From Molecular to Cluster Properties: Rotational Spectroscopy of 2-Aminopyridine and of Its Biomimetic Cluster with Water
Abstract
:1. Introduction
2. Results
2.1. MMW Spectroscopy of AMP
2.2. Supersonic Expansion FTMW Spectroscopy of AMP and Its Isotopologues
2.3. Supersonic Expansion FTMW Spectroscopy of AMW and Its Isotopologues
3. Hyperfine Coupling Constants
4. Structure of AMW
5. Discussion
6. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMP | 2-aminopyridine |
AMW | 2-aminopyridine…water cluster |
FTMW | Fourier Transform MicroWave spectroscopy of supersonic expansion |
MMW | Millimeter-wave |
CMW | Centimeter-wave |
References
- Watson, J.D.; Crick, F.H.C. Genetical implications of the structure of deoxyribonucleic acid. Nature 1953, 171, 964–967. [Google Scholar] [CrossRef] [PubMed]
- Tubergen, M.J.; Andrews, A.M.; Kuczkowski, R.L. Microwave Spectrum and Structure of a Hydrogen-Bonded Pyrrole–Water Complex. J. Phys. Chem. 1993, 97, 7451–7457. [Google Scholar] [CrossRef]
- Melandri, S.; Sanz, M.E.; Caminati, W.; Favero, P.G.; Kisiel, Z. The Hydrogen Bond between Water and Aromatic Bases of Biological Interest: An Experimental and Theoretical Study of the 1:1 Complex of Pyrimidine with Water. J. Am. Chem. Soc. 1998, 120, 11504–11509. [Google Scholar] [CrossRef]
- Caminati, W.; Favero, L.B.; Favero, P.G.; Maris, A.; Melandri, S. Intramolecular Hydrogen Bonding between Water and Pyrazine. Angew. Chem. Int. Ed. 1998, 37, 792–795. [Google Scholar] [CrossRef]
- Kydd, R.A.; Mills, I.M. Microwave Spectrum of 2-Aminopyridine. J. Mol. Spectrosc. 1972, 42, 320–326. [Google Scholar] [CrossRef]
- Ye, E.; Bettens, R.P.A. Millimeter wave measurement and assignment of the rotational spectrum of 2-aminopyridine. J. Mol. Spectrosc. 2004, 223, 73–79. [Google Scholar] [CrossRef]
- Borchert, S.J. Low-Resolution Microwave Spectroscopy: A New Band Type. J. Mol. Spectrosc. 1975, 57, 312–315. [Google Scholar] [CrossRef]
- Kisiel, Z. The Millimeter-Wave Rotational Spectrum of Chlorobenzene: Analysis of Centrifugal Distortion and of Conditions for Oblate–Type Bandhead Formation. J. Mol. Spectrosc. 1990, 144, 381–388. [Google Scholar] [CrossRef]
- Kisiel, Z.; Białkowska-Jaworska, E.; Pszczółkowski, L. The mm-Wave Rotational Spectrum of CBrClF2 (Halon BCF): Observation of a New R-Type Band and Generalization of Conditions for Oblate-Type Band Formation. J. Mol. Spectrosc. 1996, 177, 240–250. [Google Scholar] [CrossRef]
- Kisiel, Z.; Pszczółkowski, L. Assignment and Analysis of the mm-Wave Rotational Spectrum of Trichloroethylene: Observation of a New, Extended bR-Band and an Overview of High-J., R-Type Bands. J. Mol. Spectrosc. 1996, 178, 125–137. [Google Scholar] [CrossRef]
- Kisiel, Z. Assignment and Analysis of Complex Rotational Spectra. In Spectroscopy from Space; Demaison, J., Sarka, K., Cohen, E.A., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; pp. 91–106. [Google Scholar] [CrossRef]
- PROSPE—Programs for ROtational SPEctroscopy. Available online: http://info.ifpan.edu.pl/~kisiel/prospe.htm (accessed on 30 September 2021).
