Biochemical Characterization and Structural Insight into Interaction and Conformation Mechanisms of Serratia marcescens Lysine Decarboxylase (SmcadA)
Abstract
:1. Introduction
2. Results
2.1. Phylogeny, Residue Conservation Profiling and Sequence Analysis
2.2. Protein Structure, Expression and Purification
2.3. Characterization of Purified SmcadA and Variants
2.4. Elucidating the Role of Mutations in Influencing Protein-Cofactor Interactions of SmcadA
2.5. Thermal Induced Residue and Cofactor Conformational Rearrangements of SmcadA and Variants
3. Discussion
4. Materials and Methods
4.1. Materials, Culture Medium and Conditions
4.2. Protein Sequence Analysis and Phylogenetic Construction
4.3. Construction of Recombinant Strains
4.4. Expression and Purification of SmcadA and Variants
4.5. Biochemical Characterization of the Pure Enzyme and Mutants
4.6. Molecular Dynamics (MD) Simulation and Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Ethics Approval
Conflicts of Interest
Sample Availability
References
- Sandmeier, E.; Hale, T.I.; Christen, P. Multiple evolutionary origin of pyridoxal-5’-phosphate-dependent amino acid decarboxylases. Eur. J. Biochem. 1994, 221, 997–1002. [Google Scholar] [CrossRef] [PubMed]
- Buschke, N.; Becker, J.; Schafer, R.; Kiefer, P.; Biedendieck, R.; Wittmann, C. Systems metabolic engineering of xylose-utilizing Corynebacterium glutamicum for production of 1,5-diaminopentane. Biotechnol. J. 2013, 8, 557–570. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, H.J.; Kim, Y.H.; Jeon, J.M.; Song, H.S.; Kim, J.; No, S.Y.; Shin, J.H.; Choi, K.Y.; Park, K.M.; et al. Functional Study of Lysine Decarboxylases from Klebsiella pneumoniae in Escherichia coli and Application of Whole Cell Bioconversion for Cadaverine Production. J. Microbiol. Biotechnol. 2016, 26, 1586–1592. [Google Scholar] [CrossRef] [PubMed]
- Aznar, A.; Dellagi, A. New insights into the role of siderophores as triggers of plant immunity: What can we learn from animals? J. Exp. Bot. 2015, 66, 3001–3010. [Google Scholar] [CrossRef] [Green Version]
- Sturgill, G.; Rather, P.N. Evidence that putrescine acts as an extracellular signal required for swarming in Proteus mirabilis. Mol. Microbiol. 2004, 51, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, K.; Ito, K.; Kashiwagi, K. Polyamine uptake systems in Escherichia coli. Res. Microbiol. 2001, 152, 271–278. [Google Scholar] [CrossRef]
- Merrell, D.S.; Camilli, A. The cadA gene of Vibrio cholerae is induced during infection and plays a role in acid tolerance. Mol. Microbiol. 1999, 34, 836–849. [Google Scholar] [CrossRef]
- Kojima, S.; Ko, K.C.; Takatsuka, Y.; Abe, N.; Kaneko, J.; Itoh, Y.; Kamio, Y. Cadaverine Covalently Linked to Peptidoglycan Is Required for Interaction between the Peptidoglycan and the Periplasm-Exposed S-Layer-Homologous Domain of Major Outer Membrane Protein Mep45 in Selenomonas ruminantium. J. Bacteriol. 2010, 192, 5953–5961. [Google Scholar] [CrossRef] [Green Version]
- Kojima, S.; Kaneko, J.; Abe, N.; Takatsuka, Y.; Kamio, Y. Cadaverine Covalently Linked to the Peptidoglycan Serves as the Correct Constituent for the Anchoring Mechanism between the Outer Membrane and Peptidoglycan in Selenomonas ruminantium. J. Bacteriol. 2011, 193, 2347–2350. [Google Scholar] [CrossRef] [Green Version]
- Patel, C.N.; Wortham, B.W.; Lines, J.L.; Fetherston, J.D.; Perry, R.D.; Oliveira, M.A. Polyamines are essential for the formation of plague biofilm. J. Bacteriol. 2006, 188, 2355–2363. [Google Scholar] [CrossRef] [Green Version]
