Microwave-Assisted Synthesis, Structural Characterization and Assessment of the Antibacterial Activity of Some New Aminopyridine, Pyrrolidine, Piperidine and Morpholine Acetamides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. In Vitro Antibacterial Activity Testing
3. Materials and Methods
3.1. General Information
3.2. Chemistry
3.2.1. General procedure for the preparation of derivatives 16–21
3.2.2. General Procedure for the Preparation of Derivatives 22–28
3.3. Antibiotics
3.4. Bacterial Species
3.5. Antibacterial Susceptibility Testing
3.6. Analysis of Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Lu, H.; Zhou, X.; Wang, L.; Jin, L. Synthesis and Antibacterial Evaluation of N-phenylacetamide Derivatives Containing 4-Arylthiazole Moieties. Molecules 2020, 25, 1772. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.E.; Ihmaid, S.; Omar, A.M.; Shehata, A.M.; Rateb, H.S.; Zayed, M.F.; Ahmed, S.; Elaasser, M.M. Design, synthesis, molecular docking of new lipophilic acetamide derivatives affording potential anticancer and antimicrobial agents. Bioorg. Chem. 2018, 76, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Ghorab, M.M.; Alqahtani, A.S.; Soliman, A.M.; Askar, A.A. Novel N-(Substituted) Thioacetamide Quinazolinone Benzenesulfonamides as Antimicrobial Agents. Int. J. Nanomed. 2020, 15, 3161–3180. [Google Scholar] [CrossRef] [PubMed]
- Kaplancıklı, Z.A.; Altintop, M.D.; Turan-Zitouni, G.; Ozdemir, A.; Ozic, R.; Akalın, G. Synthesis, antimicrobial activity and cytotoxicity of novel oxadiazole derivatives. J. Enzym. Inhib. Med. Chem. 2011, 27, 51–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altintop, M.D.; Abu Mohsen, U.; Okay, Y.; Demirel, R.; Kaplancikli, Z.A. Synthesis and antimicrobial activity of benzimidazole-base acetamide derivatives. Turk. J. Pharm. Sci. 2015, 12, 29–38. [Google Scholar]
- Zogota, R.; Kinena, L.; Withers-Martinez, C.; Blackman, M.J.; Bobrovs, R.; Pantelejevs, T.; Kanepe-Lapsa, I.; Ozola, V.; Jaudzems, K.; Suna, E.; et al. Peptidomimetic plasmepsin inhibitors with potent anti-malarial activity and selectivity against cathepsin D. Eur. J. Med. Chem. 2019, 163, 344–352. [Google Scholar] [CrossRef]
- Li, L.; Zhao, P.; Hu, J.; Liu, J.; Liu, Y.; Wang, Z.; Xia, Y.; Dai, Y.; Chen, L. Synthesis, in vitro and in vivo antitumor activity of scopoletin-cinnamic acid hybrids. Eur. J. Med. Chem. 2015, 93, 300–307. [Google Scholar] [CrossRef]
- Naim, M.J.; Alam, M.J.; Nawaz, F.; Naidu, V.G.M.; Aaghaz, S.; Sahu, M.; Alam, O. Synthesis, molecular docking and anti-diabetic evaluation of 2,4-thiazolidinedione based amide derivatives. Bioorg. Chem. 2017, 73, 24–36. [Google Scholar] [CrossRef]
- Tanwar, B.; Kumar, A.; Yogeeswari, P.; Sriram, D.; Chakraborti, A.K. Design, development of new synthetic methodology, and biological evaluation of substituted quinolines as new anti-tubercular leads. Bioorg. Med. Chem. Lett. 2016, 26, 5960–5966. [Google Scholar] [CrossRef]