- Wu, R.; Nachtigall, P.; Brutchy, B. Structure and hydrogen bonding of 2-aminopyridine. (H2O)n (n = 1, 2) studied by infrared ion depletion spectroscopy. Phys. Chem. Chem. Phys. 2004, 6, 515–521. [Google Scholar] [CrossRef]
- Białkowska-Jaworska, E.; Kisiel, Z.; Pszczółkowski, L. Nuclear quadrupole coupling in chloroform and calibration of ab initio calculations. J. Mol. Spectrosc. 2006, 238, 72–78. [Google Scholar] [CrossRef]
- Alonso, J.L.; Vaquero, V.; Peña, I.; López, J.C.; Mata, S.; Caminati, W. All Five Forms of Cytosine Revealed in the Gas Phase. Angew. Chem. Int. Ed. 2013, 52, 2331–2334. [Google Scholar] [CrossRef] [PubMed]
- Alonso, J.L.; Sanz, M.E.; López, J.C.; Cortijo, V. Conformational Behavior of Norephedrine, Ephedrine, and Pseudoephedrine. J. Am. Chem. Soc. 2009, 131, 4320–4326. [Google Scholar] [CrossRef] [PubMed]
- Kisiel, Z.; Białkowska-Jaworska, E.; Pszczółkowski, L. Nuclear quadrupole coupling in Cl2C=CHCl and Cl2C=CH2: Evidence for systematic differences in orientations between internuclear and field gradient axes for terminal quadrupolar nuclei. J. Chem. Phys. 1998, 109, 10263–10272. [Google Scholar] [CrossRef]
- Kisiel, Z.; Białkowska-Jaworska, E.; Chen, J.; Pszczółkowski, L.; Gawryś, P.; Kosarzewski, J. Rotational spectroscopy and precise molecular structure of 1,2-dichlorobenzene. J. Mol. Spectrosc. 2020, 374, 111380. [Google Scholar] [CrossRef]
- Kisiel, Z.; Pszczółkowski, L.; Białkowska-Jaworska, E.; Jaworski, M.; Uriarte, I.; Basterretxea, F.; Cocinero, E.J. Rotational spectroscopy update for the newly identified atmospheric ozone depleter CF3CCl3. J. Mol. Spectrosc. 2018, 352, 1–9. [Google Scholar] [CrossRef]
- Białkowska-Jaworska, E.; Pszczółkowski, L.; Kisiel, Z. Comprehensive analysis of the rotational spectrum of 2,2-dichloropropane. J. Mol. Spectrosc. 2015, 308–309, 20–27. [Google Scholar] [CrossRef]
- Kisiel, Z.; Lesarri, A.; Neill, J.L.; Muckle, M.T.; Pate, B.H. Structure and properties of the (HCl)2H2O cluster observed by chirped-pulse Fourier transform microwave spectroscopy. Phys. Chem. Chem. Phys. 2011, 13, 13912–13919. [Google Scholar] [CrossRef]
- Kraitchman, J. Determination of Molecular Structure from Microwave Spectroscopic Data. Am. J. Phys. 1953, 21, 17–24. [Google Scholar] [CrossRef]
- Watson, J.K.G.; Roytburg, A.; Ulrich, W. Least-Squares Mass-Dependence Molecular Structures. J. Mol. Spectrosc. 1999, 196, 102–119. [Google Scholar] [CrossRef] [Green Version]
- Demaison, J. Experimental, semi-experimental and ab initio equilibrium structures. Mol. Phys. 2007, 105, 3109–3138. [Google Scholar] [CrossRef] [Green Version]
- Puzzarini, C.; Stanton, F.J.; Gauss, J. Quantum-chemical calculation of spectroscopic parameters for rotational spectroscopy. Intern. Rev. Phys. Chem. 2010, 29, 273–367. [Google Scholar] [CrossRef]
