Molecular Docking of SP40 Peptide towards Cellular Receptors for Enterovirus 71 (EV-A71)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Global Docking to Identify the Binding Site of Receptors to the SP40 Peptide
2.2. Local Docking to Identify the Interaction Restraints of Cellular Receptors
2.3. SP40 Peptide Worked Synergistically with Anti-Receptor Antibodies
3. Materials and Methods
3.1. Software Used for Molecular Docking
3.2. Preparation of Cell Receptors and SP40 Peptide
Docking Procedure
3.3. Analysis of Docking Results
3.4. Receptor Blocking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Sample Availability
References
- Repass, G.L.; Palmer, W.C.; Stancampiano, F.F. Hand, foot, and mouth disease: Identifying and managing an acute viral syndrome. Clevel. Clin. J. Med. 2014, 81, 537–543. [Google Scholar] [CrossRef]
- Klein, M.; Chong, P. Is a multivalent hand, foot, and mouth disease vaccine feasible? Hum. Vaccin. Immunother. 2015, 11, 2688–2704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, M.; Chen, E.R.; Hsu, K.H.; Twu, S.J.; Chen, K.T.; Tsai, S.F.; Wang, J.R.; Shih, S.R. An epidemic of enterovirus 71 infection in Taiwan: Taiwan enterovirus epidemic working group. N. Engl. J. Med. 1999, 341, 929–935. [Google Scholar] [CrossRef]
- Chan, L.G.; Parashar, U.D.; Lye, M.S.; Ong, F.G.; Zaki, S.R.; Alexander, J.P.; Ho, K.K.; Han, L.L.; Pallansch, M.A.; Suleiman, A.B.; et al. Deaths of children during an outbreak of hand, foot, and mouth disease in sarawak, malaysia: Clinical and pathological characteristics of the disease. For the Outbreak Study Group. Clin. Infect. Dis. 2000, 31, 678–683. [Google Scholar] [CrossRef]
- Yang, F.; Ren, L.; Xiong, Z.; Li, J.; Xiao, Y.; Zhao, R.; He, Y.; Bu, G.; Zhou, S.; Wang, J.; et al. Enterovirus 71 outbreak in the People’s Republic of China in 2008. J. Clin. Microbiol. 2009, 47, 2351–2352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ventarola, D.; Bordone, L.; Silverberg, N. Update on hand-foot-and-mouth disease. Clin. Dermatol. 2015, 33, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.S.; Yip, C.C.; Lau, S.K.; Yuen, K.Y. Human enterovirus 71 and hand, foot and mouth disease. Epidemiol. Infect. 2010, 138, 1071–1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization; WHO Regional Office for the Western Pacific. Hand, Foot and Mouth Disease Situation Update 2018; WHO Regional Office for the Western Pacific: Manila, Philippines, 2018. [Google Scholar]
- Lu, Q.-B.; Zhang, X.-A.; Wo, Y.; Xu, H.-M.; Li, X.-J.; Wang, X.-J.; Ding, S.-J.; Chen, X.-D.; He, C.; Liu, L.-J.; et al. Circulation of coxsackievirus A10 and A6 in hand-foot-mouth disease in China, 2009–011. PLoS ONE 2012, 7, e52073. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Yuan, J.; Wang, X.; Li, J.; Du, J.; Su, H.; Zhou, B.; Jin, Q. Severe hand, foot, and mouth disease and coxsackievirus A6- Shenzhen, China. Clin. Infect. Dis. 2014, 59, 1504–1505. [Google Scholar] [CrossRef] [Green Version]
- Puenpa, J.; Auphimai, C.; Korkong, S.; Vongpunsawad, S.; Poovorawan, Y. Enterovirus A71 Infection, Thailand, 2017. Emerg. Infect. Dis. 2018, 24, 1386–1387. [Google Scholar] [CrossRef] [Green Version]
- Yi, E.; Shin, Y.; Kim, J.; Kim, T.; Chang, S. Enterovirus 71 infection and vaccines. Clin. Exp. Vaccine Res. 2017, 6, 4–14. [Google Scholar] [CrossRef]
- Aswathyraj, S.; Arunkumar, G.; Alidjinou, E.K.; Hober, D. Hand, foot and mouth disease (HFMD): Emerging epidemiology and the need for a vaccine strategy. Med. Microbiol. Immunol. 2016, 205, 397–407. [Google Scholar] [CrossRef]
