Enantioselectivity Effects in Clinical Metabolomics and Lipidomics
Abstract
:1. Introduction
2. Chiral Metabolites and Lipids Separation by Liquid Chromatography
2.1. Amino Acids
2.2. Hydroxycarboxylic Acids
2.3. Lipids
3. Chiral Metabolites Separation by Capillary Electrophoresis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wishart, D.S. Emerging applications of metabolomics in drug discovery and precision medicine. Nat. Rev. Drug Discov. 2016, 15, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, C.; Han, X. Tutorial on lipidomics. Anal. Chim. Acta 2019, 1061, 28–41. [Google Scholar] [CrossRef] [PubMed]
- Yeung, P.K. Metabolomics and biomarkers for drug discovery. Metabolites 2018, 8, 11. [Google Scholar] [CrossRef] [Green Version]
- Kohler, I.; Hankemeier, T.; van der Graaf, P.H.; Knibbe, C.A.J.; van Hasselt, J.G.C. Integrating clinical metabolomics-based biomarker discovery and clinical pharmacology to enable precision medicine. Eur. J. Pharm. Sci. 2017, 109, S15–S21. [Google Scholar] [CrossRef]
- Lee, S.H.; Williams, M.V.; Blair, I.A. Targeted chiral lipidomics analysis. Prostaglandins Other Lipid Mediat. 2005, 77, 141–157. [Google Scholar] [CrossRef]
- Fahy, E.; Cotter, D.; Sud, M.; Subramaniam, S. Lipid classification, structures and tools. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2011, 1811, 637–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, L.D.; Souza, A.L.; Gerszten, R.E.; Clish, C.B. Targeted metabolomics. Curr. Protoc. Mol. Biol. 2012, 98, 30–32. [Google Scholar] [CrossRef]
- Holmes, E.; Wilson, I.D.; Nicholson, J.K. Metabolic Phenotyping in Health and Disease. Cell 2008, 134, 714–717. [Google Scholar] [CrossRef] [Green Version]
- Lamichhane, S.; Sen, P.; Alves, M.A.; Ribeiro, H.C.; Raunioniemi, P.; Hyötyläinen, T.; Orešič, M. Linking gut microbiome and lipid metabolism: Moving beyond associations. Metabolites 2021, 11, 55. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Li, B.; Lam, S.M.; Shui, G. Integration of lipidomics and metabolomics for in-depth understanding of cellular mechanism and disease progression. J. Genet. Genom. 2020, 47, 69–83. [Google Scholar] [CrossRef] [PubMed]
- Stefan-van Staden, R.-I.; Ilie-Mihai, R.-M.; Magerusan, L.; Coros, M.; Pruneanu, S. Enantioanalysis of glutamine—A key factor in establishing the metabolomics process in gastric cancer. Anal. Bioanal. Chem. 2020, 412, 3199–3207. [Google Scholar] [CrossRef]
- Hesaka, A.; Yasuda, K.; Sakai, S.; Yonishi, H.; Namba-Hamano, T.; Takahashi, A.; Mizui, M.; Hamase, K.; Matsui, R.; Mita, M.; et al. Dynamics of d-serine reflected the recovery course of a patient with rapidly progressive glomerulonephritis. CEN Case Rep. 2019, 8, 297–300. [Google Scholar] [CrossRef] [Green Version]
- Kimura, T.; Hamase, K.; Miyoshi, Y.; Yamamoto, R.; Yasuda, K.; Mita, M.; Rakugi, H.; Hayashi, T.; Isaka, Y. Chiral amino acid metabolomics for novel biomarker screening in the prognosis of chronic kidney disease. Sci. Rep. 2016, 6, 26137. [Google Scholar] [CrossRef] [PubMed]
- Weatherly, C.A.; Du, S.; Parpia, C.; Santos, P.T.; Hartman, A.L.; Armstrong, D.W. d-Amino Acid Levels in Perfused Mouse Brain Tissue and Blood: A Comparative Study. ACS Chem. Neurosci. 2017, 8, 1251–1261. [Google Scholar] [CrossRef] [PubMed]