- Mimitsuka, T.; Sawai, H.; Hatsu, M.; Yamada, K. Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation. Biosci. Biotechnol. Biochem. 2007, 71, 2130–2135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugawara, A.; Matsui, D.; Takahashi, N.; Yamada, M.; Asano, Y.; Isobe, K. Characterization of a pyridoxal-5′-phosphate-dependent L-lysine decarboxylase/oxidase from Burkholderia sp AIU 395. J. Biosci. Bioeng. 2014, 118, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Tateno, T.; Okada, Y.; Tsuchidate, T.; Tanaka, T.; Fukuda, H.; Kondo, A. Direct production of cadaverine from soluble starch using Corynebacterium glutamicum coexpressing alpha-amylase and lysine decarboxylase. Appl. Microbiol. Biotechnol. 2009, 82, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Meng, S.Y.; Bennett, G.N. Nucleotide-Sequence of the Escherichia-Coli Cad Operon—A System for Neutralization of Low Extracellular Ph. J. Bacteriol. 1992, 174, 2659–2669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eliot, A.C.; Kirsch, J.F. Pyridoxal phosphate enzymes: Mechanistic, structural, and evolutionary considerations. Annu. Rev. Biochem. 2004, 73, 383–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monod, J.; Wyman, J.; Changeux, J.P. On the Nature of Allosteric Transitions: A Plausible Model. J. Mol. Biol. 1965, 12, 88–118. [Google Scholar] [CrossRef]
- Allain, A.; Chauvot de Beauchene, I.; Langenfeld, F.; Guarracino, Y.; Laine, E.; Tchertanov, L. Allosteric pathway identification through network analysis: From molecular dynamics simulations to interactive 2D and 3D graphs. Faraday Discuss. 2014, 169, 303–321. [Google Scholar] [CrossRef] [Green Version]
- Osire, T.; Yang, T.; Xu, M.; Zhang, X.; Long, M.; Ngon, N.K.A.; Rao, Z. Integrated gene engineering synergistically improved substrate-product transport, cofactor generation and gene translation for cadaverine biosynthesis in E. coli. Int. J. Biol. Macromol. 2020, 169, 8–17. [Google Scholar] [CrossRef]
- Han, L.F.; Yuan, J.J.; Ao, X.L.; Lin, S.J.; Han, X.; Ye, H.H. Biochemical Characterization and Phylogenetic Analysis of the Virulence Factor Lysine Decarboxylase From Vibrio vulnificus. Front. Microbiol. 2018, 9, 3082. [Google Scholar] [CrossRef]
- Phillips, R.S.; Poteh, P.; Krajcovic, D.; Miller, K.A.; Hoover, T.R. Crystal Structure of D-Ornithine/D-Lysine Decarboxylase, a Stereoinverting Decarboxylase: Implications for Substrate Specificity and Stereospecificity of Fold Ill Decarboxylases. Biochemistry 2019, 58, 1038–1042. [Google Scholar] [CrossRef]
- Kanjee, U.; Gutsche, I.; Alexopoulos, E.; Zhao, B.Y.; El Bakkouri, M.; Thibault, G.; Liu, K.Y.; Ramachandran, S.; Snider, J.; Pai, E.F.; et al. Linkage between the bacterial acid stress and stringent responses: The structure of the inducible lysine decarboxylase. EMBO J. 2011, 30, 931–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, W.W.; Mallette, M.F. Colorimetric assay for lysine decarboxylase in Escherichia coli. Appl. Microbiol. 1970, 19, 367–369. [Google Scholar] [CrossRef] [PubMed]
- Kandiah, E.; Carriel, D.; Perard, J.; Malet, H.; Bacia, M.; Liu, K.; Chan, S.W.; Houry, W.A.; de Ollagnier Choudens, S.; Elsen, S.; et al. Structural insights into the Escherichia coli lysine decarboxylases and molecular determinants of interaction with the AAA+ ATPase RavA. Sci. Rep. 2016, 6, 24601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, T.; Bellinzoni, M.; Wehenkel, A.; O’Hare, H.M.; Alzari, P.M. Functional Plasticity and Allosteric Regulation of alpha-Ketoglutarate Decarboxylase in Central Mycobacterial Metabolism. Chem. Biol. 2011, 18, 1011–1020. [Google Scholar] [CrossRef] [Green Version]
