Microencapsulated and Lyophilized Propolis Co-Product Extract as Antioxidant Synthetic Replacer on Traditional Brazilian Starch Biscuit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Samples
2.3. Preparation of Propolis Co-Product Extracts
2.4. Lyophilized Propolis Co-Product (LFCP)
2.5. Preparation of Microencapsulated Propolis Co-Product (MECP)
2.6. Emulsion
2.7. Drying Conditions
2.8. Microencapsulation Efficiency Analysis (ME)
2.9. Scanning Electron Microscope (SEM)
2.10. Water Activity Analysis
2.11. Total Phenolic Compounds
2.12. Antioxidant Activity Analysis
2.12.1. DPPH Radical Scavenging Assay
2.12.2. ABTS Radical Scavenging Assay
2.12.3. Ferric Reducing Antioxidant Power (FRAP)
2.13. Brazilian Starch Biscuit Elaboration
2.14. TBARS Assay
2.15. Fatty Acid Esters by Gas Chromatography
2.16. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Lyophilized (LFCP) and Microencapsulated Co-Product Propolis (MECP)
3.2. Lipid Oxidation and Fatty Acid Profile of Starch Biscuits
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Reis, A.; Diedrich, C.; de Moura, C.; Pereira, D.; Almeida, J.F.; da Silva, L.D.; Plata-Oviedo, M.S.V.; Tavares, R.A.W.; Carpes, S.T. Physico-chemical characteristics of microencapsulated propolis co-product extract and its effect on storage stability of burger meat during storage at −15 °C. LWT 2017, 76, 306–313. [Google Scholar] [CrossRef]
- Bankova, V.; Popova, M.; Trusheva, B. The phytochemistry of the honeybee. Phytochemistry 2018, 155, 1–11. [Google Scholar] [CrossRef] [PubMed]
- de Francisco, L.; Pinto, D.; Rosseto, H.; Toledo, L.; dos Santos, R.S.; Tobaldini-Valério, F.; Svidzinski, T.; Bruschi, M.; Sarmento, B.; Oliveira, B.; et al. Evaluation of radical scavenging activity, intestinal cell viability and antifungal activity of Brazilian propolis by-product. Food Res. Int. 2018, 105, 537–547. [Google Scholar] [CrossRef] [PubMed]
- Jansen-Alves, C.; Fernandes, K.F.; Crizel-Cardozo, M.M.; Krumreich, F.D.; Borges, C.D.; Zambiazi, R.C. Microencapsulation of Propolis in Protein Matrix Using Spray Drying for Application in Food Systems. Food Bioprocess Technol. 2018, 11, 1422–1436. [Google Scholar] [CrossRef]
- Shehata, M.G.; Ahmad, F.T.; Badr, A.N.; Masry, S.H.; El-Sohaimy, S.A. Chemical analysis, antioxidant, cytotoxic and antimicrobial properties of propolis from different geographic regions. Ann. Agric. Sci. 2020, 65, 209–217. [Google Scholar] [CrossRef]
- Chang, X.; Feng, W.; He, L.; Chen, X.; Liang, L. Fabrication and characterisation of whey protein isolate–propolis–alginate complex particles for stabilising α-tocopherol-contained emulsions. Int. Dairy J. 2020, 109, 104756. [Google Scholar] [CrossRef]
- Jansen-Alves, C.; Maia, D.S.; Krumreich, F.D.; Crizel-Cardoso, M.M.; Fioravante, J.B.; da Silva, W.P.; Borges, C.D.; Zambiazi, R.C. Propolis microparticles produced with pea protein: Characterization and evaluation of antioxidant and antimicrobial activities. Food Hydrocoll. 2018, 87, 703–711. [Google Scholar] [CrossRef]
- Pobiega, K.; Kraśniewska, K.; Gniewosz, M. Application of propolis in antimicrobial and antioxidative protection of food quality—A review. Trends Food Sci. Technol. 2018, 83, 53–62. [Google Scholar] [CrossRef]