- Peréz, C.; Muckle, M.T.; Zaleski, D.P.; Seifert, N.A.; Temelso, B.; Shields, G.C.; Kisiel, Z.; Pate, B.H. Structures of the Cage, Prism, and Book Isomers of Water Hexamer from Broadband Rotational Spectroscopy. Science 2012, 336, 897–901. [Google Scholar] [CrossRef] [Green Version]
- Peréz, C.; Lobsiger, S.; Seifert, N.A.; Zaleski, D.P.; Temelso, B.; Shields, G.C.; Kisiel, Z.; Pate, B.H. Broadband Fourier transform rotational spectroscopy for structure determination: The water heptamer. Chem. Phys. Lett. 2013, 571, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Peréz, C.; Zaleski, D.P.; Seifert, N.A.; Temelso, B.; Shields, G.C.; Kisiel, Z.; Pate, B.H. Hydrogen Bond Cooperativity and the Three-Dimensional Structures of Water Nonamers and Decamers. Angew. Chem. Int. Ed. 2014, 53, 14368–14372. [Google Scholar] [CrossRef] [Green Version]
- De Lucia, F.C.; Helminger, P.; Gordy, W. Millimeter- and Submillimeter-Wavelength Spectrum and Molecular Constants of T2O. Phys. Rev. A 1973, 8, 2785–2791. [Google Scholar] [CrossRef]
- Kisiel, Z. Least-squares mass-dependence molecular structures for selected weakly bound intermolecular clusters. J. Mol. Spectrosc. 2003, 218, 58–67. [Google Scholar] [CrossRef]
- Spoerel, U.; Stahl, W. The Aniline–Water Complex. J. Mol. Spectrosc. 1998, 190, 278–289. [Google Scholar] [CrossRef]
- Boys, S.; Bernardi, F. The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors. Mol. Phys. 1970, 19, 553–566. [Google Scholar] [CrossRef]
- Xantheas, S.S.; Burnham, C.J.; Harrison, R.J. Development of transferable interaction models for water. II. Accurate energetics of the first few water clusters from first principles. J. Chem. Phys. 2002, 116, 1493–1499. [Google Scholar] [CrossRef]
- Temelso, B.; Archer, K.A.; Shields, G.C. Benchmark Structures and Binding Energies of Small Water Clusters with Anharmonicity Corrections. J. Phys. Chem. A 2011, 115, 12034–12046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medvedev, I.; Winnewisser, M.; De Lucia, F.C.; Herbst, E.; Białkowska-Jaworska, E.; Pszczółkowski, L.; Kisiel, Z. The millimeter- and submillimeter-wave spectrum of the trans–gauche conformer of diethyl ether. J. Mol. Spectrosc. 2004, 228, 314–328. [Google Scholar] [CrossRef]
- Kisiel, Z.; Kraśnicki, A. The millimetre-wave rotational spectrum of phenylacetylene. J. Mol. Spectrosc. 2010, 262, 82–88. [Google Scholar] [CrossRef]
- Kisiel, Z.; Kosarzewski, J.; Pszczółkowski, L. Nuclear quadrupole coupling tensor of CH2Cl2: Comparison of quadrupolar and structural angles in methylene halides. Acta. Phys. Pol. A 1997, 92, 507–516. [Google Scholar] [CrossRef]
- Balle, T.J.; Flygare, W.H. Fabry-Perot cavity pulsed Fourier transform microwave spectrometer with a pulsed nozzle particle source. Rev. Sci. Instr. 1981, 52, 33–45. [Google Scholar] [CrossRef]