- Kouatly, O.; Geronikaki, A.; Kamoutsis, C.; Hadjipavlou-Litina, D.; Eleftheriou, P. Adamantane derivatives of thiazolyl-N-substituted amide, as possible non-steroidal anti-inflammatory agents. Eur. J. Med. Chem. 2009, 44, 1198–1204. [Google Scholar] [CrossRef]
- Wang, M.; Song, X.; Jiang, J.; Xia, J.; Li, M. Binary amide-containing tung-oil-based Ca/Zn stabilizers: Effects on thermal stability and plasticization performance of poly(vinyl chloride) and mechanism of thermal stabilization. Polym. Degrad. Stab. 2017, 143, 106–117. [Google Scholar] [CrossRef]
- Coleman, E.A. Applied Plastics Engineering Handbook, Plastics Additives, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 489–500. [Google Scholar]
- Uppu, D.S.; Samaddar, S.; Ghosh, C.; Paramanandham, K.; Shome, B.R.; Haldar, J. Amide side chain amphiphilic polymers disrupt surface established bacterial bio-films and protect mice from chronic Acinetobacter baumannii infection. Biomaterials 2016, 74, 131–143. [Google Scholar] [CrossRef] [PubMed]
- Kojima, N.; Maruko, D. Cleaning Flux, Cleaning Solder Paste, and Solder Joint. U.S. Patent 10,259,083, 16 April 2019. [Google Scholar]
- Ribeiro, R.F.; Pardini, L.C.; Alves, N.P.; Júnior, C.A.R.B. Thermal Stabilization study of polyacrylonitrile fiber obtained by extrusion. Polímeros 2015, 25, 523–530. [Google Scholar] [CrossRef] [Green Version]
- Zannikos, F.; Lois, E.; Stournas, S. Desulfurization of petroleum fractions by oxidation and solvent extraction. Fuel Process. Technol. 1995, 42, 35–45. [Google Scholar] [CrossRef]
- Zarganes-Tzitzikas, T.; Neochoritis, C.G.; Dömling, A. Atorvastatin (Lipitor) by MCR. ACS Med. Chem. Lett. 2019, 10, 389–392. [Google Scholar] [CrossRef] [Green Version]
- Fabbri, L.M.; Calverley, P.M.; Izquierdo-Alonso, J.L.; Bundschuh, D.S.; Brose, M.; Martinez, F.J.; Rabe, K.F. Roflumilast in moderate-to-severe chronic obstructive pulmonary disease treated with longacting bronchodilators: Two randomised clinical trials. Lancet 2009, 374, 695–703. [Google Scholar] [CrossRef]
- Gupta, K.; Mitra, S.; Kazal, S.; Saroa, R.; Ahuja, V.; Goel, P. IV paracetamol as an adjunct to patient-controlled epidural analgesia with levobupivacaine and fentanyl in labour: A randomized controlled study. Br. J. Anaesth. 2016, 117, 617–622. [Google Scholar] [CrossRef] [Green Version]
- Karaman, M.; Budak, H.; Ciftci, M. Amoxicillin and gentamicin antibiotics treatment adversely influence the fertility and morphology through decreasing the Dazl gene expression level and increasing the oxidative stress. Arch. Physiol. Biochem. 2018, 125, 447–455. [Google Scholar] [CrossRef]
- Kilic, M.; Seyhan, T.O.; Sungur, M.O.; Ekiz, N.; Bastu, E.; Senturk, M. The effects of subfascial wound versus epidural levobu-pivacaine infusion on postoperative pain following hysterectomy. Minerva Anestesiol. 2014, 80, 769–778. [Google Scholar]
- Siddiqui, A.M.; Sattigeri, J.A.; Javed, K.; Shafi, S.; Shamim, M.; Singhal, S.; Malik, Z.M. Design, synthesis and biological evaluation of spiropyrimidinetriones oxazolidinone derivatives as antibacterial agents. Bioorg. Med. Chem. Lett. 2018, 28, 1198–1206. [Google Scholar] [CrossRef]