- Heimbach, N.S.; Ítavo, C.C.B.F.; Ítavo, L.C.V.; Franco, G.L.; Leal, C.R.B.; Leal, E.S.; Silva, P.C.G.; Rezende, L.C.; Silva, J.A. Resíduo da extração de própolis marrom na dieta de ruminantes: Digestibilidade e produção de gás in vitro. Arch. De Zootec. 2014, 63, 259–267. [Google Scholar] [CrossRef] [Green Version]
- Abrahão, F.R.; Rocha, L.C.R.; Santos, T.; Carmo, E.L.D.; Pereira, L.A.S.; Borges, S.; Pereira, R.G.F.A.; Botrel, D.A. Microencapsulation of bioactive compounds from espresso spent coffee by spray drying. LWT 2018, 103, 116–124. [Google Scholar] [CrossRef]
- Ozkan, G.; Franco, P.; De Marco, I.; Xiao, J.; Capanoglu, E. A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chem. 2018. [Google Scholar] [CrossRef] [PubMed]
- Spinelli, S.; Conte, A.; Lecce, L.; Incoronato, A.L.; Del Nobile, M.A. Microencapsulated Propolis to Enhance the Antioxidant Properties of Fresh Fish Burgers. J. Food Process. Eng. 2015, 38, 527–535. [Google Scholar] [CrossRef]
- Bustamante, A.; Hinojosa, A.; Robert, P.; Escalona, V. Extraction and microencapsulation of bioactive compounds from pomegranate (Punica granatum var. Wonderful) residues. Int. J. Food Sci. Technol. 2017, 52, 1452–1462. [Google Scholar] [CrossRef]
- Dos Santos, S.S.; Rodrigues, L.M.; Da Costa, S.C.; Bergamasco, R.D.C.; Madrona, G.S. Microencapsulation of Bioactive Compounds from Blackberry Pomace (Rubus fruticosus) by Spray Drying Technique. Int. J. Food Eng. 2017, 13. [Google Scholar] [CrossRef]
- Pattnaik, M.; Pandey, P.; Martin, G.; Mishra, H.; Ashokkumar, M. Innovative Technologies for Extraction and Microencapsulation of Bioactives from Plant-Based Food Waste and Their Applications in Functional Food Development. Foods 2021, 10, 279. [Google Scholar] [CrossRef]
- Hosseini, H.; Jafari, S.M. Introducing nano/microencapsulated bioactive ingredients for extending the shelf-life of food products. Adv. Colloid Interface Sci. 2020, 282, 102210. [Google Scholar] [CrossRef]
- Busch, V.; Pereyra-Gonzalez, A.; Šegatin, N.; Santagapita, P.; Ulrih, N.P.; Buera, P. Propolis encapsulation by spray drying: Characterization and stability. LWT 2017, 75, 227–235. [Google Scholar] [CrossRef]
- Šturm, L.; Črnivec, I.G.O.; Istenič, K.; Ota, A.; Megušar, P.; Slukan, A.; Humar, M.; Levic, S.; Nedović, V.; Kopinč, R.; et al. Encapsulation of non-dewaxed propolis by freeze-drying and spray-drying using gum Arabic, maltodextrin and inulin as coating materials. Food Bioprod. Process. 2019, 116, 196–211. [Google Scholar] [CrossRef]
- Jansen-Alves, C.; Krumreich, F.D.; Zandoná, G.P.; Gularte, M.A.; Borges, C.D.; Zambiazi, R.C. Production of Propolis Extract Microparticles with Concentrated Pea Protein for Application in Food. Food Bioprocess Technol. 2019, 12, 729–740. [Google Scholar] [CrossRef]
- Baysan, U.; Elmas, F.; Koç, M. The effect of spray drying conditions on physicochemical properties of encapsulated propolis powder. J. Food Process. Eng. 2019, 42. [Google Scholar] [CrossRef]
- Maroof, K.; Lee, R.F.S.; Siow, L.F.; Gan, S.H. Microencapsulation of propolis by spray drying: A review. Dry. Technol. 2020, 1–20. [Google Scholar] [CrossRef]
- Baysan, U.; Bastıoğlu, A.Z.; Coşkun, N.; Takma, D.K.; Balçık, E..; Sahin-Nadeem, H.; Koç, M. The effect of coating material combination and encapsulation method on propolis powder properties. Powder Technol. 2021, 384, 332–341. [Google Scholar] [CrossRef]
