Development and Validation of Liquid Chromatography-Tandem Mass Spectrometry Methods for the Quantification of Cefquinome, Ceftiofur, and Desfuroylceftiofuracetamide in Porcine Feces with Emphasis on Analyte Stability
Abstract
:1. Introduction
2. Results
2.1. Mass Spectrometry
2.2. Chromatography
2.3. Analysis of Biological Samples
2.4. Stability Experiments
2.4.1. Freeze-Thaw, Matrix and Extract Storage Stability
2.4.2. Bench Top Stability
2.5. Method Validation
2.5.1. Linearity, Limit of Quantification and Limit of Detection
2.5.2. Accuracy and Precision
2.5.3. Specificity
2.5.4. Extraction Recovery (RE) and Signal Suppression and Enhancement (SSE)
3. Discussion
4. Materials and Methods
4.1. Blank Fecal Samples
4.2. Standards and Chemicals
4.2.1. Preparation of Solutions
4.2.2. Calibration Curve
4.3. Fecal Analysis
4.3.1. Determination of Ceftiofur and Cefquinome
Sampling Protocol
Extraction
HPLC-MS/MS
4.3.2. Determination of Desfuroylceftiofuracetamide
Sampling Protocol
Extraction
UPLC-MS/MS Analysis
4.3.3. Analysis of Biological Samples
4.4. Stability Experiments
4.4.1. Freeze-Thaw, Matrix and Extract Storage Stability
4.4.2. Bench Top Stability
4.5. Validation Criteria
4.5.1. Linearity
4.5.2. Accuracy
4.5.3. Precision
4.5.4. Limit of Quantification
4.5.5. Limit of Detection
4.5.6. Specificity
4.5.7. Extraction Recovery (RE) and Signal Suppression and Enhancement (SSE)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Sample Availability
References
- Dumka, V.K.; Dinakaran, V.; Ranjan, B.; Rampal, S. Comparative pharmacokinetics of cefquinome following intravenous and intramuscular administration in goats. Small Rumin. Res. 2013, 113, 273–277. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, X.; Huang, Z.; Zhang, N.; Wu, Y.; Cai, Q.; Shen, X.; Ding, H. Pharmacokinetic/pharmacodynamic assessment of cefquinome against Actinobacillus Pleuropneumoniae in a piglet tissue cage infection model. Vet Microbiol. 2018, 219, 100–106. [Google Scholar] [CrossRef]
- Shantier, S.W. Characteristics, Properties and Analytical Methods of Cefquinome-A Review. Chem. Sci. 2019, 8, 437–447. [Google Scholar]
- Hornish, R.E.; Kotarski, S.F. Cephalosporins in veterinary medicine-ceftiofur use in food animals. Curr. Top. Med. Chem. 2002, 2, 717–731. [Google Scholar] [CrossRef] [PubMed]
- Meyer, S.; Giguere, S.; Rodriguez, R.; Zielinski, R.J.; Grover, G.S.; Brown, S.A. Pharmacokinetics of intravenous ceftiofur sodium and concentration in body fluids of foals. J. Vet. Pharmacol. Ther. 2009, 32, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Xiao, J.; Guo, G.; He, J.; Hao, Z.; Xiao, X. Preparation of a newly formulated long-acting ceftiofur hydrochloride suspension and evaluation of its pharmacokinetics in pigs. J. Vet. Pharmacol. Ther. 2010, 33, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Foster, D.M.; Jacob, M.E.; Farmer, K.A.; Callahan, B.J.; Theriot, C.M.; Kathariou, S.; Cernicchiaro, N.; Prange, T.; Papich, M.G. Ceftiofur formulation differentially affects the intestinal drug concentration, resistance of fecal Escherichia coli, and the microbiome of steers. PLoS ONE 2019, 14, e0223378. [Google Scholar] [CrossRef] [Green Version]
- Beconi-Barker, M.G.; Roof, R.D.; Millerioux, L.; Kausche, F.M.; Vidmar, T.J.; Smith, E.B.; Callahan, J.K.; Hubbard, V.L.; Smith, G.A.; Gilbertson, T.J. Determination of ceftiofur and its desfuroylceftiofur-related metabolites in swine tissues by high-performance liquid chromatography. J. Chromatogr. B Biomed. Sci. Appl. 1995, 673, 231–244. [Google Scholar] [CrossRef]