- Kutter, S.; Weiss, M.S.; Wille, G.; Golbik, R.; Spinka, M.; Konig, S. Covalently Bound Substrate at the Regulatory Site of Yeast Pyruvate Decarboxylases Triggers Allosteric Enzyme Activation. J. Biol. Chem. 2009, 284, 12136–12144. [Google Scholar] [CrossRef] [Green Version]
- Grishin, N.V.; Phillips, M.A.; Goldsmith, E.J. Modeling of the spatial structure of eukaryotic ornithine decarboxylases. Protein Sci. 1995, 4, 1291–1304. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Han, Q.; Tan, Y.; Ding, H.; Li, J. Current Advances on Structure-Function Relationships of Pyridoxal 5’-Phosphate-Dependent Enzymes. Front. Mol. Biosci. 2019, 6, 4. [Google Scholar] [CrossRef] [Green Version]
- Manta, B.; Cassimjee, K.E.; Himo, F. Quantum Chemical Study of Dual-Substrate Recognition in omega-Transaminase. ACS Omega 2017, 2, 890–898. [Google Scholar] [CrossRef] [Green Version]
- Li, M.H.; Kwok, F.; Chang, W.R.; Liu, S.Q.; Lo, S.C.; Zhang, J.P.; Jiang, T.; Liang, D.C. Conformational changes in the reaction of pyridoxal kinase. J. Biol. Chem. 2004, 279, 17459–17465. [Google Scholar] [CrossRef] [Green Version]
- di Salvo, M.L.; Contestabile, R.; Safo, M.K. Vitamin B-6 salvage enzymes: Mechanism, structure and regulation. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2011, 1814, 1597–1608. [Google Scholar] [CrossRef]
- Craveur, P.; Joseph, A.P.; Esque, J.; Narwani, T.J.; Noel, F.; Shinada, N.; Goguet, M.; Leonard, S.; Poulain, P.; Bertrand, O.; et al. Protein flexibility in the light of structural alphabets. Front. Mol. Biosci. 2015, 2, 20. [Google Scholar] [CrossRef] [Green Version]
- Lewis, J.P.; Carter, C.W.; Hermans, J.; Pan, W.; Lee, T.S.; Yang, W.T. Active species for the ground-state complex of cytidine deaminase: A linear-scaling quantum mechanical investigation. J. Am. Chem. Soc. 1998, 120, 5407–5410. [Google Scholar] [CrossRef]
- Liang, J.; Han, Q.; Ding, H.Z.; Li, J.Y. Biochemical identification of residues that discriminate between 3,4-dihydroxyphenylalanine decarboxylase and 3,4-dihydroxyphenylacetaldehyde synthase-mediated reactions. Insect Biochem. Mol. Biol. 2017, 91, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Letunic, I.; Bork, P. Interactive tree of life (iTOL) v3: An online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016, 44, W242–W245. [Google Scholar] [CrossRef]
- Crooks, G.E.; Hon, G.; Chandonia, J.M.; Brenner, S.E. WebLogo: A sequence logo generator. Genome Res. 2004, 14, 1188–1190. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Zhang, X.; Liu, F.; Xu, M.; Yang, T.; Long, M.; Zhou, J.; Osire, T.; Yang, S.; Rao, Z. Designing of a Cofactor Self-Sufficient Whole-Cell Biocatalyst System for Production of 1,2-Amino Alcohols from Epoxides. ACS Synth. Biol. 2019, 8, 734–743. [Google Scholar] [CrossRef]
- Osire, T.; Yang, T.; Xu, M.; Zhang, X.; Li, X.; Niyomukiza, S.; Rao, Z. Lys-Arg mutation improved the thermostability of Bacillus cereus neutral protease through increased residue interactions. World J. Microbiol. Biotechnol. 2019, 35, 173. [Google Scholar] [CrossRef]
- Sino_Biological. Inc. Biology Assays & Protocols: Native PAGE Principle. Available online: http://www.assay-protocol.com/molecular-biology/electrophoresis/native-page.html (accessed on 5 January 2021).
