Subcritical Water Extraction of Salvia miltiorrhiza
Abstract
:1. Introduction
2. Results and Discussion
2.1. Subcritical Water Extraction of Salvia Miltiorrhiza
2.2. Reproduction Assay of Caenorhabditis Elegans
3. Materials and Methods
3.1. Reagents and Supplies
3.2. Preparation of Solutions
3.3. Subcritical Water Extraction of Salvia Miltiorrhiza
3.4. Traditional Herbal Decoction of Salvia Miltiorrhiza
3.5. Sample Treatment
3.6. HPLC Analysis
3.7. GC/MS Analysis
3.8. Reproduction Studies on Caenorhabditis Elegans
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Sample Availability
Abbreviations
SBWE | subcritical water extraction |
APIs | active pharmaceutical ingredients |
THD | traditional herbal decoction |
References
- Gibson, J.E.; Taylor, D.A. Can claims, misleading information, and manufacturing issues regarding dietary supplements be improved in the United States of America? J. Pharmacol. Exp. Ther. 2005, 314, 939–944. [Google Scholar] [CrossRef] [Green Version]
- Wold, R.S.; Lopez, S.T.; Yau, C.L.; Butler, L.M.; Pareo-Tubbeh, S.L.; Waters, D.L.; Garry, P.J.; Baumgartner, R.N. Increasing trends in elderly persons use of nonvitamin, nonmineral dietary supplements and concurrent use of medicines. J. Am. Diet. Assoc. 2005, 105, 54–63. [Google Scholar] [CrossRef]
- Huang, K.C. The Pharmacology of Chinese Herbs; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Taylor, D.A. Botanical Supplements: Weeding out the health risks. Environ. Health Perspect. 2004, 112, A750–A753. [Google Scholar] [CrossRef] [Green Version]
- Committee on the Framework for Evaluating the Safety of Dietary Supplements; Food and Nutrition Board; Board on Life Sciences; Institute of Medicine; National Research Council of the National Academies of Science. Dietary Supplements: A Framework for Evaluating Safety; National Academies Press: Washington, DC, USA, 2004. [Google Scholar]
- Ong, E.S. Extraction methods and chemical standardization of botanicals and herbal preparations. J. Chromatogr. B 2004, 812, 23–33. [Google Scholar] [CrossRef]
- Nile, S.H.; Nile, A.S.; Keum, Y.S. Total phenolics, antioxidant, antitumor, and enzyme inhibitory activity of Indian medicinal and aromatic plants extracted with different extraction methods. Biotech 2017, 7, 76. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Zhao, X.; Dang, J.; Sun, X.; Zheng, L.; You, J.; Wang, X. Rapid and sensitive determination of phytosterols in functional foods and medicinal herbs by using UHPLC–MS/MS with microwave-assisted derivatization combined with dual ultrasound-assisted dispersive liquid–liquid microextraction. J. Sep. Sci. 2017, 40, 725–732. [Google Scholar] [CrossRef]
- Santos, Ê.R.M.; Oliveiraa, H.N.M.; Oliveira, E.J.; Azevedoa, S.H.G.; Jesus, A.A.; Medeiros, A.M.; Darivac, C.; Sousa, E.M.B.D. Supercritical fluid extraction of Rumex Acetosa L. roots: Yield, composition, kinetics, bioactive evaluation and comparison with conventional techniques. J. Supercrit. Fluids 2017, 122, 1–9. [Google Scholar] [CrossRef]
- Sánchez-Camargo, A.P.; Ibáñez, E.; Cifuentes, A.; Herrero, M. Bioactives Obtained from Plants, Seaweeds, Microalgae and Food By-Products Using Pressurized Liquid Extraction and Supercritical Fluid Extraction. Compr. Anal. Chem. 2017. [Google Scholar] [CrossRef]
- Mukherjee, P.K. Extraction of herbal drugs. Quality Control of Herbal Drugs, An Approach to Evaluation of Botanicals, 1st ed.; Business Horizons Pharmaceutical Publishers: New Delhi, India, 2002; pp. 379–425. [Google Scholar]
- Yang, Y.; Belghazi, M.; Hawthorne, S.B.; Miller, D.J. Elution of organic solutes from different polarity sorbents using subcritical water conditions. J. Chromatogr. A 1998, 810, 149–159. [Google Scholar] [CrossRef]
- Yang, Y. Subcritical water chromatography: A green approach to high-temperature liquid chromatography. J. Sep. Sci. 2007, 30, 1131–1140. [Google Scholar] [CrossRef]