- Gilbertson, T.J.; Roof, R.D.; Nappier, J.L.; Zaya, M.J.; Robins, R.H.; Stuart, D.J.; Krzeminski, L.F.; Jaglan, P.S. Disposition of Ceftiofur Sodium in Swine following Intramuscular Treatment. J. Agric. Food Chem. 1995, 43, 229–234. [Google Scholar] [CrossRef]
- EMEA. Cefquinome Summary Report 3 EMEA/MRL/883/03-FINAL; Committee for Veterinary Medicinal Products: London: The European Agency for the Evaluation of Medicinal Products Veterinary Medicines and Inspections; EMEA: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Barton, M.D. Impact of antibiotic use in the swine industry. Curr. Opin. Microbiol. 2014, 19, 9–15. [Google Scholar] [CrossRef]
- Cavaco, L.M.; Abatih, E.; Aarestrup, F.M.; Guardabassi, L. Selection and Persistence of CTX-M-Producing Escherichia in the Intestinal Flora of Pigs Treated with Amoxicillin, Ceftiofur, or Cefquinome. Antimicrob. Agents Chemother. 2008, 52, 3612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lutz, E.A.; McCarty, M.J.; Mollenkopf, D.F.; Funk, J.A.; Gebreyes, W.A.; Wittum, T.E. Ceftiofur Use in Finishing Swine Barns and the Recovery of Fecal Escherichia coli or Salmonella spp. Resistant to Ceftriaxone. Foodborne Pathog. Dis. 2011, 8, 1229–1234. [Google Scholar] [CrossRef] [PubMed]
- Beyer, A.; Baumann, S.; Scherz, G.; Stahl, J.; von Bergen, M.; Friese, A.; Roesler, U.; Kietzmann, M.; Honscha, W. Effects of ceftiofur treatment on the susceptibility of commensal porcine E.coli–comparison between treated and untreated animals housed in the same stable. BMC Vet. Res. 2015, 11, 265. [Google Scholar] [CrossRef] [Green Version]
- Cameron-Veas, K.; Solà-Ginés, M.; Moreno, M.A.; Fraile, L.; Migura-Garcia, L. Impact of the Use of β-Lactam Antimicrobials on the Emergence of Escherichia coli Isolates Resistant to Cephalosporins under Standard Pig-Rearing Conditions. Appl. Environ. Microbiol. 2015, 81, 1782–1787. [Google Scholar] [CrossRef] [Green Version]
- McKinney, C.W.; Dungan, R.S.; Moore, A.; Leytem, A.B. Occurrence and abundance of antibiotic resistance genes in agricultural soil receiving dairy manure. FEMS Microbiol. Ecol. 2018, 94, fiy010. [Google Scholar] [CrossRef]
- Hölzel, C.S.; Tetens, J.L.; Schwaiger, K. Unraveling the role of vegetables in spreading antimicrobial-resistant bacteria: A need for quantitative risk assessment. Foodborne Pathog. Dis. 2018, 15, 671–688. [Google Scholar] [CrossRef]
- Heuer, H.; Schmitt, H.; Smalla, K. Antibiotic resistance gene spread due to manure application on agricultural fields. Curr. Opin. Microbiol. 2011, 14, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, B.J.A.; Wegh, R.S.; Memelink, J.; Zuidema, T.; Stolker, L.A.M. The analysis of animal faeces as a tool to monitor antibiotic usage. Talanta 2015, 132, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Chachaty, E.; Huy, C.; Cambier, C.; de Gunzburg, J.; Mentré, F.; Andremont, A. Correlation between Fecal Concentrations of Ciprofloxacin and Fecal Counts of Resistant Enterobacteriaceae in Piglets Treated with Ciprofloxacin: Toward New Means To Control the Spread of Resistance? Antimicrob. Agents Chemother. 2012, 56, 4973–4975. [Google Scholar] [CrossRef] [Green Version]
- Janusch, F.; Scherz, G.; Mohring, S.A.I.; Hamscher, G. Determination of fluoroquinolones in chicken feces–A new liquid–liquid extraction method combined with LC–MS/MS. Environ. Toxicol. Pharmacol. 2014, 38, 792–799. [Google Scholar] [CrossRef]