- De Clercq, E.; Li, G. Approved antiviral drugs over the past 50 years. Clin. Microbiol. Rev. 2016, 29, 695–747. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.C.-L.; Harris, J.L.; Khanna, K.K.; Hong, J.-H. A Comprehensive Review on Current Advances in Peptide Drug Development and Design. Int. J. Mol. Sci. 2019, 20, 2383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chew, M.-F.; Poh, K.-S.; Poh, C.-L. Peptides as Therapeutic Agents for Dengue Virus. Int. J. Med. Sci. 2017, 14, 1342–1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamayoshi, S.; Yamashita, Y.; Li, J.; Hanagata, N.; Minowa, T.; Takemura, T.; Koike, S. Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nat. Med. 2009, 15, 798–801. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, Y.; Shimojima, M.; Tano, Y.; Miyamura, T.; Wakita, T.; Shimizu, H. Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71. Nat. Med. 2009, 15, 794. [Google Scholar] [CrossRef]
- Tan, C.W.; Poh, C.L.; Sam, I.C.; Chan, Y.F. Enterovirus 71 uses cell surface heparan sulfate glycosaminoglycan as an attachment receptor. J. Virol. 2013, 87, 611–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.-L.; Chou, Y.-T.; Wu, C.-N.; Ho, M.-S. Annexin II binds to capsid protein VP1 of enterovirus 71 and enhances viral infectivity. J. Virol. 2011, 85, 11809–11820. [Google Scholar] [CrossRef] [Green Version]
- Su, P.-Y.; Wang, Y.-F.; Huang, S.-W.; Lo, Y.-C.; Wang, Y.-H.; Wu, S.-R.; Shieh, D.-B.; Chen, S.-H.; Wang, J.-R.; Lai, M.-D. Cell surface nucleolin facilitates enterovirus 71 binding and infection. J. Virol. 2015, 89, 4527–4538. [Google Scholar] [CrossRef] [Green Version]
- Ren, X.-X.; Ma, L.; Liu, Q.-W.; Li, C.; Huang, Z.; Wu, L.; Xiong, S.-D.; Wang, J.-H.; Wang, H.-B. The molecule of DC-SIGN captures enterovirus 71 and confers dendritic cell-mediated viral trans-infection. Virol. J. 2014, 11, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Q.-Q.; Ren, S.; Xia, Z.-C.; Cheng, Z.-K.; Peng, N.-F.; Zhu, Y. Fibronectin Facilitates Enterovirus 71 Infection by Mediating Viral Entry. J. Virol. 2018, 92, e02251-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeung, M.L.; Jia, L.; Yip, C.C.Y.; Chan, J.F.W.; Teng, J.L.L.; Chan, K.H.; Cai, J.P.; Zhang, C.; Zhang, A.J.; Wong, W.M.; et al. Human tryptophanyl-tRNA synthetase is an IFN-γ-inducible entry factor for Enterovirus. J. Clin. Investig. 2018, 128, 5163–5177. [Google Scholar] [CrossRef]
- Du, N.; Cong, H.; Tian, H.; Zhang, H.; Zhang, W.; Song, L.; Tien, P. Cell surface vimentin is an attachment receptor for enterovirus 71. J. Virol. 2014, 88, 5816–5833. [Google Scholar] [CrossRef] [Green Version]
- Too, I.H.K.; Bonne, I.; Tan, E.L.; Chu, J.J.H.; Alonso, S. Prohibitin plays a critical role in Enterovirus 71 neuropathogenesis. PLoS Pathog. 2018, 14, e1006778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, P.-H.; Liu, C.-M.; Ho, T.-S.; Tsai, Y.-C.; Lin, C.-C.; Wang, Y.-F.; Chen, Y.-L.; Yu, C.-K.; Wang, S.-M.; Liu, C.-C.; et al. Enterovirus 71 virion-associated galectin-1 facilitates viral replication and stability. PLoS ONE 2015, 10, e0116278. [Google Scholar] [CrossRef] [Green Version]
- Qing, J.; Wang, Y.; Sun, Y.; Huang, J.; Yan, W.; Wang, J.; Su, D.; Ni, C.; Li, J.; Rao, Z.; et al. Cyclophilin A Associates with Enterovirus-71 Virus Capsid and Plays an Essential Role in Viral Infection as an Uncoating Regulator. PLoS Pathog. 2014, 10, e1004422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, D.A.; Dimock, K. Sialic acid functions in enterovirus 70 binding and infection. J. Virol. 2002, 76, 11265–11272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, K.; Koike, S. Cellular receptors for enterovirus A71. J. Biomed. Sci. 2020, 27, 23. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.W.; Chan, Y.F.; Sim, K.M.; Tan, E.L.; Poh, C.L. Inhibition of Enterovirus 71 (EV-71) Infections by a Novel Antiviral Peptide Derived from EV-71 Capsid Protein VP1. PLoS ONE 2012, 7, e34589. [Google Scholar] [CrossRef] [Green Version]
- Ciemny, M.; Kurcinski, M.; Kamel, K.; Kolinski, A.; Alam, N.; Schueler-Furman, O.; Kmiecik, S. Protein–peptide docking: Opportunities and challenges. Drug Discov. Today 2018, 23, 1530–1537. [Google Scholar] [CrossRef]
