Crocodylus porosus Gut Bacteria: A Possible Source of Novel Metabolites
Abstract
:1. Introduction
2. Results
2.1. Several Gut Bacteria Were Isolated from Crocodylus porosus
2.2. Selected Conditioned Media from Bacteria Isolated from C. porosus Affected Cell Viability
2.3. Selected Conditioned Media from C. porosus Possess Molecules with Anticancer Activity
3. Discussion
4. Methods and Materials
4.1. Ethics Committee Approval and Procurement of Crocodile
4.2. Bacterial Identification
4.3. 16S rDNA Sequencing
4.4. Preparation of Conditioned Media
4.5. Cell Cultivation
4.6. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide (MTT) Cell Metabolic Activity Assay
4.7. Cellular Survival Assay
4.8. Liquid Chromatography-Mass Spectrometry (LC-MS) Analysis
4.9. Statistical Assessment
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Ethical Approval and Consent to Participate
Conflicts of Interest
References
- Brusatte, S.L.; Benton, M.J.; Desojo, J.B.; Langer, M.C. The higher-level phylogeny of Archosauria (Tetrapoda: Diapsida). J. Syst. Palaeontol. 2010, 8, 3–47. [Google Scholar] [CrossRef] [Green Version]
- Janke, A.; Gullberg, A.; Hughes, S.; Aggarwal, R.K.; Arnason, U. Mitogenomic analyses place the gharial (Gavialis gangeticus) on the crocodile tree and provide pre-K/T divergence times for most crocodilians. J. Mol. Evol. 2005, 61, 620–626. [Google Scholar] [CrossRef]
- Lehner, A.F.; Rumbeiha, W.; Shlosberg, A.; Stuart, K.; Johnson, M.; Domenech, R.; Langner, H. Diagnostic analysis of veterinary dried blood spots for toxic heavy metals exposure. J. Anal. Toxicol. 2013, 37, 406–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rainwater, T.R.; Wu, T.H.; Finger, A.G.; Cañas, J.E.; Yu, L.; Reynolds, K.D.; Coimbatore, G.; Barr, B.; Platt, S.G.; Cobb, G.P.; et al. Metals and organochlorine pesticides in caudal scutes of crocodiles from Belize and Costa Rica. Sci. Total Environ. 2007, 373, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Schneider, L.; Peleja, R.P.; Kluczkovski, A.; Freire, G.M.; Marioni, B.; Vogt, R.C.; Da Silveira, R. Mercury concentration in the spectacled caiman and black caiman (alligatoridae) of the amazon: Implications for human health. Arch. Environ. Contam. Toxicol. 2012, 63, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Vieira, L.M.; Nunes, V.D.S.; Amaral, M.D.A.; Oliveira, A.C.; Hauser-Davis, R.A.; Campos, R.C. Mercury and methyl mercury ratios in caimans (caiman crocodilus yacare) from the Pantanal area, Brazil. J. Environ. Monit. 2011, 13, 280–287. [Google Scholar] [CrossRef]
- Siddiqui, R.; Jeyamogan, S.; Ali, S.M.; Abbas, F.; Sagathevan, K.A.; Khan, N.A. Crocodiles and alligators: Antiamoebic and antitumor compounds of crocodiles. Exp. Parasitol. 2017, 183, 194–200. [Google Scholar] [CrossRef]
- Akbar, N.; Siddiqui, R.; Sagathevan, K.A.; Khan, N.A. Gut bacteria of animals/pests living in polluted environments are a potential source of antibacterials. Appl. Microbiol. Biotechnol. 2019, 103, 3955–3964. [Google Scholar] [CrossRef]
- Khan, N.A.; Soopramanien, M.; Siddiqui, R. Crocodiles and alligators: Physicians’ answer to cancer? Curr. Oncol. 2019, 26, 186. [Google Scholar] [CrossRef] [Green Version]
- Heyde, K.C.; Ruder, W.C. Exploring host-microbiome interactions using an in-silico model of biomimetic robots and engineered living cells. Sci. Rep. 2015, 5, 11988. [Google Scholar] [CrossRef] [Green Version]