- Kraśnicki, A.; Pszczółkowski, L.; Kisiel, Z. Analysis of the rotational spectrum of pyruvonitrile up to 324 GHz. J. Mol. Spectrosc. 2010, 260, 57–65. [Google Scholar] [CrossRef]
- Desyatnyk, O.; Pszczółkowski, L.; Thirwirth, S.; Krygowski, T.M.; Kisiel, Z. The rotational spectra, electric dipole moments and molecular structures of anisole and benzaldehyde. Phys. Chem. Chem. Phys. 2005, 7, 1708–1715. [Google Scholar] [CrossRef]
- Kisiel, Z.; Pszczółkowski, L.; Medvedev, I.R.; Winnewisser, M.; De Lucia, F.C.; Herbst, E. Rotational spectrum of trans–trans diethyl ether in the ground and three excited vibrational states. J. Mol. Spectrosc. 2005, 233, 231–243. [Google Scholar] [CrossRef]
- Kisiel, Z.; Pszczółkowski, L.; Drouin, B.J.; Brauer, C.S.; Yu, S.; Pearson, J.C.; Medvedev, I.R.; Fortman, S.; Neese, C. Broadband rotational spectroscopy of acrylonitrile: Vibrational energies from perturbations. J. Mol. Spectrosc. 2012, 280, 134–144. [Google Scholar] [CrossRef]
- Kisiel, Z.; Białkowska-Jaworska, E. Sextic centrifugal distortion in fluorobenzene and phenylacetylene from cm-wave rotational spectroscopy. J. Mol. Spectrosc. 2019, 359, 16–21. [Google Scholar] [CrossRef]
- Pickett, H. The Fitting and Prediction of Vibration-Rotation Spectra with Spin Interactions. J. Mol. Spectrosc. 1991, 148, 371–377. [Google Scholar] [CrossRef]
- JPL Molecular Spectroscopy. Available online: https://spec.jpl.nasa.gov (accessed on 30 September 2021).
- Gaussian 09; Revision B.01; Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A.; Peralta, J.E., Jr.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, O.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J. Gaussian, Inc.: Wallingford, CT, USA, 2010; Available online: https://gaussian.com/g09citation (accessed on 30 September 2021).
- CFOUR, A Quantum Chemical Program Package written by Stanton, J.F.; Gauss, J.; Harding, M.E.; Szalay, P.G. with contributions from Auer, A.A.; Bartlett, R.J.; Benedikt, U.; Berger, C.; Bernholdt, D.E.; Bomble, Y.J.; Christiansen, O.; Heckert, M.; Heun, O.; Huber, C.; Jagau, T.C.; Jonsson, D.; Jusélius, J.; Klein, K.; Lauderdale, W.J.; Matthews, D.A.; Metzroth, T.; O’Neill, D.P.; Price, D.R.; Prochnow, E.; Ruud, K.; Schiffmann, F.; Stopkowicz, S.; Vázquez, J.; Wang, F.; Watts J.D.; and the integral packages MOLECULE (Almlöf, J. and Taylor P.R.), PROPS (Taylor, P.R.), ABACUS (Helgaker, T.; Aa. Jensen, H.J.; Jørgensen, P.; and Olsen, J.), and ECP routines by Mitin, A.V. and van Wüllen, C. For the Current Version; Available online: http://www.cfour.de (accessed on 30 September 2021).
- Firefly; Version 8; Granovsky, A.A. Available online: http://classic.chem.msu.su/gran/firefly/index.html (accessed on 30 September 2021).