- Lee, H.; Heo, L.; Lee, M.S.; Seok, C. GalaxyPepDock: A protein–peptide docking tool based on interaction similarity and energy optimization. Nucleic Acids Res. 2015, 43, W431–W435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, C.; Xu, X.; Zou, X. Fully Blind Docking at the Atomic Level for Protein-Peptide Complex Structure Prediction. Structure 2016, 24, 1842–1853. [Google Scholar] [CrossRef] [Green Version]
- Zhou, P.; Jin, B.; Li, H.; Huang, S.-Y. HPEPDOCK: A web server for blind peptide-protein docking based on a hierarchical algorithm. Nucleic Acids Res. 2018, 46, W443–W450. [Google Scholar] [CrossRef] [PubMed]
- Kurcinski, M.; Jamroz, M.; Blaszczyk, M.; Kolinski, A.; Kmiecik, S. CABS-dock web server for the flexible docking of peptides to proteins without prior knowledge of the binding site. Nucleic Acids Res. 2015, 43, W419–W424. [Google Scholar] [CrossRef] [PubMed]
- Schindler, C.E.M.; de Vries, S.J.; Zacharias, M. Fully Blind Peptide-Protein Docking with pepATTRACT. Structure 2015, 23, 1507–1515. [Google Scholar] [CrossRef] [Green Version]
- Antunes, D.A.; Moll, M.; Devaurs, D.; Jackson, K.R.; Lizée, G.; Kavraki, L.E. DINC 2.0: A New Protein–Peptide Docking Webserver Using an Incremental Approach. Cancer Res. 2017, 77, e55. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Sanner, M.F. AutoDock CrankPep: Combining folding and docking to predict protein–peptide complexes. Bioinformatics 2019, 35, 5121–5127. [Google Scholar] [CrossRef]
- Trellet, M.; Melquiond, A.S.J.; Bonvin, A.M.J.J. A Unified Conformational Selection and Induced Fit Approach to Protein-Peptide Docking. PLoS ONE 2013, 8, e58769. [Google Scholar] [CrossRef] [Green Version]
- Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking11Edited by F. E. Cohen. J. Mol. Biol. 1997, 267, 727–748. [Google Scholar] [CrossRef] [Green Version]
- Weng, G.; Gao, J.; Wang, Z.; Wang, E.; Hu, X.; Yao, X.; Cao, D.; Hou, T. Comprehensive Evaluation of Fourteen Docking Programs on Protein-Peptide Complexes. J. Chem. Theory Comput. 2020, 16, 3959–3969. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, D.; Huang, S.Y. Efficient conformational ensemble generation of protein-bound peptides. J. Cheminform. 2017, 9, 59. [Google Scholar] [CrossRef] [PubMed]
- De Vries, S.J.; Rey, J.; Schindler, C.E.M.; Zacharias, M.; Tuffery, P. The pepATTRACT web server for blind, large-scale peptide-protein docking. Nucleic Acids Res. 2017, 45, W361–W364. [Google Scholar] [CrossRef] [PubMed]
- London, N.; Raveh, B.; Cohen, E.; Fathi, G.; Schueler-Furman, O. Rosetta FlexPepDock web server--high resolution modeling of peptide-protein interactions. Nucleic Acids Res. 2011, 39, W249–W253. [Google Scholar] [CrossRef] [Green Version]
- Lomize, A.L.; Pogozheva, I. Modeling of Peptide Folding and Translocation across Membranes. Biophys. J. 2018, 114, 267a. [Google Scholar] [CrossRef]
- Izumi, R.E.; Valdez, B.; Banerjee, R.; Srivastava, M.; Dasgupta, A. Nucleolin stimulates viral internal ribosome entry site-mediated translation. Virus Res. 2001, 76, 17–29. [Google Scholar] [CrossRef]
- De Verdugo, U.R.; Selinka, H.C.; Huber, M.; Kramer, B.; Kellermann, J.; Hofschneider, P.H.; Kandolf, R. Characterization of a 100-kilodalton binding protein for the six serotypes of coxsackie B viruses. J. Virol. 1995, 69, 6751–6757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tajrishi, M.M.; Tuteja, R.; Tuteja, N. Nucleolin: The most abundant multifunctional phosphoprotein of nucleolus. Commun. Integr. Biol. 2011, 4, 267–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Farmer, J.D., Jr.; Lane, W.S.; Friedman, J.; Weissman, I.; Schreiber, S.L. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 1991, 66, 807–815. [Google Scholar] [CrossRef]
- Zhou, D.; Mei, Q.; Li, J.; He, H. Cyclophilin A and viral infections. Biochem. Biophys. Res. Commun. 2012, 424, 647–650. [Google Scholar] [CrossRef] [PubMed]
- Clubb, R.T.; Ferguson, S.B.; Walsh, C.T.; Wagner, G. Three-dimensional solution structure of Escherichia coli periplasmic cyclophilin. Biochemistry 1994, 33, 2761–2772. [Google Scholar] [CrossRef] [PubMed]