- Catchpole, O.; Mitchell, K.; Bloor, S.; Davis, P.; Suddes, A. Anti-gastrointestinal cancer activity of cyclodextrin-encapsulated propolis. J. Funct. Foods 2018, 41, 1–8. [Google Scholar] [CrossRef]
- Irigoiti, Y.; Navarro, A.; Yamul, D.; Libonatti, C.; Tabera, A.; Basualdo, M. The use of propolis as a functional food ingredient: A review. Trends Food Sci. Technol. 2021, 115, 297–306. [Google Scholar] [CrossRef]
- Shahidi, F.; Zhong, Y. Lipid oxidation and improving the oxidative stability. Chem. Soc. Rev. 2010, 39, 4067–4079. [Google Scholar] [CrossRef]
- Nooshkam, M.; Varidi, M.; Bashash, M. The Maillard reaction products as food-born antioxidant and antibrowning agents in model and real food systems. Food Chem. 2018, 275, 644–660. [Google Scholar] [CrossRef]
- Carpes, S.T.; Pereira, D.; De Moura, C.; Dos Reis, A.S.; Da Silva, L.D.; Oldoni, T.L.C.; Almeida, J.F.; Plata-Oviedo, M.V.S. Lyophilized and microencapsulated extracts of grape pomace from winemaking industry to prevent lipid oxidation in chicken pâté. Braz. J. Food Technol. 2020, 23. [Google Scholar] [CrossRef]
- ITAL. Métodos Físico-Químicos para Análise de Alimentos; Intituto Adolfo Lutz: São Paulo, Brazil, 2008; 1020p. Available online: http://www.ial.sp.gov.br/ial/publicacoes/livros/metodos-fisico-quimicos-para-analise-de-alimentos (accessed on 28 July 2021).
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 152–178. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free. Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant Activity of Dietary Polyphenols As Determined by a Modified Ferric Reducing/Antioxidant Power Assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef] [Green Version]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visentainer, J.V. Aspectos analíticos da resposta do detector de ionização em chama para ésteres de ácidos graxos em biodiesel e alimentos. Química Nova 2012, 35, 274–279. [Google Scholar] [CrossRef] [Green Version]
- Aued-Pimentel, S.; Zenebon, O. Lipídios totais e ácidos graxos na informação nutricional do rótulo dos alimentos embalados: Aspectos sobre legislação e quantificação. Rev. Inst. Adolfo Lutz 2009, 167–181. Available online: http://docs.bvsalud.org/biblioref/ses-sp/2009/ses-16208/ses-16208-1280.pdf.
- Aued-Pimentel, S.; Kus, M.M.M.; Kumagai, E.E.; Ruvieri, V.; Zenebon, O. Comparison of gas chromatographic and gravimetric methods for quantization of total fat and fatty acids in foodstuffs. Química Nova 2010, 33, 76–84. [Google Scholar] [CrossRef] [Green Version]
- Andrade, J.K.S.; Denadai, M.; Andrade, G.R.S.; Nascimento, C.D.C.; Barbosa, P.F.; Jesus, M.S.; Narain, N. Development and characterization of microencapsules containing spray dried powder obtained from Brazilian brown, green and red propolis. Food Res. Int. 2018, 109, 278–287. [Google Scholar] [CrossRef]
- Cottica, S.M.; Sawaya, A.C.H.F.; Eberlin, M.N.; Franco, S.L.; Zeoula, L.M.; Visentainer, J.V. Antioxidant activity and composition of propolis obtained by different methods of extraction. J. Braz. Chem. Soc. 2011, 22, 929–935. [Google Scholar] [CrossRef]