0+ | 0+ | 0+ | 0− | |
---|---|---|---|---|
Parameter a | Ref. [5] | Ref. [6] | This Work | This Work |
A/MHz | 5780.34 | 5780.3720(10) b | 5780.37487(28) | 5778.56502(30) |
B/MHz | 2733.57 | 2733.50354(35) | 2733.50446(12) | 2730.18938(14) |
C/MHz | 1857.66 | 1857.67392(40) | 1857.675172(98) | 1857.14913(12) |
ΔJ/kHz | 0.13653(27) | 0.137392(13) | 0.137264(16) | |
ΔJK/kHz | 0.2029(11) | 0.202586(48) | 0.203231(70) | |
ΔK/kHz | 0.9312(44) | 0.93717(23) | 0.93003(27) | |
δJ/kHz | 0.045827(74) | 0.0458083(43) | 0.0456266(56) | |
δK/kHz | 0.36733(99) | 0.365545(88) | 0.364984(95) | |
HK/Hz | 0.000643(56) | 0.000571(65) | ||
Ntrans | 9 | 148 | 261 | 234 |
σfit/kHz | 46.79 | 43.97 | 48.43 |
Parameter | Parent AMP a | AMP-d-5 b | AMP-d-6 b |
---|---|---|---|
A/MHz | 5780.374597(100) | 5778.43386(44) | 5485.85599(45) |
B/MHz | 2733.504446(67) | 2613.82591(45) | 2700.45410(55) |
C/MHz | 1857.675169(52) | 1801.46262(16) | 1811.36749(17) |
ΔJ/kHz | 0.137393(10) | c | c |
ΔJK/kHz | 0.202569(47) | c | c |
ΔK/kHz | 0.93701(16) | c | c |
δJ/kHz | 0.0458083(39) | c | c |
δK/kHz | 0.365563(90) | c | c |
HK/Hz | 0.000605(43) | ||
Na: (3/2)χaa d/MHz | 3.5854(17) | 3.6005(54) | 3.5732(79) |
Na: (χbb − χcc)/4 /MHz | 1.50413(70) | 1.5056(20) | 1.5021(27) |
Na: χcc/MHz | −4.2034(15) | −4.2114(44) | −4.1953(60) |
Nr: (3/2)χaa/MHz | −0.0789(26) | −0.048(11) | 0.226(12) |
Nr: (χbb − χcc)/4 /MHz | −1.15823(85) | −1.1695(25) | −1.2171(35) |
Nr: χcc/MHz | 2.3428(19) | 2.3550(62) | 2.3589(81) |
Ntrans | 344 | 43, 8 e | 41, 8 e |
σfit /kHz | 42.89 + 2.23 f | 3.91 | 4.35 |
Parameter | Parent AMW a | AMW-d-5 a | AMW-d-6 a |
---|---|---|---|
A/MHz | 3722.8201(14) | 3640.3373(12) | 3558.6210(28) |
B/MHz | 1384.23544(25) | 1354.60499(75) | 1383.47362(34) |
C/MHz | 1011.15836(18) | 989.28824(67) | 998.26318(37) |
ΔJ/kHz | 0.2058(20) | 0.2533(94) | 0.2279(57) |
ΔJK/kHz | 0.419(16) | b | b |
ΔK/kHz | 2.21(29) | b | b |
δJ/kHz | 0.0588(14) | b | b |
δK/kHz | 0.612(47) | b | b |
Na: (3/2)χaa/MHz | 3.0091(33) | 3.113(68) | 2.975(35) |
Na: (χbb − χcc)/4 /MHz | 1.55556(100) | 1.542(15) | 1.5513(89) |
Na: χcc/MHz | −4.1142(23) | −4.122(38) | −4.094(24) |
Nr: (3/2)χaa/MHz | −4.8756(28) | −4.821(34) | −4.816(22) |
Nr: (χbb − χcc)/4 /MHz | −0.1284(11) | −0.1455(89) | −0.1256(87) |
Nr: χab/MHz | 1.43(19) | b | b |
Nr: χcc/MHz | 1.8818(22) | 1.894(28) | 1.857(22) |
Ntransc | 97, 23 | 34, 10 | 38, 11 |
σfit /kHz | 1.96 | 5.38 | 3.86 |
AMP | AMW | |||||
---|---|---|---|---|---|---|
Exp. | Calc. a | Calc. b | Exp. | Calc. a | Calc. b | |
Ac/MHz | 5780.374597(100) | 5814.9 | 5689.1 | 3722.8201(14) | 3701.4 | 3652.2 |
B/MHz | 2733.504446(67) | 2736.4 | 2689.2 | 1384.23544(25) | 1410.8 | 1384.5 |