- Uwase, J.; Chu, R.; Kassegne, K.; Lei, Y.; Shen, F.; Fu, H.; Sun, Y.; Xuan, Y.; Cao, J.; Cheng, Y. Immunogenicity analysis of conserved fragments in Plasmodium ovale species merozoite surface protein 4. Malar. J. 2020, 19, 126. [Google Scholar] [CrossRef]
- Kikuchi, Y.; Kojima, H.; Tanaka, T.; Takatsuka, Y.; Kamio, Y. Characterization of a second lysine decarboxylase isolated from Escherichia coli. J. Bacteriol 1997, 179, 4486–4492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemkul, J.A. From Proteins to Perturbed Hamiltonians: A Suite of Tutorials for the GROMACS. Living J. Comput. Mol. Sci. 2019, 1, 5068. [Google Scholar]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Enzyme | Tm (°C) | T1/2 (min) | Residual Activity (%) after Incubation at 40 and 60 °C for Different Time Intervals (min) | |
---|---|---|---|---|
40 °C | 60 °C | |||
SmcadA WT | 40 | 450 | 55 | |
Ser512Ala | 40 | 600 | 68 | |
Arg595Lys | 40 | 558 | 51 |
Enzyme | Amount of Protein (mg/mL) | Vmax (U/mL) | Km (mM) | Specific Activity (U/mg) |
---|---|---|---|---|
SmcadA WT | 0.403 | 1.076 ± 0.069 | 1.27 ± 0.286 | 179.01 |
Ser512Ala | 0.353 | 0.934 ± 0.135 | 1.61 ± 0.819 | 215.72 |
Arg595Lys | 0.336 | 0.963 ± 0.153 | 2.13 ± 1.039 | 286.55 |
Item | Description | Source |
---|---|---|
Strains | ||
BL21 (DE3) | F-dcm ompT hsdS (rB-mB-) gal λ(DE3) | Laboratory collection |
Plasmids | ||
pMD18T | Cloning vector, 2692 bp, AmpR, lacZ | TaKaRa |
pET28a | E. coli expression vector, T7, AmpR | Laboratory collection |
pET28a-SmcadA | Expression of SmcadA in E. coli BL21 (DE3) | This Study |
Primers | Primer sequence (5′-3′) | Function |
pET28a-SmcadA-F | ccatcatcaccacagccaggatccatgaacgttatc | Amplification of S. marcescens cadA gene |
pET28a-SmcadA-R | cttaagcattatgcggccgcaagcttttatttcgccttc |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osire, T.; Qiao, Z.; Yang, T.; Xu, M.; Zhang, X.; Rao, Z. Biochemical Characterization and Structural Insight into Interaction and Conformation Mechanisms of Serratia marcescens Lysine Decarboxylase (SmcadA). Molecules 2021, 26, 697. https://doi.org/10.3390/molecules26030697
Osire T, Qiao Z, Yang T, Xu M, Zhang X, Rao Z. Biochemical Characterization and Structural Insight into Interaction and Conformation Mechanisms of Serratia marcescens Lysine Decarboxylase (SmcadA). Molecules. 2021; 26(3):697. https://doi.org/10.3390/molecules26030697
Chicago/Turabian StyleOsire, Tolbert, Zhina Qiao, Taowei Yang, Meijuan Xu, Xian Zhang, and Zhiming Rao. 2021. "Biochemical Characterization and Structural Insight into Interaction and Conformation Mechanisms of Serratia marcescens Lysine Decarboxylase (SmcadA)" Molecules 26, no. 3: 697. https://doi.org/10.3390/molecules26030697
APA StyleOsire, T., Qiao, Z., Yang, T., Xu, M., Zhang, X., & Rao, Z. (2021). Biochemical Characterization and Structural Insight into Interaction and Conformation Mechanisms of Serratia marcescens Lysine Decarboxylase (SmcadA). Molecules, 26(3), 697. https://doi.org/10.3390/molecules26030697