- Mast, D.H.; Checco, J.W.; Sweedler, J.V. Advancing d-amino acid-containing peptide discovery in the metazoan. Biochim. Biophys. Acta-Proteins Proteom. 2021, 1869, 140553. [Google Scholar] [CrossRef] [PubMed]
- Moaddel, R.; Luckenbaugh, D.A.; Xie, Y.; Villaseñor, A.; Brutsche, N.E.; Machado-Vieira, R.; Ramamoorthy, A.; Lorenzo, M.P.; Garcia, A.; Bernier, M.; et al. d-serine plasma concentration is a potential biomarker of (R, S)-ketamine antidepressant response in subjects with treatment-resistant depression. Psychopharmacology 2015, 232, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Ayon, N.J. Features, roles and chiral analyses of proteinogenic amino acids. AIMS Mol. Sci. 2020, 7, 229–268. [Google Scholar] [CrossRef]
- Ilisz, I.; Aranyi, A.; Pataj, Z.; Péter, A. Recent advances in the direct and indirect liquid chromatographic enantioseparation of amino acids and related compounds: A review. J. Pharm. Biomed. Anal. 2012, 69, 28–41. [Google Scholar] [CrossRef]
- Xie, Y.; Alexander, G.M.; Schwartzman, R.J.; Singh, N.; Torjman, M.C.; Goldberg, M.E.; Wainer, I.W.; Moaddel, R. Development and validation of a sensitive LC-MS/MS method for the determination of d-serine in human plasma. J. Pharm. Biomed. Anal. 2014, 89, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilisz, I.; Péter, A.; Lindner, W. State-of-the-art enantioseparations of natural and unnatural amino acids by high-performance liquid chromatography. TrAC Trends Anal. Chem. 2016, 81, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Woiwode, U.; Neubauer, S.; Lindner, W.; Buckenmaier, S.; Lämmerhofer, M. Enantioselective multiple heartcut two-dimensional ultra-high-performance liquid chromatography method with a Coreshell chiral stationary phase in the second dimension for analysis of all proteinogenic amino acids in a single run. J. Chromatogr. A 2018, 1562, 69–77. [Google Scholar] [CrossRef]
- Shen, K.; Wang, L.; He, Q.; Jin, Z.; Chen, W.; Sun, C.; Pan, Y. Sensitive Bromine-Labeled Probe d-BPBr for Simultaneous Identification and Quantification of Chiral Amino Acids and Amino-Containing Metabolites Profiling in Human Biofluid by HPLC/MS. Anal. Chem. 2020, 92, 1763–1769. [Google Scholar] [CrossRef]
- Horak, J.; Lämmerhofer, M. Stereoselective separation of underivatized and 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate derivatized amino acids using zwitterionic quinine and quinidine type stationary phases by liquid chromatography–High resolution mass spectrometry. J. Chromatogr. A 2019, 1596, 69–78. [Google Scholar] [CrossRef]
- Zhang, T.; Holder, E.; Franco, P.; Lindner, W. Method development and optimization on cinchona and chiral sulfonic acid-based zwitterionic stationary phases for enantiomer separations of free amino acids by high-performance liquid chromatography. J. Chromatogr. A 2014, 1363, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Xie, M.; Han, J.; Yuan, D.; Yang, T.; Xie, Y. Development and validation of a rapid, selective, and sensitive LC–MS/MS method for simultaneous determination of d- and l-amino acids in human serum: Application to the study of hepatocellular carcinoma. Anal. Bioanal. Chem. 2018, 410, 2517–2531. [Google Scholar] [CrossRef] [PubMed]