C/MHz | 1857.675169(52) | 1863.2 | 1829.3 | 1011.15836(18) | 1027.0 | 1010.9 |
ΔJ/kHz | 0.137393(10) | 0.1335 | 0.1309 | 0.2058(20) | 0.1734 | 0.1870 |
ΔJK/kHz | 0.202569(47) | 0.2038 | 0.2029 | 0.419(16) | 0.4308 | 0.3419 |
ΔK/kHz | 0.93701(16) | 0.9198 | 0.8659 | 2.21(29) | 2.145 | 2.173 |
δJ/kHz | 0.0458083(39) | 0.04440 | 0.04376 | 0.0588(14) | 0.04755 | 0.04985 |
δK/kHz | 0.365563(90) | 0.3573 | 0.3528 | 0.612(47) | 0.5924 | 0.5861 |
Parameter | Parent AMP | Parent AMW | |||
---|---|---|---|---|---|
Exp. | Calc. a | Exp. | Calc. a | Calc. | |
Na: χaa /MHz | 2.3903(11) | 2.300 | 2.0061(21) | 1.991 | 2.171 b |
Na: χbb /MHz | 1.8132(15) | 1.903 | 2.1081(23) | 2.087 | 2.039 b |
Na: χcc /MHz | −4.2034(15) | −4.203 | −4.1142(23) | −4.078 | −4.203 b |
Nr: χaa /MHz | −0.0526(17) | −0.035 | −3.2504(19) | −3.249 | −3.68 c |
Nr: χbb /MHz | −2.2903(19) | −2.309 | 1.3684(24) | 1.481 | 1.34 c |
Nr: χcc /MHz | 2.3428(19) | 2.343 | 1.8820(24) | 1.769 | 2.34 c |
Nr: χab /MHz | 2.92(15) d | 2.92 | 1.43(19) | 1.715 | 0.70 c |
Nr: χzz /MHz | −4.30(14) | −4.310 | −3.66(10) | −3.829 | −4.30 |
Nr: θza e/deg | 55.5(5) | 55.6 | 15.9(17) | 18.3 | 18.3 |
Nr: θstr f/deg | 17.5 g | 19.9 |
AMW | AMW d-5 | AMW d-6 | ||||
---|---|---|---|---|---|---|
Exp. | o.-c. | Exp. | o.-c. | Exp. | o.-c. | |
Ia/uÅ2 | 135.7523 | 0.0225 | 138.8246 | −0.0317 | 142.0154 | 0.0138 |
Ib/uÅ2 | 365.0978 | 0.0291 | 373.0822 | 0.0299 | 365.2971 | −0.0019 |
Ic/uÅ2 | 499.8001 | 0.0059 | 510.8523 | −0.0054 | 506.2585 | 0.0125 |
fitted a | calc. b | |||||
σfitc = 0.0247 uÅ2 | d(O…Nr) = 2.8489(2) Å | 2.8272 | ||||
A(O…Nr–C2) = 102.71(2)° | 101.75 | |||||
D(HOH…Nr) = 140.9(8)° | 134.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kraśnicki, A.; Kisiel, Z.; Guillemin, J.-C. From Molecular to Cluster Properties: Rotational Spectroscopy of 2-Aminopyridine and of Its Biomimetic Cluster with Water. Molecules 2021, 26, 6870. https://doi.org/10.3390/molecules26226870
Kraśnicki A, Kisiel Z, Guillemin J-C. From Molecular to Cluster Properties: Rotational Spectroscopy of 2-Aminopyridine and of Its Biomimetic Cluster with Water. Molecules. 2021; 26(22):6870. https://doi.org/10.3390/molecules26226870
Chicago/Turabian StyleKraśnicki, Adam, Zbigniew Kisiel, and Jean-Claude Guillemin. 2021. "From Molecular to Cluster Properties: Rotational Spectroscopy of 2-Aminopyridine and of Its Biomimetic Cluster with Water" Molecules 26, no. 22: 6870. https://doi.org/10.3390/molecules26226870
APA StyleKraśnicki, A., Kisiel, Z., & Guillemin, J. -C. (2021). From Molecular to Cluster Properties: Rotational Spectroscopy of 2-Aminopyridine and of Its Biomimetic Cluster with Water. Molecules, 26(22), 6870. https://doi.org/10.3390/molecules26226870