Aggregation-Enhanced Room-Temperature Phosphorescence from Au(I) Complexes Bearing Mesogenic Biphenylethynyl Ligands
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of Gold Complexes
2.2. Photoluminescence Properties of Gold Complexes
2.3. Computational Studies
3. Materials and Methods
3.1. Preparation of Materials
3.2. Single-Crystal XRD Analysis
3.3. Thermal Stability and Phase Transition Behavior Analysis
3.4. Photophysical Properties
3.5. Computational Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Zhang, K.; Liu, J.; Zhang, Y.; Fan, J.; Wang, C.-K.; Lin, L. Theoretical Study of the Mechanism of Aggregation-Caused Quenching in Near-Infrared Thermally Activated Delayed Fluorescence Molecules: Hydrogen-Bond Effect. J. Phys. Chem. C 2019, 123, 24705–24713. [Google Scholar] [CrossRef]
- Tang, B.Z.; Zhan, X.; Yu, G.; Sze Lee, P.P.; Liu, Y.; Zhu, D. Efficient Blue Emission from Siloles. J. Mater. Chem. 2001, 11, 2974–2978. [Google Scholar] [CrossRef]
- Yamada, S.; Rokusha, Y.; Kawano, R.; Fujisawa, K.; Tsutsumi, O. Mesogenic Gold Complexes Showing Aggregation-Induced Enhancement of Phosphorescence in Both Crystalline and Liquid-Crystalline Phases. Faraday Discuss. 2017, 196, 269–283. [Google Scholar] [CrossRef] [PubMed]
- Kawano, R.; Younis, O.; Ando, A.; Rokusha, Y.; Yamada, S.; Tsutsumi, O. Photoluminescence from Au(I) Complexes Exhibiting Color Sensitivity to the Structure of the Molecular Aggregates. Chem. Lett. 2016, 45, 66–68. [Google Scholar] [CrossRef] [Green Version]
- Yamada, S.; Yamaguchi, S.; Tsutsumi, O. Electron-Density Distribution Tuning for Enhanced Thermal Stability of Luminescent Gold Complexes. J. Mater. Chem. C 2017, 5, 7977–7984. [Google Scholar] [CrossRef]
- Fujisawa, K.; Yamada, S.; Yanagi, Y.; Yoshioka, Y.; Kiyohara, A.; Tsutsumi, O. Tuning the Photoluminescence of Condensed-Phase Cyclic Trinuclear Au(I) Complexes through Control of Their Aggregated Structures by External Stimuli. Sci. Rep. 2015, 5, 7934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujisawa, K.; Okuda, Y.; Izumi, Y.; Nagamatsu, A.; Rokusha, Y.; Sadaike, Y.; Tsutsumi, O. Reversible Thermal-Mode Control of Luminescence from Liquid-Crystalline Gold(I) Complexes. J. Mater. Chem. C 2014, 2, 3549–3555. [Google Scholar] [CrossRef]
- Fujisawa, K.; Kawakami, N.; Onishi, Y.; Izumi, Y.; Tamai, S.; Sugimoto, N.; Tsutsumi, O. Photoluminescent Properties of Liquid Crystalline Gold(I) Isocyanide Complexes with a Rod-like Molecular Structure. J. Mater. Chem. C 2013, 1, 5359–5366. [Google Scholar] [CrossRef]
- Kuroda, Y.; Nakamura, S.Y.; Srinivas, K.; Sathyanarayana, A.; Prabusankar, G.; Hisano, K.; Tsutsumi, O. Thermochemically Stable Liquid-Crystalline Gold(I) Complexes Showing Enhanced Room Temperature Phosphorescence. Crystals 2019, 9, 227. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Tang, J.-H.; Chen, W.; Xu, Y.; Wang, H.; Zhang, Z.; Sepehrpour, H.; Cheng, G.-J.; Li, X.; Wang, P.; et al. Temperature- and Mechanical-Force-Responsive Self-Assembled Rhomboidal Metallacycle. Organometallics 2019, 38, 4244–4249. [Google Scholar] [CrossRef]
- Li, S.; Wu, M.; Kang, Y.; Zheng, H.-W.; Zheng, X.-J.; Fang, D.-C.; Jin, L.-P. Grinding-Triggered Single Crystal-to-Single Crystal Transformation of a Zinc(II) Complex: Mechanochromic Luminescence and Aggregation-Induced Emission Properties. Inorg. Chem. 2019, 58, 4626–4633. [Google Scholar] [CrossRef] [PubMed]