- Nesterenko, A.; Alric, I.; Silvestre, F.; Durrieu, V. Comparative study of encapsulation of vitamins with native and modified soy protein. Food Hydrocoll. 2014, 38, 172–179. [Google Scholar] [CrossRef] [Green Version]
- da Silva, F.C.; da Fonseca, C.R.; de Alencar, S.M.; Thomazini, M.; Balieiro, J.C.D.C.; Pittia, P.; Favaro-Trindade, C.S. Assessment of production efficiency, physicochemical properties and storage stability of spray-dried propolis, a natural food additive, using gum Arabic and OSA starch-based carrier systems. Food Bioprod. Process. 2013, 91, 28–36. [Google Scholar] [CrossRef]
- Rocha, G.A.; Fávaro-Trindade, C.S.; Grosso, C.R.F. Microencapsulation of lycopene by spray drying: Characterization, stability and application of microcapsules. Food Bioprod. Process. 2011, 90, 37–42. [Google Scholar] [CrossRef]
- Andrade, J.K.S.; Denadai, M.; de Oliveira, C.S.; Nunes, M.L.; Narain, N. Evaluation of bioactive compounds potential and antioxidant activity of brown, green and red propolis from Brazilian northeast region. Food Res. Int. 2017, 101, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Kumazawa, S.; Hamasaka, T.; Nakayama, T. Antioxidant activity of propolis of various geographic origins. Food Chem. 2004, 84, 329–339. [Google Scholar] [CrossRef]
- Calegari, M.A.; Prasniewski, A.; DA Silva, C.; Sado, R.Y.; Maia, F.M.; Tonial, L.M.; Oldoni, T.L. Propolis from Southwest of Parana produced by selected bees: Influence of seasonality and food supplementation on antioxidant activity and phenolic profile. An. Da Acad. Bras. De Ciências 2017, 89, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Tiveron, A.P.; Rosalen, P.L.; Franchin, M.; Lacerda, R.; Bueno-Silva, B.; Benso, B.; Denny, C.; Ikegaki, M.; De Alencar, S.M. Chemical Characterization and Antioxidant, Antimicrobial, and Anti-Inflammatory Activities of South Brazilian Organic Propolis. PLoS ONE 2016, 11, e0165588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osuna, M.B.; Romero, C.A.; Romero, A.M.; Judis, M.A.; Bertola, N.C. Proximal composition, sensorial properties and effect of ascorbic acid and α-tocopherol on oxidative stability of bread made with whole flours and vegetable oils. LWT 2018, 98, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Bajaj, S.; Urooj, A.; Prabhasankar, P. Antioxidative properties of mint (Mentha spicata L.) and its application in biscuits. Curr. Res. Nutr. Food Sci. J. 2016, 4, 209–216. [Google Scholar] [CrossRef]
- Patrignani, M.; Conforti, P.A.; Lupano, C.E. The role of lipid oxidation on biscuit texture during storage. Int. J. Food Sci. Technol. 2014, 49, 1925–1931. [Google Scholar] [CrossRef]
- Almeida, J.F.; dos Reis, A.S.; Heldt, L.F.S.; Pereira, D.; Bianchin, M.; de Moura, C.; Plata-Oviedo, M.V.; Haminiuk, C.; Ribeiro, I.S.; Luz, C.F.P.; et al. Lyophilized bee pollen extract: A natural antioxidant source to prevent lipid oxidation in refrigerated sausages. LWT 2017, 76, 299–305. [Google Scholar] [CrossRef]
- Bianchin, M.; Pereira, D.; Dos Reis, A.S.; Almeida, J.F.; Da Silva, L.D.; De Moura, C.; Carpes, S.T. Rosemary Essential Oil and Lyophilized Extract as Natural Antioxidant Source to Prevent Lipid Oxidation in Pork Sausage. Adv. J. Food Sci. Technol. 2017, 13, 210–217. [Google Scholar] [CrossRef]