- Al-Abdullah, E.S.; Al-Tuwaijri, H.M.; Hassan, H.M.; Al-Alshaikh, M.A.; Habib, E.-S.E.; El-Emam, A.A. Synthesis, Antimicrobial and Hypoglycemic Activities of Novel N-(1-Adamantyl)carbothioamide Derivatives. Molecules 2015, 20, 8125–8143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wyrzykiewicz, E.; Wendzonka, M.; Kedzia, B. Synthesis and antimicrobial activity of new (E)-4-[piperidino (4′-methylpiperidino-, morpholino-) N-alkoxy]stilbenes. Eur. J. Med. Chem. 2006, 41, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Arslan, S.; Loğoğlu, E.; Öktemer, A. Antimicrobial activity studies on some piperidine and pyrrolidine substituted halogenobenzene derivatives. J. Enzym. Inhib. Med. Chem. 2006, 21, 211–214. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Lee, J.S.; Cha, J.H.; Pae, A.N.; Cho, Y.S.; Chang, M.H.; Koh, H.Y. Synthesis and in vitro activity of new methylenepiperidinyl and methylenepyrrolidinyl oxazolidinone antibacterial agents. Bioorg. Med. Chem. Lett. 2003, 13, 2227–2230. [Google Scholar] [CrossRef]
- Kamiński, K.; Obniska, J.; Wiklik, B.; Atamanyuk, D. Synthesis and anticonvulsant properties of new acetamide derivatives of phthalimide, and its saturated cyclohexane and norbornene analogs. Eur. J. Med. Chem. 2011, 46, 4634–4641. [Google Scholar] [CrossRef]
- Kumar, K.N.; Sreeramamurthy, K.; Palle, S.; Mukkanti, K.; Das, P. Dithiocarbamate and DBU-promoted amide bond formation under microwave condition. Tetrahedron Lett. 2010, 51, 899–902. [Google Scholar] [CrossRef]
- Nakamoto, K.; Tsukada, I.; Tanaka, K.; Matsukura, M.; Haneda, T.; Inoue, S.; Murai, N.; Abe, S.; Ueda, N.; Miyazaki, M.; et al. Synthesis and evaluation of novel antifungal agents-quinoline and pyridine amide derivatives. Bioorg. Med. Chem. Lett. 2010, 20, 4624–4626. [Google Scholar] [CrossRef]
- Tang, J.; Wang, B.; Wu, T.; Wan, J.; Tu, Z.; Njire, M.; Wan, B.; Franzblauc, S.G.; Zhang, T.; Lu, X.; et al. Design, Synthesis, and Biological Evaluation of Pyrazolo[1,5-a]pyridine-3-carboxamides as Novel Antitubercular Agents. ACS Med. Chem. Lett. 2015, 6, 814–818. [Google Scholar] [CrossRef] [Green Version]
- Oliver, K.C. Microwave dielectric heating in synthetic organic chemistry. Chem. Soc. Rev. 2008, 37, 1127–1139. [Google Scholar] [CrossRef]
- Alsamarrai, A.S.H.; Abdulla, N.H.; Aldoori, M.K. Synthesis and Characterization of yl)-N-(Substituted Phenyl) Acetamides Derivatives Anticipated to Inhibit HIV-1 Activity. Pharm. Phytopharm. Res. (eIJPPR) 2018, 8, 7–11. [Google Scholar]
- Chari, M.A.; Syamasundar, K. Polymer (PVP) supported ferric chloride: An efficient and recyclable heterogeneous catalyst for high yield synthesis of 1,5-benzodiazepine derivatives under solvent free conditions and microwave irradiation. Catal. Commun. 2005, 6, 67–70. [Google Scholar] [CrossRef]
- De la Hoz, A.; Diaz-Ortiz, A.; Moreno, A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem. Soc. Rev. 2005, 34, 164–178. [Google Scholar] [CrossRef] [PubMed]