- Thefioux, Y.; Cordier, M.; Massuyeau, F.; Latouche, C.; Martineau-Corcos, C.; Perruchas, S. Polymorphic Copper Iodide Anions: Luminescence Thermochromism and Mechanochromism of (PPh4)2[Cu2I4]. Inorg. Chem. 2020, 59, 5768–5780. [Google Scholar] [CrossRef]
- Sathyanarayana, A.; Nakamura, S.; Hisano, K.; Tsutsumi, O.; Srinivas, K.; Prabusankar, G. Controlling the Solid-State Luminescence of Gold(I) N-Heterocyclic Carbene Complexes through Changes in the Structure of Molecular Aggregates. Sci. China Chem. 2018, 61, 957–965. [Google Scholar] [CrossRef]
- Saigusa, H.; Azumi, T. Internal heavy atom effects as studied by the triplet spin sublevel properties of halonaphthalenes. J. Chem. Phys. 1979, 71, 1408. [Google Scholar] [CrossRef]
- Schmidbaur, H.; Schier, A. Aurophilic Interactions as a Subject of Current Research: An up-Date. Chem. Soc. Rev. 2012, 41, 370–412. [Google Scholar] [CrossRef]
- Wuttke, A.; Feldt, M.; Mata, R.A. All That Binds Is Not Gold-The Relative Weight of Aurophilic Interactions in Complex Formation. J. Phys. Chem. A 2018, 122, 6918–6925. [Google Scholar] [CrossRef]
- Olmstead, M.M.; Jiang, F.; Attar, S.; Balch, A.L. Alteration of the Aurophilic Interactions in Trimeric Gold(I) Compounds through Charge Transfer. Behavior of Solvoluminescent Au3(MeN=COMe)3 in the Presence of Electron Acceptors. J. Am. Chem. Soc. 2001, 123, 3260–3267. [Google Scholar] [CrossRef] [PubMed]
- Ge, Z.; Hayakawa, T.; Ando, S.; Ueda, M.; Akiike, T.; Miyamoto, H.; Kajita, T.; Kakimoto, M.-A. Spin-Coated Highly Efficient Phosphorescent Organic Light-Emitting Diodes Based on Bipolar Triphenylamine-Benzimidazole Derivatives. Adv. Funct. Mater. 2008, 18, 584–590. [Google Scholar] [CrossRef]
- Tang, M.-C.; Tsang, D.P.-K.; Wong, Y.-C.; Chan, M.-Y.; Wong, K.M.-C.; Yam, V.W.-W. Bipolar Gold(III) Complexes for Solution-Processable Organic Light-Emitting Devices with a Small Efficiency Roll-Off. J. Am. Chem. Soc. 2014, 136, 17861–17868. [Google Scholar] [CrossRef]
- Mai, D.K.; Lee, J.; Min, I.; Vales, T.P.; Choi, K.-H.; Park, B.J.; Cho, S.; Kim, H.-J. Aggregation-Induced Emission of Tetraphenylethene-Conjugated Phenanthrene Derivatives and Their Bio-Imaging Applications. Nanomaterials 2018, 8, 728. [Google Scholar] [CrossRef] [Green Version]
- Nirmalananthan, N.; Behnke, T.; Hoffmann, K.; Kage, D.; Gers-Panther, C.F.; Frank, W.; Müller, T.J.J.; Resch-Genger, U. Crystallization and Aggregation-Induced Emission in a Series of Pyrrolidinylvinylquinoxaline Derivatives. J. Phys. Chem. C 2018, 122, 11119–11127. [Google Scholar] [CrossRef]
- Li, Q.; Li, Z. The Strong Light-Emission Materials in the Aggregated State: What Happens from a Single Molecule to the Collective Group. Adv. Sci. 2017, 4, 1600484. [Google Scholar] [CrossRef] [PubMed]
- Pinto, A.; Svahn, N.; Lima, J.C.; Rodríguez, L. Aggregation Induced Emission of Gold(i) Complexes in Water or Water Mixtures. Dalton Trans. 2017, 46, 11125–11139. [Google Scholar] [CrossRef] [Green Version]
- Kuroda, Y.; Tamaru, M.; Nakasato, H.; Nakamura, K.; Nakata, M.; Hisano, K.; Fujisawa, K.; Tsutsumi, O. Observation of Crystallisation Dynamics by Crystal-Structure-Sensitive Room-Temperature Phosphorescence from Au(I) Complexes. Commun. Chem. 2020, 3, 139. [Google Scholar] [CrossRef]
- Evans, R.C.; Douglas, P.; Winscom, C.J. Coordination Complexes Exhibiting Room-Temperature Phosphorescence: Evaluation of Their Suitability as Triplet Emitters in Organic Light Emitting Diodes. Coord. Chem. Rev. 2006, 250, 2093–2126. [Google Scholar] [CrossRef]