- Bialek, M.; Rutkowska, J.; Bialek, A.; Adamska, A. Oxidative Stability of Lipid Fraction of Cookies Enriched with Chokeberry Polyphenols Extract. Pol. J. Food Nutr. Sci. 2016, 66, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Vargas, F.C.; Gómez, B.; Khaneghah, A.M.; Strozzi, I.; Gavahian, M.; Barba, F.J.; Sobral, P.J.D.A.; Lorenzo, J.M. Assessment of the Suitability of Pitanga Leaf Extract as a Natural Antioxidant for Enhancing Canola Oil Stability: Monitoring Lipid Oxidation Parameters. Eur. J. Lipid Sci. Technol. 2019, 121, 1800447. [Google Scholar] [CrossRef]
- Porto, B.L.S.; Mendes, T.d.O.; Franco, D.F.; Martini, W.d.S.; Bell, M.J.V.; Oliveira, M.A.L. Chemical monitoring of canola, corn, olive, soybean and sunflower oils after thermal treatments at conventional temperatures in domestic stoves. Rev. Do Inst. Adolfo Lutz 2016, 75, 1964–1975. [Google Scholar]
- Dos Santos, V.J.; Biondo, P.B.F.; Visentainer, J.V. Avaliação dos componentes lipídicos e antioxidantes do óleo de canola extraído à frio sob diferentes condições. Braz. Appl. Sci. Rev. 2020, 4, 942–955. [Google Scholar] [CrossRef]
- Flakelar, C.L.; Luckett, D.J.; Howitt, J.; Doran, G.; Prenzler, P. Canola (Brassica napus) oil from Australian cultivars shows promising levels of tocopherols and carotenoids, along with good oxidative stability. J. Food Compos. Anal. 2015, 42, 179–186. [Google Scholar] [CrossRef]
- Boroski, M.; Aguiar, A.C.; Rotta, E.M.; Bonafe, E.G.; Visentainer, J.V.; Souza, N.E.; Valderrama, P. Antioxidant activity of herbs and extracted phenolics from oregano in canola oil. Int. Food Res. J. 2018, 25, 2444–2452. Available online: http://www.ifrj.upm.edu.my/volume-25-2018.h (accessed on 24 September 2021).
Parameters | LFCP | MECP |
---|---|---|
TPC (mg GAE g−1) | 199.78 ± 0.28 | 69.28 ± 0.33 |
DPPH (μmol Trolox g−1) | 496.28 ± 0.00 | 47.02 ± 0.00 * |
ABTS (μmol Trolox g−1) | 5041.81 ± 0.00 | 485.92 ± 0.01 * |
FRAP (μmol Fe2+ g−1) | 3796.28 ± 0.00 | 386.69 ± 0.01 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, R.; Bilibio, D.; Plata-Oviedo, M.S.V.; Pereira, E.A.; Mitterer-Daltoé, M.L.; Perin, E.C.; Carpes, S.T. Microencapsulated and Lyophilized Propolis Co-Product Extract as Antioxidant Synthetic Replacer on Traditional Brazilian Starch Biscuit. Molecules 2021, 26, 6400. https://doi.org/10.3390/molecules26216400
Rodrigues R, Bilibio D, Plata-Oviedo MSV, Pereira EA, Mitterer-Daltoé ML, Perin EC, Carpes ST. Microencapsulated and Lyophilized Propolis Co-Product Extract as Antioxidant Synthetic Replacer on Traditional Brazilian Starch Biscuit. Molecules. 2021; 26(21):6400. https://doi.org/10.3390/molecules26216400
Chicago/Turabian StyleRodrigues, Rodrigo, Denise Bilibio, Manuel S. V. Plata-Oviedo, Edimir A. Pereira, Marina L. Mitterer-Daltoé, Ellen C. Perin, and Solange T. Carpes. 2021. "Microencapsulated and Lyophilized Propolis Co-Product Extract as Antioxidant Synthetic Replacer on Traditional Brazilian Starch Biscuit" Molecules 26, no. 21: 6400. https://doi.org/10.3390/molecules26216400
APA StyleRodrigues, R., Bilibio, D., Plata-Oviedo, M. S. V., Pereira, E. A., Mitterer-Daltoé, M. L., Perin, E. C., & Carpes, S. T. (2021). Microencapsulated and Lyophilized Propolis Co-Product Extract as Antioxidant Synthetic Replacer on Traditional Brazilian Starch Biscuit. Molecules, 26(21), 6400. https://doi.org/10.3390/molecules26216400