- Kang, C.; Wang, B.; Kaliannan, K.; Wang, X.; Lang, H.; Hui, S.; Huang, L.; Zhang, Y.; Zhou, M.; Chen, M.; et al. Gut microbiota mediates the protective effects of dietary capsaicin against chronic low-grade inflammation and associated obesity induced by high-fat diet. mBio 2017, 8, e00470-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, J.R.; Minuto, C.; Cryan, J.F.; Clarke, G.; Dinan, T.G. Cross talk: The microbiota and neurodevelopmental disorders. Front. Neurosci. 2017, 11, 490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louis, P.; Hold, G.L.; Flint, H.J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 2014, 12, 661–672. [Google Scholar] [CrossRef]
- Zhou, M.; He, J.; Shen, Y.; Zhang, C.; Wang, J.; Chen, Y. New frontiers in genetics, gut microbiota, and immunity: A rosetta stone for the pathogenesis of inflammatory bowel disease. BioMed Res. Int. 2017, 2017, 8201672. [Google Scholar] [CrossRef] [PubMed]
- Lobach, A.R.; Roberts, A.; Rowland, I.R. Assessing the in vivo data on low/no-calorie sweeteners and the gut microbiota. Food Chem. Toxicol. 2019, 124, 385–399. [Google Scholar] [CrossRef] [PubMed]
- Keenan, S.W.; Engel, A.S.; Elsey, R.M. The alligator gut microbiome and implications for archosaur symbioses. Sci. Rep. 2013, 3, 2877. [Google Scholar] [CrossRef]
- Willson, N.L.; Van, T.T.H.; Lever, J.; Moore, R.J.; Stanley, D. Characterisation of the intestinal microbiota of commercially farmed saltwater crocodiles, Crocodylus porosus. Appl. Microbiol. Biotechnol. 2019, 103, 8977–8985. [Google Scholar] [CrossRef]
- Jiang, H.Y.; Ma, J.E.; Li, J.; Zhang, X.J.; Li, L.M.; He, N.; Liu, H.Y.; Luo, S.Y.; Wu, Z.J.; Han, R.C.; et al. Diets alter the gut microbiome of crocodile lizards. Front. Microbiol. 2017, 8, 2073. [Google Scholar] [CrossRef]
- Lin, M.; Zeng, C.; Li, Z.; Ma, Y.; Jia, X. Comparative analysis of the composition and function of fecal-gut bacteria in captive juvenile Crocodylus siamensis between healthy and anorexic individuals. Microbiol. Open 2019, 8, e929. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Kumar, M.; Mittal, A.; Mehta, P.K. Microbial metabolites in nutrition, healthcare and agriculture. 3 Biotech 2017, 7, 15. [Google Scholar] [CrossRef] [Green Version]
- Neeraja, P.; Parthasarathy, T.; Sudhakar, M. Optimization and development of bio synthetic silver nano particles of azurin-an anti-cancer Agent from pseudomonas aeruginosa. Int. J. Pharm. Sci. Res. 2018, 9, 3444–3448. [Google Scholar]
- Sereena, M.C.; Sebastian, D. Evaluation of anticancer and anti-hemolytic activity of azurin, a novel bacterial protein from pseudomonas aeruginosa SSj. Int. J. Pept. Res. Ther. 2020, 26, 459–466. [Google Scholar] [CrossRef]
- Hamza, A.A.; Clark, B.R.; Murphy, C.D. Antitumor activity of the cyclo (l-phenyl, l-prolyl) diketopiperazines produced by a newly isolated streptomyces Sp. A4. 4. Sumer. J. Biotechnol. 2018, 1, 113–118. [Google Scholar]
- Stanojević-Nikolić, S.; Dimić, G.; Mojović, L.; Pejin, J.; Djukić-Vuković, A.; Kocić-Tanackov, S. Antimicrobial activity of lactic acid against pathogen and spoilage microorganisms. J. Food Process. Preserv. 2016, 40, 990–998. [Google Scholar] [CrossRef]
- Mascuch, S.J.; Boudreau, P.D.; Carland, T.M.; Pierce, N.T.; Olson, J.; Hensler, M.E.; Choi, H.; Campanale, J.; Hamdoun, A.; Nizet, V.; et al. Marine natural product honaucin a attenuates inflammation by activating the Nrf2-ARE pathway. J. Nat. Prod. 2017, 81, 506–514. [Google Scholar] [CrossRef]