- Horak, J.; Lämmerhofer, M. Derivatize, Racemize, and Analyze—An Easy and Simple Procedure for Chiral Amino Acid Standard Preparation for Enantioselective Metabolomics. Anal. Chem. 2019, 91, 7679–7689. [Google Scholar] [CrossRef] [PubMed]
- Kimura, R.; Tsujimura, H.; Tsuchiya, M.; Soga, S.; Ota, N.; Tanaka, A.; Kim, H. Development of a cognitive function marker based on d-amino acid proportions using new chiral tandem LC-MS/MS systems. Sci. Rep. 2020, 10, 804. [Google Scholar] [CrossRef] [Green Version]
- Stoll, D.R.; Carr, P.W. Two-Dimensional Liquid Chromatography: A State of the Art Tutorial. Anal. Chem. 2017, 89, 519–531. [Google Scholar] [CrossRef] [PubMed]
- Furusho, A.; Koga, R.; Akita, T.; Miyoshi, Y.; Mita, M.; Hamase, K. Development of a Highly-Sensitive Two-Dimensional HPLC System with Narrowbore Reversed-Phase and Microbore Enantioselective Columns and Application to the Chiral Amino Acid Analysis of the Mammalian Brain. Chromatography 2018, 39, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Barhate, C.L.; Regalado, E.L.; Contrella, N.D.; Lee, J.; Jo, J.; Makarov, A.A.; Armstrong, D.W.; Welch, C.J. Ultrafast Chiral Chromatography as the Second Dimension in Two-Dimensional Liquid Chromatography Experiments. Anal. Chem. 2017, 89, 3545–3553. [Google Scholar] [CrossRef]
- Cassiano, N.; Barreiro, J.; Oliveira, R.; Cass, Q. Direct bioanalytical sample injection with 2D LC-MS. Bioanalysis 2012, 4, 2737–2756. [Google Scholar] [CrossRef] [PubMed]
- Pirok, B.W.J.; Stoll, D.R.; Schoenmakers, P.J. Recent Developments in Two-Dimensional Liquid Chromatography: Fundamental Improvements for Practical Applications. Anal. Chem. 2019, 91, 240–263. [Google Scholar] [CrossRef] [Green Version]
- Woiwode, U.; Reischl, R.J.; Buckenmaier, S.; Lindner, W.; Lämmerhofer, M. Imaging Peptide and Protein Chirality via Amino Acid Analysis by Chiral × Chiral Two-Dimensional Correlation Liquid Chromatography. Anal. Chem. 2018, 90, 7963–7971. [Google Scholar] [CrossRef]
- Furusho, A.; Koga, R.; Akita, T.; Mita, M.; Kimura, T.; Hamase, K. Three-Dimensional High-Performance Liquid Chromatographic Determination of Asn, Ser, Ala, and Pro Enantiomers in the Plasma of Patients with Chronic Kidney Disease. Anal. Chem. 2019, 91, 11569–11575. [Google Scholar] [CrossRef]
- Kranendijk, M.; Struys, E.A.; Salomons, G.S.; Van der Knaap, M.S.; Jakobs, C. Progress in understanding 2-hydroxyglutaric acidurias. J. Inherit. Metab. Dis. 2012, 35, 571–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calderón, C.; Santi, C.; Lämmerhofer, M. Chiral separation of disease biomarkers with 2-hydroxycarboxylic acid structure. J. Sep. Sci. 2018, 41, 1224–1231. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.Y.; Xiong, J.; Wang, F.; Yuan, B.F.; Feng, Y.Q. Chiral derivatization coupled with liquid chromatography/mass spectrometry for determining ketone metabolites of hydroxybutyrate enantiomers. Chin. Chem. Lett. 2018, 29, 115–118. [Google Scholar] [CrossRef]
- Struys, E.A. 2-Hydroxyglutarate is not a metabolite; d-2-hydroxyglutarate and l-2-hydroxyglutarate are! Proc. Natl. Acad. Sci. USA 2013, 110, E4939. [Google Scholar] [CrossRef] [Green Version]