- Leffler, H.; Carlsson, S.; Hedlund, M.; Qian, Y.; Poirier, F. Introduction to galectins. Glycoconj. J. 2002, 19, 433–440. [Google Scholar] [CrossRef]
- Camby, I.; Le Mercier, M.; Lefranc, F.; Kiss, R. Galectin-1: A small protein with major functions. Glycobiology 2006, 16, 137r–157r. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Wang, X.; Liu, S.; Zou, Q.; Zheng, S.; Yu, F.; Chen, Y. Galectin-1 Ameliorates Influenza A H1N1pdm09 Virus-Induced Acute Lung Injury. Front. Microbiol. 2020, 11, 1293. [Google Scholar] [CrossRef]
- López-Lucendo, M.F.; Solís, D.; André, S.; Hirabayashi, J.; Kasai, K.; Kaltner, H.; Gabius, H.J.; Romero, A. Growth-regulatory human galectin-1: Crystallographic characterisation of the structural changes induced by single-site mutations and their impact on the thermodynamics of ligand binding. J. Mol. Biol. 2004, 343, 957–970. [Google Scholar] [CrossRef]
- Singh, P.; Carraher, C.; Schwarzbauer, J.E. Assembly of fibronectin extracellular matrix. Annu. Rev. Cell Dev. Biol. 2010, 26, 397–419. [Google Scholar] [CrossRef] [Green Version]
- Eskelinen, E.L.; Tanaka, Y.; Saftig, P. At the acidic edge: Emerging functions for lysosomal membrane proteins. Trends Cell Biol. 2003, 13, 137–145. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, Y.; Kotecha, A.; Fry, E.E.; Kelly, J.T.; Wang, X.; Rao, Z.; Rowlands, D.J.; Ren, J.; Stuart, D.I. Unexpected mode of engagement between enterovirus 71 and its receptor SCARB2. Nat. Microbiol. 2019, 4, 414–419. [Google Scholar] [CrossRef]
- Yamayoshi, S.; Ohka, S.; Fujii, K.; Koike, S. Functional comparison of SCARB2 and PSGL1 as receptors for enterovirus 71. J. Virol. 2013, 87, 3335–3347. [Google Scholar] [CrossRef] [Green Version]
- Geijtenbeek, T.B.; Torensma, R.; van Vliet, S.J.; van Duijnhoven, G.C.; Adema, G.J.; van Kooyk, Y.; Figdor, C.G. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 2000, 100, 575–585. [Google Scholar] [CrossRef] [Green Version]
- Curtis, B.M.; Scharnowske, S.; Watson, A.J. Sequence and expression of a membrane-associated C-type lectin that exhibits CD4-independent binding of human immunodeficiency virus envelope glycoprotein gp120. Proc. Natl. Acad. Sci. USA 1992, 89, 8356–8360. [Google Scholar] [CrossRef] [Green Version]
- Gurney, K.B.; Elliott, J.; Nassanian, H.; Song, C.; Soilleux, E.; McGowan, I.; Anton, P.A.; Lee, B. Binding and transfer of human immunodeficiency virus by DC-SIGN+ cells in human rectal mucosa. J. Virol. 2005, 79, 5762–5773. [Google Scholar] [CrossRef] [Green Version]
- Granelli-Piperno, A.; Pritsker, A.; Pack, M.; Shimeliovich, I.; Arrighi, J.F.; Park, C.G.; Trumpfheller, C.; Piguet, V.; Moran, T.M.; Steinman, R.M. Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin/CD209 is abundant on macrophages in the normal human lymph node and is not required for dendritic cell stimulation of the mixed leukocyte reaction. J. Immunol. 2005, 175, 4265–4273. [Google Scholar] [CrossRef]
- Rappocciolo, G.; Piazza, P.; Fuller, C.L.; Reinhart, T.A.; Watkins, S.C.; Rowe, D.T.; Jais, M.; Gupta, P.; Rinaldo, C.R., Jr. Correction: DC-SIGN on B Lymphocytes Is Required for Transmission of HIV-1 to T Lymphocytes. PLoS Pathog. 2006, 2, e88. [Google Scholar] [CrossRef]
- Soilleux, E.J.; Morris, L.S.; Lee, B.; Pöhlmann, S.; Trowsdale, J.; Doms, R.W.; Coleman, N. Placental expression of DC-SIGN may mediate intrauterine vertical transmission of HIV. J. Pathol. 2001, 195, 586–592. [Google Scholar] [CrossRef]
- Feinberg, H.; Guo, Y.; Mitchell, D.A.; Drickamer, K.; Weis, W.I. Extended neck regions stabilize tetramers of the receptors DC-SIGN and DC-SIGNR. J. Biol. Chem. 2005, 280, 1327–1335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koethe, S.; Avota, E.; Schneider-Schaulies, S. Measles virus transmission from dendritic cells to T cells: Formation of synapse-like interfaces concentrating viral and cellular components. J. Virol. 2012, 86, 9773–9781. [Google Scholar] [CrossRef] [Green Version]
