdoub YO, Mondello L, Condurso C, Cincotta F, et al. Phytochemical Constituents, Antioxidant Activity, and Toxicity Assessment of the Aerial Part Extracts from the Infraspecific Taxa of Matthiola fruticulosa (Brassicaceae) Endemic to Sicily. Molecules. 2021; 26(14):4114. https://doi.org/10.3390/molecules26144114
Chicago/Turabian StyleTaviano, Maria Fernanda, Emilia Cavò, Vivienne Spadaro, Francesco Maria Raimondo, Vincenzo Musolino, Francesco Cacciola, Yassine Oulad El Majdoub, Luigi Mondello, Concetta Condurso, Fabrizio Cincotta, and et al. 2021. "Phytochemical Constituents, Antioxidant Activity, and Toxicity Assessment of the Aerial Part Extracts from the Infraspecific Taxa of Matthiola fruticulosa (Brassicaceae) Endemic to Sicily" Molecules 26, no. 14: 4114. https://doi.org/10.3390/molecules26144114
APA StyleTaviano, M. F., Cavò, E., Spadaro, V., Raimondo, F. M., Musolino, V., Cacciola, F., El Majdoub, Y. O., Mondello, L., Condurso, C., Cincotta, F., Verzera, A., & Miceli, N. (2021). Phytochemical Constituents, Antioxidant Activity, and Toxicity Assessment of the Aerial Part Extracts from the Infraspecific Taxa of Matthiola fruticulosa (Brassicaceae) Endemic to Sicily. Molecules, 26(14), 4114. https://doi.org/10.3390/molecules26144114