- Patyra, E.; Kwiatek, K.; Nebot, C.; Gavilán, R.E. Quantification of Veterinary Antibiotics in Pig and Poultry Feces and Liquid Manure as a Non-Invasive Method to Monitor Antibiotic Usage in Livestock by Liquid Chromatography Mass-Spectrometry. Molecules 2020, 25. [Google Scholar]
- Hilliard, E.P.; Beard, J.; Pearce, G.R. Utilization of piggery waste I. The chemical composition and in vitro organic matter digestibility of pig faeces from commercial piggeries in south-eastern Australia. Agric. Environ. 1979, 4, 171–180. [Google Scholar] [CrossRef]
- Van den Meersche, T.; Pamel, E.V.; Poucke, C.V.; Herman, L.; Heyndrickx, M.; Rasschaert, G.; Daeseleire, E. Development, validation and application of an ultra high performance liquid chromatographic-tandem mass spectrometric method for the simultaneous detection and quantification of five different classes of veterinary antibiotics in swine manure. J.Chromatogr. A 2016, 1429, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.; Carlson, K.H. Occurrence of β-lactam and polyether ionophore antibiotics in lagoon water and animal manure. Sci. Total Environ. 2018, 640, 1346–1353. [Google Scholar] [CrossRef]
- Gaugain, M.; Mompelat, S.; Fourmond, M.-P.; Manceau, J.; Rolland, J.-G.; Laurentie, M.; Verdon, E.; Bellanger, L.; Hurtaud-Pessel, D. A non-targeted LC-HRMS approach for detecting exposure to illegal veterinary treatments: The case of cephalosporins in commercial laying Hens. J. Chromatogr. A 2019, 1599, 161–171. [Google Scholar] [CrossRef]
- Makeswaran, S.; Patterson, I.; Points, J. An analytical method to determine conjugated residues of ceftiofur in milk using liquid chromatography with tandem mass spectrometry. Anal. Chim. Acta 2005, 529, 151–157. [Google Scholar] [CrossRef]
- Kim, J.; Shin, D.; Kang, H.-S.; Lee, E.; Choi, S.Y.; Lee, H.-S.; Cho, B.-H.; Lee, K.-B.; Jeong, J.Y. Determination of ceftiofur residues by simple solid phase extraction coupled with liquid chromatography-tandem mass spectrometry in eel, flatfish, and shrimp. Mass Spectrom. Lett. 2019, 10, 43–49. [Google Scholar]
- Witte, T.S.; Bergwerff, A.A.; Scherpenisse, P.; Drillich, M.; Heuwieser, W. Ceftiofur derivates in serum and endometrial tissue after intramuscular administration in healthy mares. Theriogenology 2010, 74, 466–472. [Google Scholar] [CrossRef]
- Mompelat, S.; Fourmond, M.-P.; Laurentie, M.; Verdon, E.; Hurtaud-Pessel, D.; Abjean, J.-P. Validation of a liquid chromatography–high-resolution mass spectrometry method for the analysis of ceftiofur in poultry muscle, kidneys and plasma: A unique accuracy profile for each and every matrix. J. Chromatogr. A 2015, 1407, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.; Kang, H.-S.; Jeong, J.; Kim, J.; Choe, W.J.; Lee, K.S.; Rhee, G.-S. Multi-residue determination of veterinary drugs in fishery products using liquid chromatography-Tandem mass spectrometry. Food Anal. Methods 2018, 11, 1815–1831. [Google Scholar] [CrossRef]