- Alshaibani, M.M.; Zin, N.; Jalil, J.; Sidik, N.M.; Ahmad, S.J.; Kamal, N.; Edrada-Ebel, R. Isolation, purification, and characterization of five active diketopiperazine derivatives from endophytic Streptomyces SUK 25 with antimicrobial and cytotoxic activities. J. Microbiol. Biotechnol. 2017, 27, 1249–1256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwanami, Y. Myrmicacin, a new inhibitor for mitotic progression after metaphase. Protoplasma 1978, 95, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.S.; Spakowicz, D.J.; Hong, B.Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, S.R.; Hanson, B.M.; Agresta, H.O.; Gerstein, M.; et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 2019, 10, 5029. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, M.A.; Saquib, Q.; Ahamed, M.; Ahmad, J.; Al-Khedhairy, A.A.; Abou-Tarboush, F.M.; Musarrat, J. Effect of trans-resveratrol on rotenone-induced cytotoxicity in human breast adenocarcinoma cells. Toxicol. Int. 2011, 18, 105. [Google Scholar]
- Soopramanien, M.; Mungroo, M.R.; Kuppusamy, A.S.; Khan, N.A.; Siddiqui, R. Invertebrates living in polluted environments are potential source of novel anticancer agents. Marmara Pharm. J. 2019, 23, 1079–1089. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.M.; Siddiqui, R.; Ong, S.K.; Shah, M.R.; Anwar, A.; Heard, P.J.; Khan, N.A. Identification and characterization of antibacterial compound (s) of cockroaches (Periplaneta americana). Appl. Microbiol. Biotechnol. 2017, 101, 253–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
GI Location | Bacteria | Gram Staining | Phylum |
---|---|---|---|
Mouth and esophagus | Atlantibacter hermannii | Gram-negative | Proteobacteria |
Bacillus aryabhattai | Gram-positive | Firmicutes | |
Brevibacterium sediminis | Gram-positive | Actinobacteria | |
Chryseobacterium yeoncheonense | Gram-negative | Bacteroidetes | |
Deinococcus grandis | Gram-positive | Deinococcus-Thermus | |
Diaphorobacter polyhydroxybutyrativorans | Gram-negative | Proteobacteria | |
Edwardsiella tarda | Gram-negative | Proteobacteria | |
Enterobacter cloacae | Gram-negative | Proteobacteria | |
Microbacterium paraoxydans | Gram-positive | Actinobacteria | |
Ochrobactrum intermedium | Gram-negative | Proteobacteria | |
Pseudomonas aeruginosa | Gram-negative | Proteobacteria | |
Staphylococcus aureus | Gram-positive | Firmicutes | |
Staphylococcus pasteuri | Gram-positive | Firmicutes | |
Tsukamurella spumae | Gram-positive | Actinobacteria | |
Stomach | Aeromonas salmonicida | Gram-negative | Proteobacteria |
Hafnia paralvei | Gram-negative | Proteobacteria | |
Proteus hauseri | Gram-negative | Proteobacteria | |
Pseudomonas aeruginosa | Gram-negative | Proteobacteria | |
Staphylococcus pasteuri | Gram-positive | Firmicutes | |
Small intestine | Enterobacter cloacae | Gram-negative | Proteobacteria |
Enterobacter tabaci | Gram-negative | Proteobacteria | |
Klebsiella pneumoniae subsp. rhinoscleromatis | Gram-negative | Proteobacteria | |
Klebsiella quasipneumoniae subsp. similipneumoniae | Gram-negative | Proteobacteria | |
Ochrobactrum oryzae | Gram-negative | Proteobacteria | |
Proteus hauseri | Gram-negative | Proteobacteria | |
Proteus vulgaris | Gram-negative | Proteobacteria | |
Providencia alcalifaciens | Gram-negative | Proteobacteria | |