- Pandey, R.; Collins, M.; Lu, X.; Sweeney, S.R.; Chiou, J.; Lodi, A.; Tiziani, S. Novel Strategy for Untargeted Chiral Metabolomics using Liquid Chromatography-High Resolution Tandem Mass Spectrometry. Anal. Chem. 2021, 93, 5805–5814. [Google Scholar] [CrossRef]
- Ye, D.; Guan, K.L.; Xiong, Y. Metabolism, Activity, and Targeting of d- and l-2-Hydroxyglutarates. Trends Cancer 2018, 4, 151–165. [Google Scholar] [CrossRef] [Green Version]
- Strain, S.K.; Groves, M.D.; Olino, K.L.; Emmett, M.R. Measurement of 2-hydroxyglutarate enantiomers in serum by chiral gas chromatography-tandem mass spectrometry and its application as a biomarker for IDH mutant gliomas. Clin. Mass Spectrom. 2020, 15, 16–24. [Google Scholar] [CrossRef]
- Norton, D.; Crow, B.; Bishop, M.; Kovalcik, K.; George, J.; Bralley, J.A. High performance liquid chromatography-tandem mass spectrometry (HPLC/MS/MS) assay for chiral separation of lactic acid enantiomers in urine using a teicoplanin based stationary phase. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 850, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Karongo, R.; Jiao, J.; Gross, H.; Lämmerhofer, M. Direct enantioselective gradient reversed-phase ultra-high performance liquid chromatography tandem mass spectrometry method for 3-hydroxy alkanoic acids in lipopeptides on an immobilized 1.6 μm amylose-based chiral stationary phase. J. Sep. Sci. 2021, 44, 1875–1883. [Google Scholar] [CrossRef] [PubMed]
- Avela, H.F.; Sirén, H. Advances in lipidomics. Clin. Chim. Acta 2020, 510, 123–141. [Google Scholar] [CrossRef] [PubMed]
- Eghiaian, F. Lipid Chirality Revisited: A Change in Lipid Configuration Transforms Membrane-Bound Protein Domains. Biophys. J. 2015, 108, 2757–2758. [Google Scholar] [CrossRef] [Green Version]
- Cebo, M.; Fu, X.; Gawaz, M.; Chatterjee, M.; Lämmerhofer, M. Enantioselective ultra-high performance liquid chromatography-tandem mass spectrometry method based on sub-2µm particle polysaccharide column for chiral separation of oxylipins and its application for the analysis of autoxidized fatty acids and platelet releasates. J. Chromatogr. A 2020, 1624, 461206. [Google Scholar] [CrossRef]
- Blum, M.; Dogan, I.; Karber, M.; Rothe, M.; Schunck, W.-H.H. Chiral lipidomics of monoepoxy and monohydroxy metabolites derived from long-chain polyunsaturated fatty acids. J. Lipid Res. 2019, 60, 135–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazaleuskaya, L.L.L.; Salamatipour, A.; Sarantopoulou, D.; Weng, L.; FitzGerald, G.A.G.A.; Blair, I.A.I.A.; Mesaros, C. Analysis of HETEs in human whole blood by chiral UHPLC-ECAPCI/HRMS. J. Lipid Res. 2018, 59, 564–575. [Google Scholar] [CrossRef] [Green Version]
- Gelhaus, S.L.; Clementina Mesaros, A.; Blair, I.A. Cellular lipid extraction for targeted stable isotope dilution liquid chromatography-mass spectrometry analysis. J. Vis. Exp. 2011, 57, 3399. [Google Scholar] [CrossRef]
- Tacconelli, S.; Fullone, R.; Dovizio, M.; Pizzicoli, G.; Marschler, S.; Bruno, A.; Zucchelli, M.; Contursi, A.; Ballerini, P.; Patrignani, P. Pharmacological characterization of the biosynthesis of prostanoids and hydroxyeicosatetraenoic acids in human whole blood and platelets by targeted chiral lipidomics analysis. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2020, 1865, 158804. [Google Scholar] [CrossRef]