- Cormier, E.G.; Durso, R.J.; Tsamis, F.; Boussemart, L.; Manix, C.; Olson, W.C.; Gardner, J.P.; Dragic, T. L-SIGN (CD209L) and DC-SIGN (CD209) mediate transinfection of liver cells by hepatitis C virus. Proc. Natl. Acad. Sci. USA 2004, 101, 14067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, L.; KewalRamani, V.N. Dendritic-cell interactions with HIV: Infection and viral dissemination. Nat. Rev. Immunol. 2006, 6, 859–868. [Google Scholar] [CrossRef]
- Hajjar, K.A.; Acharya, S.S. Annexin II and regulation of cell surface fibrinolysis. Ann. N. Y. Acad. Sci. 2000, 902, 265–271. [Google Scholar] [CrossRef]
- Grindheim, A.K.; Saraste, J.; Vedeler, A. Protein phosphorylation and its role in the regulation of Annexin A2 function. Biochim. Biophys. Acta 2017, 1861, 2515–2529. [Google Scholar] [CrossRef] [PubMed]
- Shao, C.; Zhang, F.; Kemp, M.M.; Linhardt, R.J.; Waisman, D.M.; Head, J.F.; Seaton, B.A. Crystallographic analysis of calcium-dependent heparin binding to annexin A2. J. Biol. Chem. 2006, 281, 31689–31695. [Google Scholar] [CrossRef]
- Jin, M. Unique roles of tryptophanyl-tRNA synthetase in immune control and its therapeutic implications. Exp. Mol. Med. 2019, 51, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Shen, N.; Zhou, M.; Yang, B.; Yu, Y.; Dong, X.; Ding, J. Catalytic mechanism of the tryptophan activation reaction revealed by crystal structures of human tryptophanyl-tRNA synthetase in different enzymatic states. Nucleic Acids Res. 2008, 36, 1288–1299. [Google Scholar] [CrossRef] [Green Version]
- Goldman, R.D.; Khuon, S.; Chou, Y.H.; Opal, P.; Steinert, P.M. The function of intermediate filaments in cell shape and cytoskeletal integrity. J. Cell Biol. 1996, 134, 971–983. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Ravi, V.; Desai, A. Japanese encephalitis virus interacts with vimentin to facilitate its entry into porcine kidney cell line. Virus Res. 2011, 160, 404–408. [Google Scholar] [CrossRef]
- Kim, J.K.; Fahad, A.M.; Shanmukhappa, K.; Kapil, S. Defining the cellular target(s) of porcine reproductive and respiratory syndrome virus blocking monoclonal antibody 7G10. J. Virol. 2006, 80, 689–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koudelka, K.J.; Destito, G.; Plummer, E.M.; Trauger, S.A.; Siuzdak, G.; Manchester, M. Endothelial targeting of cowpea mosaic virus (CPMV) via surface vimentin. PLoS Pathog. 2009, 5, e1000417. [Google Scholar] [CrossRef] [Green Version]
- Nédellec, P.; Vicart, P.; Laurent-Winter, C.; Martinat, C.; Prévost, M.C.; Brahic, M. Interaction of Theiler’s virus with intermediate filaments of infected cells. J. Virol. 1998, 72, 9553–9560. [Google Scholar] [CrossRef] [Green Version]
- Pang, A.H.; Obiero, J.M.; Kulczyk, A.W.; Sviripa, V.M.; Tsodikov, O.V. A crystal structure of coil 1B of vimentin in the filamentous form provides a model of a high-order assembly of a vimentin filament. FEBS J. 2018, 285, 2888–2899. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, I.; Thompson, W.E.; Thomas, K. Prohibitins role in cellular survival through Ras-Raf-MEK-ERK pathway. J. Cell. Physiol. 2014, 229, 998–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, W.; Huang, S.; Zhu, H.; Zhang, B.; Wu, X. Interaction between PHB2 and Enterovirus A71 VP1 Induces Autophagy and Affects EV-A71 Infection. Viruses 2020, 12, 414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshinaka, T.; Kosako, H.; Yoshizumi, T.; Furukawa, R.; Hirano, Y.; Kuge, O.; Tamada, T.; Koshiba, T. Structural Basis of Mitochondrial Scaffolds by Prohibitin Complexes: Insight into a Role of the Coiled-Coil Region. iScience 2019, 19, 1065–1078. [Google Scholar] [CrossRef] [PubMed]
- Sako, D.; Chang, X.J.; Barone, K.M.; Vachino, G.; White, H.M.; Shaw, G.; Veldman, G.M.; Bean, K.M.; Ahern, T.J.; Furie, B.; et al. Expression cloning of a functional glycoprotein ligand for P-selectin. Cell 1993, 75, 1179–1186. [Google Scholar] [CrossRef]