Providencia rettgeri | Gram-negative | Proteobacteria | |
Pseudomonas aeruginosa | Gram-negative | Proteobacteria | |
Pseudomonas guezennei | Gram-negative | Proteobacteria | |
Staphylococcus pasteuri | Gram-positive | Firmicutes | |
Large intestine | Aeromonas dhakensis | Gram-negative | Proteobacteria |
Plesiomonas shigelloides | Gram-negative | Proteobacteria | |
Proteus hauseri | Gram-negative | Proteobacteria | |
Proteus mirabilis | Gram-negative | Proteobacteria | |
Proteus vulgaris | Gram-negative | Proteobacteria | |
Providencia alcalifaciens | Gram-negative | Proteobacteria | |
Pseudomonas aeruginosa | Gram-negative | Proteobacteria | |
Anus | Aeromonas dhakensis | Gram-negative | Proteobacteria |
Proteus columbae | Gram-negative | Proteobacteria | |
Proteus mirabilis | Gram-negative | Proteobacteria | |
Proteus terrae | Gram-negative | Proteobacteria | |
Providencia rettgeri | Gram-negative | Proteobacteria |
Crocodylus porosus Organ | Bacteria | % Cell Viability Inhibition Using MTT Assay | |||
---|---|---|---|---|---|
HeLa | MCF-7 | PC3 | HaCat | ||
Mouth | P. aeruginosa | 89.5 ± 2.7 | 64.0 ± 0.4 | 67.6 ± 3.2 | 59.0 ± 1.5 |
Stomach | P. aeruginosa | 66.6 ± 7.0 | 51.7 ± 3.0 | 53.9 ± 6.7 | 52.4 ± 1.3 |
P. hauseri | 68.7 ± 3.0 | 45.5 ± 5.6 | 61.3 ± 6.0 | 54.2 ± 1.7 | |
H. paralvei | 74.2 ± 8.3 | 50.1 ± 1.0 | 65.5 ± 5.9 | 57.8 ± 1.4 | |
S. pasteuri | 71.9 ± 8.9 | 56.7 ± 1.7 | 67.7 ± 5.9 | 59.2 ± 1.0 | |
Duodenum | K. pneumonia | 78.2 ± 2.1 | 54.5 ± 2.3 | 70.8 ± 0.9 | 55.7 ± 0.4 |
P. guezennei | 52.0 ± 2.8 | 39.6 ± 1.4 | 51.3 ± 2.2 | 44.8 ± 2.9 | |
O. oryzae | 66.3 ± 4.4 | 55.9 ± 6.2 | 56.3 ± 7.1 | 50.1 ± 3.0 | |
Ileum | P. vulgaris | 62.5 ± 6.7 | 41.9 ± 2.3 | 61.3 ± 2.0 | 57.9 ± 2.5 |
P. rettgeri | 72.2 ± 9.4 | 51.8 ± 2.0 | 72.0 ± 7.6 | 57.1 ± 0.2 | |
P. hauseri | 76.3 ± 8.6 | 50.4 ± 0.4 | 79.1 ± 7.0 | 63.2 ± 1.2 | |
P. aeruginosa | 52.8 ± 1.8 | 25.8 ± 4.1 | 40.2 ± 0.4 | 45.3 ± 1.4 | |
Large intestine | A. dhakensis | 44.3 ± 6.4 | 35.4 ± 5.8 | 57.8 ± 5.2 | 58.2 ± 2.1 |
P. aeruginosa | 66.2 ± 5.2 | 56.6 ± 1.5 | 46.8 ± 2.1 | 51.5 ± 0.2 | |
Anus | P. rettgeri | 66.8 ± 4.4 | 52.3 ± 3.3 | 57.8 ± 3.0 | 49.8 ± 2.0 |
P. columbae | 68.9 ± 2.4 | 47.0 ± 2.6 | 63.4 ± 1.0 | 59.7 ± 3.0 |
Sample Availability: Samples are available from the corresponding author upon reasonable request. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, N.A.; Soopramanien, M.; Maciver, S.K.; Anuar, T.S.; Sagathevan, K.; Siddiqui, R. Crocodylus porosus Gut Bacteria: A Possible Source of Novel Metabolites. Molecules 2021, 26, 4999. https://doi.org/10.3390/molecules26164999
Khan NA, Soopramanien M, Maciver SK, Anuar TS, Sagathevan K, Siddiqui R. Crocodylus porosus Gut Bacteria: A Possible Source of Novel Metabolites. Molecules. 2021; 26(16):4999. https://doi.org/10.3390/molecules26164999
Chicago/Turabian StyleKhan, Naveed Ahmed, Morhanavallee Soopramanien, Sutherland Kester Maciver, Tengku Shahrul Anuar, Kuppusamy Sagathevan, and Ruqaiyyah Siddiqui. 2021. "Crocodylus porosus Gut Bacteria: A Possible Source of Novel Metabolites" Molecules 26, no. 16: 4999. https://doi.org/10.3390/molecules26164999
APA StyleKhan, N. A., Soopramanien, M., Maciver, S. K., Anuar, T. S., Sagathevan, K., & Siddiqui, R. (2021). Crocodylus porosus Gut Bacteria: A Possible Source of Novel Metabolites. Molecules, 26(16), 4999. https://doi.org/10.3390/molecules26164999