- Fujiwara, Y.; Hama, K.; Yokoyama, K. Mass spectrometry in combination with a chiral column and multichannel-MRM allows comprehensive analysis of glycosphingolipid molecular species from mouse brain. Carbohydr. Res. 2020, 490, 107959. [Google Scholar] [CrossRef]
- Schneider, C.; Boeglin, W.E.; Brash, A.R. Enantiomeric separation of hydroxy eicosanoids by chiral column chromatography: Effect of the alcohol modifier. Anal. Biochem. 2000, 287, 186–189. [Google Scholar] [CrossRef]
- Oliw, E.H.; Wennman, A.; Hoffmann, I.; Garscha, U.; Hamberg, M.; Jernerén, F. Stereoselective oxidation of regioisomeric octadecenoic acids by fatty acid dioxygenases. J. Lipid Res. 2011, 52, 1995–2004. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Blair, I.A. Targeted chiral lipidomics analysis of bioactive eicosanoid lipids in cellular systems. BMB Rep. 2009, 42, 401–410. [Google Scholar] [CrossRef]
- Mesaros, C.; Blair, I.A.I.A. Targeted chiral analysis of bioactive arachidonic acid metabolites using liquid-chromatography-mass spectrometry. Metabolites 2012, 2, 337–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ianni, F.; Saluti, G.; Galarini, R.; Fiorito, S.; Sardella, R.; Natalini, B. Enantioselective high-performance liquid chromatography analysis of oxygenated polyunsaturated fatty acids. Free Radic. Biol. Med. 2019, 144, 35–54. [Google Scholar] [CrossRef] [PubMed]
- Navas-Iglesias, N.; Carrasco-Pancorbo, A.; Cuadros-Rodríguez, L. From lipids analysis towards lipidomics, a new challenge for the analytical chemistry of the 21st century. Part II: Analytical lipidomics. TrAC-Trends Anal. Chem. 2009, 28, 393–403. [Google Scholar] [CrossRef]
- Voeten, R.L.C.; Ventouri, I.K.; Haselberg, R.; Somsen, G.W. Capillary Electrophoresis: Trends and Recent Advances. Anal. Chem. 2018, 90, 1464–1481. [Google Scholar] [CrossRef] [Green Version]
- Bernardo-Bermejo, S.; Sánchez-López, E.; Castro-Puyana, M.; Marina, M.L. Chiral capillary electrophoresis. TrAC-Trends Anal. Chem. 2020, 124, 115807. [Google Scholar] [CrossRef]
- Fanali, S. Identification of chiral drug isomers by capillary electrophoresis. J. Chromatogr. A 1996, 735, 77–121. [Google Scholar] [CrossRef]
- Fanali, S. Chiral separations by CE employing CDs. Electrophoresis 2009, 30, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Chankvetadze, B. Separation of enantiomers with charged chiral selectors in CE. Electrophoresis 2009, 30, 211–221. [Google Scholar] [CrossRef]
- Simó, C.; García-Cañas, V.; Cifuentes, A. Chiral CE-MS. Electrophoresis 2010, 31, 1442–1456. [Google Scholar] [CrossRef] [Green Version]
- Gassmann, E.; Kuo, J.E.; Zare, R.N. Electrokinetic separation of chiral compounds. Science 1985, 230, 813–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scriba, G.K.E. Cyclodextrins in capillary electrophoresis enantioseparations—Recent developments and applications. J. Sep. Sci. 2008, 31, 1991–2011. [Google Scholar] [CrossRef] [PubMed]