- Laszik, Z.; Jansen, P.J.; Cummings, R.D.; Tedder, T.F.; McEver, R.P.; Moore, K.L. P-selectin glycoprotein ligand-1 is broadly expressed in cells of myeloid, lymphoid, and dendritic lineage and in some nonhematopoietic cells. Blood 1996, 88, 3010–3021. [Google Scholar] [CrossRef] [Green Version]
- Somers, W.S.; Tang, J.; Shaw, G.D.; Camphausen, R.T. Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P- and E-selectin bound to SLe(X) and PSGL-1. Cell 2000, 103, 467–479. [Google Scholar] [CrossRef] [Green Version]
- Kjellén, L.; Lindahl, U. Proteoglycans: Structures and interactions. Annu. Rev. Biochem. 1991, 60, 443–475. [Google Scholar] [CrossRef] [PubMed]
- Raveh, B.; London, N.; Schueler-Furman, O. Sub-angstrom modeling of complexes between flexible peptides and globular proteins. Proteins 2010, 78, 2029–2040. [Google Scholar] [CrossRef]
- Liu, T.; Pan, X.; Chao, L.; Tan, W.; Qu, S.; Yang, L.; Wang, B.; Mei, H. Subangstrom accuracy in pHLA-I modeling by Rosetta FlexPepDock refinement protocol. J. Chem. Inf. Model. 2014, 54, 2233–2242. [Google Scholar] [CrossRef] [PubMed]
- Waggoner, S.; Sarnow, P. Viral ribonucleoprotein complex formation and nucleolar-cytoplasmic relocalization of nucleolin in poliovirus-infected cells. J. Virol. 1998, 72, 6699–6709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, N.; Guo, L.; Yang, B.; Jin, Y.; Ding, J. Structure of human tryptophanyl-tRNA synthetase in complex with tRNATrp reveals the molecular basis of tRNA recognition and specificity. Nucleic Acids Res. 2006, 34, 3246–3258. [Google Scholar] [CrossRef] [PubMed]
- Ewing, T.J.; Makino, S.; Skillman, A.G.; Kuntz, I.D. DOCK 4.0: Search strategies for automated molecular docking of flexible molecule databases. J. Comput. Aided Mol. Des. 2001, 15, 411–428. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.Y.; Zou, X. Ensemble docking of multiple protein structures: Considering protein structural variations in molecular docking. Proteins 2007, 66, 399–421. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.Y.; Zou, X. Efficient molecular docking of NMR structures: Application to HIV-1 protease. Protein Sci. 2007, 16, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.Y.; Zou, X. An iterative knowledge-based scoring function for protein-protein recognition. Proteins 2008, 72, 557–579. [Google Scholar] [CrossRef]
- Lalani, S.S.; Anasir, M.I.; Poh, C.L. Antiviral activity of silymarin in comparison with baicalein against EV-A71. BMC Complement. Med. Ther. 2020, 20, 97. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Ott, M.; Yamane, A.; Tsai, W.; Gromeier, M.; Lahser, F.; Gupta, S.; Dasgupta, A. A small yeast RNA blocks hepatitis C virus internal ribosome entry site (HCV IRES)-mediated translation and inhibits replication of a chimeric poliovirus under translational control of the HCV IRES element. J. Virol. 1998, 72, 5638–5647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No | H-Donor Residue | Position | H-Acceptor Residue | Position | Distance | Type of Interaction |
---|---|---|---|---|---|---|
1 | LYS128 | HZ2 | ASP15 | OD1 | 2.13 | Salt Bridge |
2 | LYS49 | NZ | GLU7 | OE2 | 5.21 | Electrostatic |
3 | LYS78 | NZ | GLU7 | OE2 | 4.44 | Electrostatic |
4 | LYS5 | NZ | GLU80 | OE1 | 4.91 | Electrostatic |
5 | ARG43 | HH21 | GLN1 | OE1 | 2.55 | Conventional hydrogen bond |
6 | LYS99 | HZ1 | ARG4 | O | 2.76 | Conventional hydrogen bond |
7 | ARG3 | H13 | TYR52 | OH | 1.72 | Conventional hydrogen bond |
8 | LYS5 | H14 | LYS81 | O | 1.79 | Conventional hydrogen bond |
9 | PHE9 | H14 | ASN100 | OD1 | 3.02 | Conventional hydrogen bond |
10 | ARG13 | H14 | ASN14 | OD1 | 2.65 | Conventional hydrogen bond |
11 | ARG13 | H14 | ASN14 | OD1 | 2.54 | Conventional hydrogen bond |
12 | ARG4 | H14 | TYR163 | OH | 1.92 | Carbon hydrogen bond |
13 | THR10 | H13 | ASN100 | OD1 | 2.57 | Carbon hydrogen bond |
14 | ARG13 | H14 | TYR103 | OH | 2.15 | Carbon hydrogen bond |