- Navarre, C.B.; Zhang, L.; Sunkara, G.; Duran, S.H.; Kompella, U.B. Ceftiofur distribution in plasma and joint fluid following regional limb injection in cattle. J. Vet. Pharmacol. Ther. 1999, 22, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, B.J.A.; Stolker, L.A.M.; Nielen, M.W.F. Assessment of liquid chromatography–tandem mass spectrometry approaches for the analysis of ceftiofur metabolites in poultry muscle. Food Addit. Contam. Part A 2012, 29, 197–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyczkowska, K.L.; Voyksner, R.D.; Anderson, K.L.; Aronson, A.L. Determination of ceftiofur and its metabolite desfuroylceftiofur in bovine serum and milk by ion-paired liquid chromatography. J. Chromatogr. B 1993, 614, 123–134. [Google Scholar] [CrossRef]
- Helmschrodt, C.; Schmidt, K.; Bertulat, S.; Klein, L.; Finnah, A.; Heuwieser, W.; Richter, A. Quantitative analysis of cefquinome considering different matrix compositions of bovine colostrum and raw milk. Anal. Bioanal. Chem. 2018, 410, 7465–7475. [Google Scholar] [CrossRef]
- Lim, J.; Lee, H.; Kim, T.; Song, I.; Kim, M.; Hwang, Y.; Park, B.; Yun, H. Comparison of microbiological assay and high-performance liquid chromatography/mass spectrometry for the pharmacokinetics of cefquinome in pigs. Agric. J. 2011, 6, 374–377. [Google Scholar] [CrossRef]
- Uney, K.; Altan, F.; Elmas, M. Development and validation of a high-performance liquid chromatography method for determination of cefquinome concentrations in sheep plasma and its application to pharmacokinetic studies. Antimicrob. Agents Chemother. 2011, 55, 854–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Baere, S.; Pille, F.; Croubels, S.; Ceelen, L.; De Backer, P. High-performance liquid chromatographic-UV detection analysis of ceftiofur and its active metabolite desfuroylceftiofur in horse plasma and synovial fluid after regional intravenous perfusion and systemic intravenous injection of ceftiofur sodium. Anal. Chim. Acta. 2004, 512, 75–84. [Google Scholar] [CrossRef]
- Maes, A.; Meyns, T.; Sustronck, B.; Maes, D.; De Backer, P.; Croubels, S. Determination of cefquinome in pig plasma and bronchoalveolar lavage fluid by high-performance liquid chromatography combined with electrospray ionization mass spectrometry. J. Mass Spectrom 2007, 42, 657–663. [Google Scholar] [CrossRef]
- Desmarchelier, A.; Feuerrigel, P.; Fathi Ahmed, H.; Moulin, J.; Beck, A.; Mujahid, C.; Bessaire, T.; Savoy, M.C.; Mottier, P. Stability study of veterinary drugs in standard solutions for LC-MS/MS screening in food. Food Addit. Contam. Part A 2018, 35, 695–705. [Google Scholar] [CrossRef]
- Hewavitharana, A.K. Matrix matching in liquid chromatography–mass spectrometry with stable isotope labelled internal standards—Is it necessary? J. Chromatogr. A 2011, 1218, 359–361. [Google Scholar] [CrossRef]
- Available online: https://ec.europa.eu/home-affairs/sites/default/files/02a_belgium_arm2017_par2_final_en.pdf (accessed on 2 July 2021).
- EMA. VICH GL49: Studies to Evaluate the Metabolism and Residue Kinetics of Veterinary Drugs in Food Producing Animals: Validation of Analytical Methods Used in Residue Depletion Studies; CVMP: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Commission, E. Commission Decision 2002/657/EC of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Off. J. Eur. Communities 2002, 50, 8–36. [Google Scholar]
- Heitzman, R. Veterinary Drug Residues. Residues in Food Producing Animals and Their Products: Reference Materials and Methods. EUR 15127 EN; EU Commission: Brussels, Belgium, 1994. [Google Scholar]
- Knecht, J.; Stork, G. Prozentuales und logarithmisches verfahren zur berechnung von eichkurven. Fresenius Z. Für Anal. Chem. 1974, 270, 97–99. [Google Scholar] [CrossRef]