- Hancu, G.; Cârje, A.; Iuga, I.; Fülöp, I.; Szabó, Z.I. Cyclodextrine screening for the chiral separation of carvedilol by capillary electrophoresis. Iran. J. Pharm. Res. 2015, 14, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.J.; Huang, M.X.; Zhang, Y.P.; Armstrong, D.W.; Breitbach, Z.S.; Ryoo, J.J. Use of Sulfated Cyclofructan 6 and Sulfated Cyclodextrins for the Chiral Separation of Four Basic Pharmaceuticals by Capillary Electrophoresis. Chirality 2013, 25, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Prokhorova, A.F.; Shapovalova, E.N.; Shpigun, O.A. Chiral analysis of pharmaceuticals by capillary electrophoresis using antibiotics as chiral selectors. J. Pharm. Biomed. Anal. 2010, 53, 1170–1179. [Google Scholar] [CrossRef]
- Tano, C.; Son, S.H.; Furukawa, J.I.; Furuike, T.; Sakairi, N. Enantiomeric separation by MEKC using dodecyl thioglycoside surfactants: Importance of an equatorially oriented hydroxy group at C-2 position in separation of dansylated amino acids. Electrophoresis 2009, 30, 2743–2746. [Google Scholar] [CrossRef]
- McKee, J.A.; Green, T.K. Synthesis of 2,3-O-dibenzyl-6-O-sulfobutyl-α and β cyclodextrins: New chiral surfactants for capillary electrophoresis. Tetrahedron Lett. 2015, 56, 4451–4454. [Google Scholar] [CrossRef]
- Millot, M.C. Separation of drug enantiomers by liquid chromatography and capillary electrophoresis, using immobilized proteins as chiral selectors. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2003, 797, 131–159. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Du, Y.; Du, F.; Chen, J.; Yu, T.; Zhang, Q.; Zhang, J.; Du, S.; Feng, Z. Establishment and Evaluation of the Novel Tetramethylammonium-l-Hydroxyproline Chiral Ionic Liquid Synergistic System Based on Clindamycin Phosphate for Enantioseparation by Capillary Electrophoresis. Chirality 2015, 27, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Du, Y.; Chen, J.; Zhang, Q.; Du, S.; Feng, Z. Investigation of the Enantioselectivity of Tetramethylammonium l-hydroxyproline Ionic Liquid as a Novel Chiral Ligand in Ligand-Exchange CE and Ligand-Exchange MEKC. Chirality 2015, 27, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Perera, S.; Na, Y.-C.; Doundoulakis, T.; Ngo, V.J.; Feng, Q.; Breitbach, Z.S.; Lovely, C.J.; Armstrong, D.W. The Enantiomeric Separation of Tetrahydrobenzimidazoles Cyclodextrins- and Cyclofructans. Chirality 2013, 25, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhang, J.; Zhang, X.; Zhao, L.; Li, S. Enantiomeric separation of adrenaline, noradrenaline, and isoprenaline by capillary electrophoresis using streptomycin-modified gold nanoparticles. Microchim. Acta 2018, 185, 227. [Google Scholar] [CrossRef]
- Kalíková, K.; Riesová, M.; Tesařová, E. Recent chiral selectors for separation in HPLC and CE. Cent. Eur. J. Chem. 2012, 10, 450–471. [Google Scholar] [CrossRef]
- Dunn, W.B.; Bailey, N.J.C.; Johnson, H.E. Measuring the metabolome: Current analytical technologies. Analyst 2005, 130, 606–625. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.E.; Vickroy, T.W.; Kennedy, R.T. Rapid determination of aspartate enantiomers in tissue samples by microdialysis coupled on-line with capillary electrophoresis. Anal. Chem. 1999, 71, 2379–2384. [Google Scholar] [CrossRef]