15 | MET2 | SD | ASN9 | ND2 | 3.23 | Sulfur-X |
16 | SER161 | HG | PHE9 | Pi-Orbitals | 3.22 | Pi-Donor Hydrogen Bond |
17 | MET2 | SD | TYR52 | Pi-Orbitals | 4.37 | Pi-Sulfur |
18 | PRO4 | Alkyl | MET2 | Alkyl | 4.93 | Hydrophobic-Alkyl |
19 | LYS99 | Alkyl | VAL6 | Alkyl | 5.29 | Hydrophobic-Alkyl |
20 | VAL6 | Alkyl | ILE132 | Alkyl | 4.79 | Hydrophobic-Alkyl |
21 | PHE11 | Pi-Orbitals | LYS5 | Alkyl | 4.42 | Hydrophobic-Pi-Alkyl |
22 | PHE11 | Pi-Orbitals | VAL6 | Alkyl | 4.93 | Hydrophobic-Pi-Alkyl |
23 | PHE17 | Pi-Orbitals | MET12 | Alkyl | 5.19 | Hydrophobic-Pi-Alkyl |
24 | PHE17 | Pi-Orbitals | ARG13 | Alkyl | 4.25 | Hydrophobic-Pi-Alkyl |
25 | PHE50 | Pi-Orbitals | LEU8 | Alkyl | 5.11 | Hydrophobic-Pi-Alkyl |
26 | TYR103 | Pi-Orbitals | ARG13 | Alkyl | 5.11 | Hydrophobic-Pi-Alkyl |
27 | TYR163 | Pi-Orbitals | ARG4 | Alkyl | 5.28 | Hydrophobic-Pi-Alkyl |
No | H-Donor Residue | Position | H-Acceptor Residue | Position | Distance | Type of Interaction |
---|---|---|---|---|---|---|
1 | ARG244 | HH21 | GLU7 | OE2 | 2.86 | Salt Bridge |
2 | LYS285 | HZ2 | ASP15 | OXT | 3.11 | Salt Bridge |
3 | LYS5 | H25 | ASP238 | OD1 | 2.63 | Salt Bridge |
4 | ARG13 | H26 | GLU124 | OE1 | 2.92 | Salt Bridge |
5 | LYS285 | NZ | ASP15 | O | 4.34 | Electrostatic |
6 | ARG3 | NH1 | ASP238 | OD1 | 5.51 | Electrostatic |
7 | ARG3 | NH2 | GLU241 | OE1 | 5.26 | Electrostatic |
8 | LYS5 | NZ | GLU241 | OE1 | 4.29 | Electrostatic |
9 | ARG13 | NH1 | ASP123 | OD1 | 3.57 | Electrostatic |
10 | ARG13 | NH2 | ASP123 | OD2 | 4.28 | Electrostatic |
11 | LYS232 | HZ1 | GLN1 | OE1 | 2.21 | Conventional hydrogen bond |
12 | GLN260 | HE21 | GLU7 | OE1 | 1.81 | Conventional hydrogen bond |
13 | LYS285 | HZ3 | PHE14 | O | 2.59 | Conventional hydrogen bond |
14 | ARG4 | H25 | LYS309 | O | 2.71 | Conventional hydrogen bond |
15 | ARG4 | H25 | LYS309 | O | 1.53 | Conventional hydrogen bond |
16 | ARG13 | H26 | THR122 | O | 2.50 | Conventional hydrogen bond |
17 | ARG283 | HD1 | ARG13 | O | 2.96 | Carbon hydrogen bond |
18 | ARG283 | HD2 | TYR11 | O | 2.11 | Carbon hydrogen bond |
19 | LYS285 | HE2 | PHE14 | O | 2.56 | Carbon hydrogen bond |
20 | ARG13 | H26 | ASP123 | OD1 | 2.98 | Carbon hydrogen bond |
21 | ASP284 | H | PHE14 | Pi-Orbitals | 2.99 | Pi-Donor hydrogen bond |
22 | THR282 | O | PHE14 | Pi-Orbitals | 2.77 | Pi-Lone Pair |
23 | LEU267 | Alkyl | MET2 | Alkyl | 4.68 | Hydrophobic-Alkyl |
24 | ARG283 | Alkyl | MET12 | Alkyl | 4.85 | Hydrophobic-Alkyl |
25 | LYS5 | Alkyl | LEU240 | Alkyl | 5.43 | Hydrophobic-Alkyl |
26 | PHE14 | Pi-Orbitals | ARG283 | Alkyl | 5.11 | Hydrophobic-Pi-Alkyl |
No | H-Donor Residue | Position | H-Acceptor Residue | Position | Distance | Type of Interaction |
---|---|---|---|---|---|---|
1 | LYS5 | H31 | ASP194 | OD2 | 1.72 | Salt Bridge |
2 | TYR388 | HH | ASP15 | OD1 | 2.21 | Conventional hydrogen bond |
3 | GLN1 | H31 | GLU204 | OE2 | 2.21 | Conventional hydrogen bond |
4 | ARG3 | H31 | GLY200 | O | 1.70 | Conventional hydrogen bond |
5 | ARG3 | H31 | GLY200 | O | 2.25 | Conventional hydrogen bond |
6 | ARG4 | H31 | SER196 | O | 2.83 | Conventional hydrogen bond |
7 | ARG4 | H31 | TYR198 | O | 2.39 | Conventional hydrogen bond |
8 | THR10 | H32 | GLY332 | O | 2.36 | Conventional hydrogen bond |
9 | ARG13 | H31 | GLN148 | OE1 | 2.72 | Conventional hydrogen bond |
10 | ARG13 | H32 | GLN148 | O | 2.81 | Conventional hydrogen bond |
11 | ARG13 | H32 | GLN148 | OE1 | 1.64 | Conventional hydrogen bond |
12 | ARG3 | H31 | GLU204 | OE1 | 1.96 | Carbon hydrogen bond |
13 | ARG3 | H31 | TYR203 | O | 2.61 | Carbon hydrogen bond |
14 | ARG3 | NH2 | PHE199 | Pi-Orbitals | 4.14 | Electrostatic-Pi-Cation |
15 | GLU145 | OE1 | PHE14 | Pi-Orbitals | 4.79 | Electrostatic-Pi-Anion |
16 | TRP146 | Pi-Orbitals | PHE9 | Pi-Orbitals | 3.70 | Hydrophobic-Pi-Pi Stacked |
17 | TRP146 | Pi-Orbitals | PHE9 | Pi-Orbitals | 3.60 | Hydrophobic-Pi-Pi Stacked |
18 | PRO314 | Alkyl | MET12 | Alkyl | 5.37 | Hydrophobic-Alkyl |