- Özden, S.; Atabey, D.; Yıldız, S.; Göker, H. Synthesis and potent antimicrobial activity of some novel methyl or ethyl 1H-benzimidazole-5-carboxylates derivatives carrying amide or amidine groups. Bioorg. Med. Chem. 2005, 13, 1587–1597. [Google Scholar] [CrossRef] [PubMed]
- Andrews, J.M. BSAC standardized disc susceptibility testing method (version 4). J. Antimicrob. Chemother. 2005, 56, 60–76. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute. M100. Performance Standards for Antibacterial Testing, 27th ed.; CLSI: Wayne, PA, USA, 2017. [Google Scholar]
- Trivedi, M.K.; Branton, A. Antimicrobial Susceptibility of Proteus mirabilis: Impact of Biofield Energy Treatment. J. Microb. Biochem. Technol. 2015, 8, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Giovanetti, E.; Prenna, M.; Repetto, A.; Biavasco, F.; Romagnoli, M.; Ripa, S.; Varaldo, P.E. Susceptibility of Streptococcus pyogenes from throat cultures to macrolide antibiotics and influence of collection criteria. Clin. Microbiol. Infect. 1997, 3, 58–62. [Google Scholar] [CrossRef]
- Benouda, A.; Sibile, S.; Ziane, Y.; Elouennass, M.; Dahani, K.; Hassani, A. Place of Streptococcus pyogenes in the throat infection in Morocco and overview of its susceptibility to antibiotics. Pathol. Biol. 2009, 57, 76–80. [Google Scholar] [CrossRef]
- Nakae, M.; Murai, T.; Kaneko, Y.; Mitsuhashi, S. Drug Resistance in Streptococcus pyogenes Isolated in Japan (1974–1975). Antimicrob. Agents Chemother. 1977, 12, 427–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva-Costa, C.; Ramiirez, M.; Melo-Crisino, J. Portuguense by a diversification of T and emm types among streptococcus pyogenes in Portugal. Antimicrob agents Chemther. Surveillance group for the study of respiratory pathogens. Rapid Invers. Preval. Macrolide Resist. Phenotype Paralleled 2005, 49, 2109–2111. [Google Scholar]
- Camara, M.; Dieng, A.; Boye, C.S.B. Antibiotic Susceptibility ofStreptococcus PyogenesIsolated from Respiratory Tract Infections in Dakar, Senegal. Microbiol. Insights 2013, 6, 71–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Zhao, Y.; Zhou, H.; Ning, A.; Zhang, F.; Kent, Z.Z. Synthesis of pyridinium N-chloramines for antibacterial applications. Tetrahedron Lett. 2017, 58, 321–325. [Google Scholar] [CrossRef]
- Hoelzer, K.; Cummings, K.J.; Warnick, L.D.; Schukken, Y.H.; Siler, J.D.; Gröhn, Y.T.; Davis, M.A.; Besser, T.E.; Wiedmann, M. Agar Disk Diffusion and Automated Microbroth Dilution Produce Similar Antimicrobial Susceptibility Testing Results forSalmonellaSerotypes Newport, Typhimurium, and 4,5,12:i-, But Differ in Economic Cost. Foodborne Pathog. Dis. 2011, 8, 1281–1288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Comp. No. | Recryst. Solvent | Color | M. P. °C | Yield% of Conventional Method | Yield% of Microwave Method |
---|---|---|---|---|---|
16 | n-Hexane | Gray | 143–145 | 78 | |
17 | Ethanol | White | 202–203 | 85 | |
18 | Ethanol | Brown | 276–278 | 60 | |
19 | n-Hexane:methanol 1:3 | Brown | 196–198 | 83 | |
20 | Ethyl acetate:acetone 1:1 | White | 251–253 | 80 | |
21 | n-Hexane | Brown | 198–200 | 90 | |
22 | n-Hexane | Gray | 183–185 | 24 | 50 |