- Ptolemy, A.S.; Britz-McKibbin, P. Sample preconcentration with chemical derivatization in capillary electrophoresis: Capillary as preconcentrator, microreactor and chiral selector for high-throughput metabolite screening. J. Chromatogr. A 2006, 1106, 7–18. [Google Scholar] [CrossRef]
- Ptolemy, A.S.; Britz-McKibbin, P. Single-step analysis of low abundance phosphoamino acids via on-line sample preconcentration with chemical derivatization by capillary electrophoresis. Analyst 2005, 130, 1263–1270. [Google Scholar] [CrossRef]
- Ptolemy, A.S.; Tran, L.; Britz-McKibbin, P. Single-step enantioselective amino acid flux analysis by capillary electrophoresis using on-line sample preconcentration with chemical derivatization. Anal. Biochem. 2006, 354, 192–204. [Google Scholar] [CrossRef] [PubMed]
- Prior, A.; Sánchez-Hernández, L.; Sastre-Toraño, J.; Marina, M.L.; de Jong, G.J.; Somsen, G.W.; Bonvin, G.; Schappler, J.; Rudaz, S.; Bendikov, I.; et al. Indirect Enantioseparation of Amino Acids by CE Using Automated In-Capillary Derivatization with ortho-Phthalaldehyde and N-Acetyl-l-Cysteine. Electrophoresis 2016, 1267, 1013–1022. [Google Scholar] [CrossRef]
- Schell, M.J.; Brady, R.O.; Molliver, M.E.; Snyder, S.H. d-serine as a neuromodulator: Regional and developmental localizations in rat brain glia resemble NMDA receptors. J. Neurosci. 1997, 17, 1604–1615. [Google Scholar] [CrossRef] [Green Version]
- Fisher, G.H.; Petrucelli, L.; Gardner, C.; Emory, C.; Frey, W.H.; Amaducci, L.; Sorbi, S.; Sorrentino, G.; Borghi, M.; D’aniello, A. Free d-amino acids in human cerebrospinal fluid of alzheimer disease, multiple sclerosis, and healthy control subjects. Mol. Chem. Neuropathol. 1994, 23, 115–124. [Google Scholar] [CrossRef]
- D’Aniello, A.; Lee, J.M.; Petrucelli, L.; Di Fiore, M.M. Regional decreases of free d-aspartate levels in Alzheimer’s disease. Neurosci. Lett. 1998, 250, 131–134. [Google Scholar] [CrossRef]
- Bendikov, I.; Nadri, C.; Amar, S.; Panizzutti, R.; De Miranda, J.; Wolosker, H.; Agam, G. A CSF and postmortem brain study of d-serine metabolic parameters in schizophrenia. Schizophr. Res. 2007, 90, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Maessen, D.E.; Scheijen, J.L.J.M.; Gaens, K.H.; van Greevenbroek, M.M.; van der Kallen, C.J.; Stehouwer, C.D.A.; Schalkwijk, C.G. Higher Plasma Concentrations of the Methylglyoxal Metabolite d-lactate are Independently Associated with Insulin Resistance: The CODAM Study. J. Diabetes Metab. 2014, 5, 457–458. [Google Scholar] [CrossRef] [Green Version]
- Ewaschuk, J.B.; Naylor, J.M.; Zello, G.A. d-lactate in human and ruminant metabolism. J. Nutr. 2005, 135, 1619–1625. [Google Scholar] [CrossRef]
- Murray, M.J.; Gonze, M.D.; Nowak, L.R.; Cobb, C.F. Serum D(−)-lactate levels as an aid to diagnosing acute intestinal ischemia. Am. J. Surg. 1994, 167, 575–578. [Google Scholar] [CrossRef]
- Fukushima, T.; Iizuka, H.; Yokota, A.; Suzuki, T.; Ohno, C.; Kono, Y.; Nishikiori, M.; Seki, A.; Ichiba, H.; Watanabe, Y.; et al. Quantitative analyses of schizophrenia-associated metabolites in serum: Serum d-lactate levels are negatively correlated with gamma-glutamylcysteine in medicated schizophrenia patients. PLoS ONE 2014, 9, e101652. [Google Scholar] [CrossRef]