19 | ILE328 | Alkyl | LEU8 | Alkyl | 4.88 | Hydrophobic-Alkyl |
No | H-Donor Residue | Position | H-Acceptor Residue | Position | Distance | Type of Interaction |
---|---|---|---|---|---|---|
1 | LYS154 | NZ | ASP15 | O | 4.41 | Electrostatic |
2 | ARG3 | NH2 | GLU151 | OE1 | 4.31 | Electrostatic |
3 | ARG13 | NH1 | ASP302 | OD2 | 5.10 | Electrostatic |
4 | TYR150 | HH | ARG3 | O | 2.75 | Conventional Hydrogen Bond |
5 | ASP469 | H | GLU7 | OE2 | 2.20 | Conventional Hydrogen Bond |
6 | GLN1 | H30 | ARG122 | O | 2.44 | Conventional Hydrogen Bond |
7 | GLN1 | H32 | ARG122 | O | 3.02 | Conventional Hydrogen Bond |
8 | ARG3 | H31 | GLU151 | O | 3.05 | Conventional Hydrogen Bond |
9 | PHE14 | H32 | ASP302 | OD2 | 1.54 | Conventional Hydrogen Bond |
10 | ASP15 | H32 | ASP302 | OD2 | 2.77 | Conventional Hydrogen Bond |
11 | LYS154 | HE1 | PHE14 | O | 2.84 | Carbon Hydrogen Bond |
12 | PHE468 | HA | GLU7 | OE2 | 2.93 | Carbon Hydrogen Bond |
13 | MET2 | H30 | ALA123 | O | 3.10 | Carbon Hydrogen Bond |
14 | ARG3 | H31 | GLU151 | O | 2.88 | Carbon Hydrogen Bond |
15 | ARG13 | H32 | ASP302 | OD2 | 2.48 | Carbon Hydrogen Bond |
16 | LYS5 | NZ | PHE468 | Pi-Orbitals | 4.46 | Electrostatic-Pi-Cation |
17 | LYS153 | Alkyl | VAL6 | Alkyl | 4.77 | Hydrophobic-Alkyl |
18 | ARG4 | Alkyl | LYS153 | Alkyl | 5.48 | Hydrophobic-Alkyl |
19 | TYR150 | Pi-Orbitals | ARG3 | Alkyl | 4.37 | Hydrophobic-Pi-Alkyl |
20 | HIS472 | Pi-Orbitals | MET12 | Alkyl | 4.19 | Hydrophobic-Pi-Alkyl |
21 | PHE9 | Pi-Orbitals | PRO155 | Alkyl | 4.10 | Hydrophobic-Pi-Alkyl |
22 | PHE14 | Pi-Orbitals | LYS154 | Alkyl | 4.47 | Hydrophobic-Pi-Alkyl |
Antibody Treatment | Inhibition of Viral Infectivity (%) | Inhibition of Viral Infectivity with L-SP40 Peptide (%) |
---|---|---|
Anti-nucleolin | 92.88 ± 1.40 | 96.28 ± 0.72 |
Anti-annexin A2 | 89.55 ± 1.85 | 92.87 ± 2.06 |
Anti-PSGL-1 | 75.91 ± 11.38 | 88.56 ± 4.38 |
Anti-vimentin | 65.13 ± 10.91 | 96.46 ± 1.21 |
Anti-heparan Sulfate | 63.16 ± 7.49 | 98.2 ± 0.68 |
Anti-galectin-1 | 58.5 ± 4.25 | 95.43 ± 1.90 |
Anti-SCARB2 | 51.04 ± 1.81 | 99.54 ± 0.34 |
Antibody | Immunogen | Concentration µg/mL |
---|---|---|
Annexin A2 | Synthetic peptide within human Annexin A2 aa 20–60. | 10 |
Anti-vimentin | Raised against purified Vimentin | 20 |
Anti-PSGL-1 | The antibody epitope was mapped to a site within a consensus tyrosine Sulfation motif of PSGL-1, previously shown to be essential for interaction with P-selectin (and now shown to be essential for recognition of PSGL-1 by L-selectin). | 20 |
Anti-heparan sulphate | Heparan Sulphate Proteoglycan from EHS mouse tumour | 20 |
Anti-gelactin-1 | Synthetic peptide. This information is proprietary to Abcam and/or its suppliers | 20 |
Anti-SCARB2 | Mouse myeloma cell line NS0-derived recombinant human LIMPII lumenal loop Arg27-Thr432 | 20 |
Anti-nucleolin (monoclonal) | Human nucleolin protein from Raji cell extract | 20 |
Anti-nucleolin (polyclonal) | Synthetic peptide conjugated to KLH derived from within residues 1–100 of Human Nucleolin | 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masomian, M.; Lalani, S.; Poh, C.L. Molecular Docking of SP40 Peptide towards Cellular Receptors for Enterovirus 71 (EV-A71). Molecules 2021, 26, 6576. https://doi.org/10.3390/molecules26216576
Masomian M, Lalani S, Poh CL. Molecular Docking of SP40 Peptide towards Cellular Receptors for Enterovirus 71 (EV-A71). Molecules. 2021; 26(21):6576. https://doi.org/10.3390/molecules26216576
Chicago/Turabian StyleMasomian, Malihe, Salima Lalani, and Chit Laa Poh. 2021. "Molecular Docking of SP40 Peptide towards Cellular Receptors for Enterovirus 71 (EV-A71)" Molecules 26, no. 21: 6576. https://doi.org/10.3390/molecules26216576
APA StyleMasomian, M., Lalani, S., & Poh, C. L. (2021). Molecular Docking of SP40 Peptide towards Cellular Receptors for Enterovirus 71 (EV-A71). Molecules, 26(21), 6576. https://doi.org/10.3390/molecules26216576