- Pomestchenko, I.E.; Luman, C.R.; Hissler, M.; Ziessel, R.; Castellano, F.N. Room Temperature Phosphorescence from a Platinum(II) Diimine Bis(Pyrenylacetylide) Complex. Inorg. Chem. 2003, 42, 1394–1396. [Google Scholar] [CrossRef]
- Bi, X.; Shi, Y.; Peng, T.; Yue, S.; Wang, F.; Zheng, L.; Cao, Q.-E. Multi-Stimuli Responsive and Multicolor Adjustable Pure Organic Room Temperature Fluorescence-Phosphorescent Dual-Emission Materials. Adv. Funct. Mater. 2021, 31, 2101312. [Google Scholar] [CrossRef]
- Favereau, L.; Quinton, C.; Poriel, C.; Roisnel, T.; Jacquemin, D.; Crassous, J. Persistent Organic Room-Temperature Phosphorescence in Cyclohexane-Trans-1,2-Bisphthalimide Derivatives: The Dramatic Impact of Heterochiral vs. Homochiral Interactions. J. Phys. Chem. Lett. 2020, 11, 6426–6434. [Google Scholar] [CrossRef] [PubMed]
- Tsutsumi, O.; Tamaru, M.; Nakasato, H.; Shimai, S.; Panthai, S.; Kuroda, Y.; Yamaguchi, K.; Fujisawa, K.; Hisano, K. Highly Efficient Aggregation-Induced Room-Temperature Phosphorescence with Extremely Large Stokes Shift Emitted from Trinuclear Gold(I) Complex Crystals. Molecules 2019, 24, 4606. [Google Scholar] [CrossRef] [Green Version]
- Ando, A.; Ozaki, K.; Shiina, U.; Nagao, E.; Hisano, K.; Kamada, K.; Tsutsumi, O. Aggregation-enhanced direct S0-Tn transitions and room-temperature phosphorescence in gold (I) complex single crystals. Aggregate 2021, 125e. [Google Scholar] [CrossRef]
Complex | Au–Au’ (Å) | C1–Au–C2 (°) |
---|---|---|
B2-4 | 3.46 | 175.8 |
B2-5 | 3.78 | 176.1 |
B3-5 | 3.85 | 174.8 |
Complex | Tdec (°C) | Phase Transition Temperature (°C) |
---|---|---|
B2-4 | 176 | Cr 123 I |
B2-5 | 183 | Cr 139 I |
B3-5 | 183 | Cr1 80 Cr2 132 N 160 I |
Complex | λex (nm) | λmaxlum (nm) | Φ (%) | τ (µs) | kr (s−1) a | knr (s−1) b |
---|---|---|---|---|---|---|
B2-4 | 368 | 500 | 21 | 21 (64%), 150 (36%) | 3.0 × 103 | 1.1 × 104 |
B2-5 | 344 | 492 | 14 | 36 (81%), 363 (19%) | 1.9 × 103 | 1.1 × 104 |
B3-5 | 352 | 500 | 23 | 23 (78%), 178 (22%) | 3.8 × 103 | 1.4 × 104 |
Complex | dAu–Au (Å) | First Excitation Energy | f |
---|---|---|---|
B2-4 | 3.46 | 3.58 eV (346 nm) | 1.34 |
B2-5 | 3.78 | 3.55 eV (348 nm) | 1.04 |
B3-5 | 3.85 | 3.49 eV (354 nm) | 0.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furoida, A.; Daitani, M.; Hisano, K.; Tsutsumi, O. Aggregation-Enhanced Room-Temperature Phosphorescence from Au(I) Complexes Bearing Mesogenic Biphenylethynyl Ligands. Molecules 2021, 26, 7255. https://doi.org/10.3390/molecules26237255
Furoida A, Daitani M, Hisano K, Tsutsumi O. Aggregation-Enhanced Room-Temperature Phosphorescence from Au(I) Complexes Bearing Mesogenic Biphenylethynyl Ligands. Molecules. 2021; 26(23):7255. https://doi.org/10.3390/molecules26237255
Chicago/Turabian StyleFuroida, Andriani, Misato Daitani, Kyohei Hisano, and Osamu Tsutsumi. 2021. "Aggregation-Enhanced Room-Temperature Phosphorescence from Au(I) Complexes Bearing Mesogenic Biphenylethynyl Ligands" Molecules 26, no. 23: 7255. https://doi.org/10.3390/molecules26237255
APA StyleFuroida, A., Daitani, M., Hisano, K., & Tsutsumi, O. (2021). Aggregation-Enhanced Room-Temperature Phosphorescence from Au(I) Complexes Bearing Mesogenic Biphenylethynyl Ligands. Molecules, 26(23), 7255. https://doi.org/10.3390/molecules26237255