23 | Ethanol | Yellow | 188–189 | 55 | 85 |
24 | n-Hexane:ethanol 1:3 | White | 197–198 | 55 | 78 |
25 | Ethyl acetate:ethanol 1:1 | White | 170–172 | 30 | 90 |
26 | Methanol | white | 204–207 | 53 | 78 |
27 | n-Hexane:methanol 1:1 | White | 251–253 | 60 | 76 |
28 | Ethanol | Brown | 212–213 | 50 | 62 |
Structure | Chemical Shift (δ) ppm | Signal Features | No. of Protons | Type of Protons |
---|---|---|---|---|
22 | 7.20–6.75 6.32 3.36 and 1.75 3.30 | dd, J2,3 5.25 Hz, J2,6 1.30 Hz s 2m s | 4H 1H 8H 2H | aromatic NH pyrrolidinyl proton -CH2CO- |
23 | 7.75–7.42 4.20 2.85 and 1.90 2.35 | dd, J2,3 5.35 Hz, J2,6 1.30 Hz s 2m s | 4H 2H 8H 3H | tolyl -CH2CO- pyrrolidinyl proton CH3 |
24 | 7.20–6.70 6.35 3.20 2.90 and 1.45 | dd, J2,3 5.0 Hz, J2,6 1.45 Hz s s 2 m | 4H 1H 2H 10H | aromatic NH -CH2CO- piperidinyl proton |
25 | 7.75–7.42 4.15 3.70 and 2.50 2.40 | dd, J2,3 5.26 Hz, J2,6 1.4 Hz s 2t s | 4H 2H 8H 3H | tolyl protons -CH2CO morpholinyl protons CH3 |
26 | 10.65 9.0 8.41–7.10 7.70–7.35 4.20 2.35 | s s dd, J4,5 5.31 Hz, J5,6 5.25 Hz dd, J2,3 5.25 Hz, J2,6 1.5 Hz s s | 1H 1H 3H 4H 2H 3H | NH pyridinyl proton pyridinyl protons tolyl protons CH2 CH3 |
27 | 9.90 8.41–7.91 7.65–6.40 4.25 2.32 | s dd, J2,3 5,31 Hz., J2,6 1.45 Hz dd, J2,3 5.20, J2,6 1.5 Hz s s | 1H 4H 4H 2H 3H | NH pyridinyl protons tolyl protons CH2 CH3 |
28 | 10.40 8.30–7.40 7.60–7.45 4.25 2.45–2.35 | s 2s dd, J2,3 5.26 Hz, J2,6 1.55 Hz s 3s | 1H 2H 4H 2H 9H | NH pyridinyl proton tolyl protons CH2 3CH3 |
Amx | Azi | Doxy | Cep | Am | 22 | 24 | |
---|---|---|---|---|---|---|---|
20 µg | 15 µg | 30 µg | 30 µg | 25 µg | 37.5 µg/mL | 37.5 µg/mL | |
E. coli | 12.3 | 17.0 | 19.0 | 13.5 | 16.0 | 7.7 | 5.8 |
P. mirabilis | 12.8 | 11.0 | 13.0 | 11.0 | 7.5 | 14.2 | 12.9 |
S. pyogenes | 5.8 | 6.5 | 7.3 | 7.6 | 6.4 | 15.0 | 13.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsamarrai, A.S.H.; Abdulghani, S.S. Microwave-Assisted Synthesis, Structural Characterization and Assessment of the Antibacterial Activity of Some New Aminopyridine, Pyrrolidine, Piperidine and Morpholine Acetamides. Molecules 2021, 26, 533. https://doi.org/10.3390/molecules26030533
Alsamarrai ASH, Abdulghani SS. Microwave-Assisted Synthesis, Structural Characterization and Assessment of the Antibacterial Activity of Some New Aminopyridine, Pyrrolidine, Piperidine and Morpholine Acetamides. Molecules. 2021; 26(3):533. https://doi.org/10.3390/molecules26030533
Chicago/Turabian StyleAlsamarrai, Abdulmajeed S. H., and Saba S. Abdulghani. 2021. "Microwave-Assisted Synthesis, Structural Characterization and Assessment of the Antibacterial Activity of Some New Aminopyridine, Pyrrolidine, Piperidine and Morpholine Acetamides" Molecules 26, no. 3: 533. https://doi.org/10.3390/molecules26030533
APA StyleAlsamarrai, A. S. H., & Abdulghani, S. S. (2021). Microwave-Assisted Synthesis, Structural Characterization and Assessment of the Antibacterial Activity of Some New Aminopyridine, Pyrrolidine, Piperidine and Morpholine Acetamides. Molecules, 26(3), 533. https://doi.org/10.3390/molecules26030533