- Huang, T.C.; Chen, S.M.; Li, Y.C.; Lee, J.A. Urinary d-lactate levels reflect renal function in aristolochic acid-induced nephropathy in mice. Biomed. Chromatogr. 2013, 27, 1100–1106. [Google Scholar] [CrossRef] [PubMed]
- Çağlayan, F.; Çakmak, M.; Çağlayan, O.; Çavuşoğlu, T. Plasma d-Lactate Levels in Diagnosis of Appendicitis. J. Investig. Surg. 2009, 16, 233–237. [Google Scholar] [CrossRef]
- Saavedra, L.; Barbas, C. Optimization of the separation lactic acid enantiomers in body fluids by capillary electrophoresis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2002, 766, 235–242. [Google Scholar] [CrossRef]
- Wanders, R.J.A. Peroxisomal disorders: Clinical, biochemical, and molecular aspects. Neurochem. Res. 1999, 24, 565–580. [Google Scholar] [CrossRef]
- Fujita, T.; Amuro, Y.; Hada, T.; Higashino, K. Plasma levels of pipecolic acid, both l- and d-enantiomers, in patients with chronic liver diseases, especially hepatic encephalopathy. Clin. Chim. Acta 1999, 287, 99–109. [Google Scholar] [CrossRef]
- Hadjistasi, C.A.; Stavrou, I.J.; Staden, R.-I.S.-V.; Aboul-Enein, H.Y.; Kapnissi-Christodoulou, C.P. Chiral Separation of the Clinically Important Compounds Fucose and Pipecolic Acid Using CE: Determination of the Most Effective Chiral Selector. Chirality 2013, 25, 556–560. [Google Scholar] [CrossRef]
- Bonvin, G.; Schappler, J.; Rudaz, S. Capillary electrophoresis–electrospray ionization-mass spectrometry interfaces: Fundamental concepts and technical developments. J. Chromatogr. A 2012, 1267, 17–31. [Google Scholar] [CrossRef]
- Prior, A.; Sánchez-Hernández, L.; Sastre-Toraño, J.; Marina, M.L.; de Jong, G.J.; Somsen, G.W. Enantioselective analysis of proteinogenic amino acids in cerebrospinal fluid by capillary electrophoresis-mass spectrometry. Electrophoresis 2016, 37, 2410–2419. [Google Scholar] [CrossRef]
- Prior, A.; Moldovan, R.C.; Crommen, J.; Servais, A.C.; Fillet, M.; de Jong, G.J.; Somsen, G.W. Enantioselective capillary electrophoresis-mass spectrometry of amino acids in cerebrospinal fluid using a chiral derivatizing agent and volatile surfactant. Anal. Chim. Acta 2016, 940, 150–158. [Google Scholar] [CrossRef]
- Moldovan, R.C.; Bodoki, E.; Kacsó, T.; Servais, A.; Crommen, J.; Opren, R.; Fillet, M. A micellar electrokinetic chromatography-mass spectrometry approach using in-capillary diastereomeric derivatization for fully automatized chiral analysis of amino acids. J. Chromatogr. A 2016, 1467, 400–408. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, R.V.; Simionato, A.V.C.; Cass, Q.B. Enantioselectivity Effects in Clinical Metabolomics and Lipidomics. Molecules 2021, 26, 5231. https://doi.org/10.3390/molecules26175231
Oliveira RV, Simionato AVC, Cass QB. Enantioselectivity Effects in Clinical Metabolomics and Lipidomics. Molecules. 2021; 26(17):5231. https://doi.org/10.3390/molecules26175231
Chicago/Turabian StyleOliveira, Regina V., Ana Valéria C. Simionato, and Quezia B. Cass. 2021. "Enantioselectivity Effects in Clinical Metabolomics and Lipidomics" Molecules 26, no. 17: 5231. https://doi.org/10.3390/molecules26175231
APA StyleOliveira, R. V., Simionato, A. V. C., & Cass, Q. B. (2021). Enantioselectivity Effects in Clinical Metabolomics and Lipidomics. Molecules, 26(17), 5231. https://doi.org/10.3390/molecules26175231