Analyte | Retention Time (min) | Precursor Ion (m/z) | Cone Voltage (V) | Product Ions (m/z) (Collision Energy eV) | |
---|---|---|---|---|---|
Quantifier | Qualifier | ||||
CQ | 4.91 | 529.0 | 40 | 134.0 (15) | 396.3 (15) |
CQ-d7 | 4.90 | 536.4 | 15 | 141.0 (20) | |
CT | 8.35 | 524.0 | 70 | 240.9 (20) | 126.0 (20) |
CT-d3 | 8.34 | 527.0 | 60 | 244.1 (20) | |
DFCA | 1.96 | 487.2 | 35 | 241.2 (22) | 167.1 (22) |
DFCA-d3 | 1.93 | 490.2 | 35 | 244.2 (22) |
Analyte | Calibration Range (ng g−1) | Gof a (%) (n = 6) | R a (n = 6) | LOD (ng g−1) | LOQ (ng g−1) |
---|---|---|---|---|---|
CQ | 5–1000 | 3.70 ± 1.43 | 0.9990 ± 0.0007 | 0.64 | 5 |
CT | 5–1000 | 5.51 ± 1.14 | 0.9979 ± 0.0009 | 0.89 | 5 |
DFCA | 30–2000 | 7.31 ± 1.76 | 0.9960 ± 0.0020 | 1.47 | 30 |
Analyte | Target Concentration (ng g−1) | Mean Concentration ± SD (n = 18) (ng g−1) | RSD (%) Within-Day (n = 6) /Between-Day (n = 18) | Accuracy (%) Within-Day (n = 6) /Between-Day (n = 18) |
---|---|---|---|---|
CQ | 5 | 4.7 ± 0.3 | 6.9/6.5 | −8.4/−6.2 |
100 | 91.8 ± 4.5 | 3.1/4.9 | −6.0/−8.2 | |
1000 | 939.0 ± 37.8 | 2.8/4.0 | −3.0/−6.1 | |
CT | 5 | 5.1 ± 0.3 | 4.5/5.0 | −3.5/+1.1 |
100 | 101.1 ± 2.6 | 3.1/2.6 | +0.7/+1.1 | |
1000 | 1047.4 ± 31.9 | 4.1/3.0 | +3.9/+4.7 | |
DFCA | 30 | 29.4 ± 2.2 | 7.8/7.4 | −4.6/−2.0 |
500 | 480.6 ± 47.5 | 7.6/9.9 | −10.7/−3.9 | |
2000 | 1952.6 ± 164.3 | 9.3/8.4 | 0.3/−2.4 |
Analyte | SSE (%) | RE (%) |
---|---|---|
Cefquinome | 116.4 ± 13.4 | 41.2 ± 3.1 |
Cefquinome-d7 | 119.2 ± 11.3 | 42.6 ± 4.4 |
Ceftiofur | 266.8 ± 47.8 | 25.8 ± 3.0 |
Ceftiofur-d3 | 233.2 ± 17.2 | 28.3 ± 3.1 |
Time (min) | Mobile Phase A (%) | Mobile Phase B (%) |
---|---|---|
0–1.0 | 95 | 5 |
1.0–5.0 | 95–60 | 5–40 |
5.0–8.0 | 60–5 | 40–95 |
8.0–10.0 | 5 | 95 |
10.0–10.1 | 5–95 | 95–5 |
10.1–15.0 | 95 | 5 |
Time (min) | Mobile Phase A (%) | Mobile Phase B (%) |
0–4.0 | 91 | 9 |
4.0–4.1 | 91–10 | 9–90 |
4.1–4.6 | 10–0 | 90–100 |
4.6–8.6 | 0 | 100 |
8.6–8.7 | 0–91 | 100–9 |
8.7–12.0 | 91 | 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rutjens, S.; Croubels, S.; Baere, S.D.; Devreese, M. Development and Validation of Liquid Chromatography-Tandem Mass Spectrometry Methods for the Quantification of Cefquinome, Ceftiofur, and Desfuroylceftiofuracetamide in Porcine Feces with Emphasis on Analyte Stability. Molecules 2021, 26, 4598. https://doi.org/10.3390/molecules26154598
Rutjens S, Croubels S, Baere SD, Devreese M. Development and Validation of Liquid Chromatography-Tandem Mass Spectrometry Methods for the Quantification of Cefquinome, Ceftiofur, and Desfuroylceftiofuracetamide in Porcine Feces with Emphasis on Analyte Stability. Molecules. 2021; 26(15):4598. https://doi.org/10.3390/molecules26154598
Chicago/Turabian StyleRutjens, Sofie, Siska Croubels, Siegrid De Baere, and Mathias Devreese. 2021. "Development and Validation of Liquid Chromatography-Tandem Mass Spectrometry Methods for the Quantification of Cefquinome, Ceftiofur, and Desfuroylceftiofuracetamide in Porcine Feces with Emphasis on Analyte Stability" Molecules 26, no. 15: 4598. https://doi.org/10.3390/molecules26154598
APA StyleRutjens, S., Croubels, S., Baere, S. D., & Devreese, M. (2021). Development and Validation of Liquid Chromatography-Tandem Mass Spectrometry Methods for the Quantification of Cefquinome, Ceftiofur, and Desfuroylceftiofuracetamide in Porcine Feces with Emphasis on Analyte Stability. Molecules, 26(15), 4598. https://doi.org/10.3390/molecules26154598