- Miller, D.J.; Hawthorne, S.B. Subcritical water chromatography with flame ionization detection. Anal. Chem. 1997, 69, 623–627. [Google Scholar] [CrossRef]
- Smith, R.M. Superheated water chromatography—A green technology for the future. J. Chromatogr. A. 2008, 1184, 441–455. [Google Scholar] [CrossRef] [PubMed]
- Doctor, N.; Yang, Y. Separation and Analysis of Aspirin and Metformin HCl Using Green Subcritical Water Chromatography. Molecules 2018, 23, 2258. [Google Scholar] [CrossRef] [Green Version]
- Doctor, N.; Parker, G.; Vang, V.; Smith, M.; Kayan, B.; Yang, Y. Stability and Extraction of Vanillin and Coumarin under Subcritical Water Conditions. Molecules 2020, 25, 1601. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Hawthorne, S.B.; Miller, D.J. Class-selective extraction of polar, moderately-, and nonpolar organic pollutants from solid waste using subcritical water. Environ. Sci. Technol. 1997, 31, 430–437. [Google Scholar] [CrossRef]
- Essien, S.O.; Young, B.; Baroutian, S. Recent advances in subcritical water and supercritical carbon dioxide extraction of bioactive compounds from plant materials. Trends Food Sci. Technol. 2020, 97, 156–169. [Google Scholar] [CrossRef]
- Yang, Y.; Kayan, B.; Bozer, N.; Pate, B.; Baker, C.; Gizir, A.M. Terpene degradation and extraction from basil and oregano leaves using subcritical water. J. Chromatogr. A 2007, 1152, 262–267. [Google Scholar] [CrossRef]
- Abdelmoumen, B.; Jaroslava, Š.; Nataša, N.; Sofiane, G.; Daoud, H. Subcritical water extraction of polyphenols from endemic Algerian plants with medicinal properties. Acta Period. Technol. 2020, 51, 191–206. [Google Scholar]
- Kiamahalleha, M.V.; Najafpour-Darzi, G.; Rahimnejada, M.; Moghadamnia, A.A. High performance curcumin subcritical water extraction from turmeric (Curcuma longa L.). J. Chromatogr. B 2016, 1022, 191–198. [Google Scholar] [CrossRef]
- Shabkhiz, M.A.; Eikani, M.H.; Sadr, Z.B.; Golmohammad, F. Superheated water extraction of glycyrrhizic acid from licorice root. Food Chem. 2016, 210, 396–401. [Google Scholar] [CrossRef]
- Datta, P.; Dasgupta, A. Effect of Chinese medicines Chan Su and Danshen on EMIT 2000 and Randox digoxin immunoassays: Wide variation in digoxin-like immunoreactivity and magnitude of interference in digoxin measurement by different brands of the same product. Ther. Drug Monit. 2002, 24, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Liu, A.; Guan, S.; Sun, J.; Xu, M.; Guo, D. Characterization of tanshinones in the roots of Salvia miltiorrhiza (Dan-shen) by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2006, 20, 1266–1280. [Google Scholar] [CrossRef]
- Wang, B.Q. Salvia miltiorrhiza: Chemical and pharmacological review of a medicinal plant. J. Med. Plants Res. 2010, 4, 2813–2820. [Google Scholar]
- Li, Y.G.; Song, L.; Liu, M.; Wang, Z.T. Advancement in analysis of Salviae miltiorrhizae Radix et Rhizoma (Danshen). J. Chromatogr. A 2009, 1216, 1941–1953. [Google Scholar] [CrossRef]
- Nizamutdinova, I.T.; Lee, G.W.; Son, K.H.; Jeon, S.J.; Kang, S.S.; Kim, Y.S.; Lee, J.H.; Seo, H.G.; Chang, K.C.; Kim, H.J. Tanshinone I effectively induces apoptosis in estrogen receptor-positive (MCF-7) and estrogen receptor-negative (MDA-MB-231) breast cancer cells. Int. J. Oncol. 2008, 33, 485–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, J.B.; Lee, S.H. Protocatechualdehyde possesses anti-cancer activity through downregulating cyclin D1 and HDAC2 in human colorectal cancer cells. Biochem. Biophys. Res. Commun. 2013, 430, 381–386. [Google Scholar] [CrossRef]
- Tanaka, T.; Kojima, T.; Kawamori, T.; Wang, A.; Suzui, M.; Okamoto, K.; Mori, H. Inhibition of 4-nitroquinoline-1-oxide-induced rat tongue carcinogenesis by the naturally occurring plant phenolics caffeic, ellagic, chlorogenic and ferulic acids. Carcinogenesis 1993, 14, 1321–1325. [Google Scholar] [CrossRef]
- Wang, X.; Wei, Y.; Yuan, S.; Liu, G.; Lu, Y.; Zhang, J.; Wang, W. Potential anticancer activity of tanshinone IIA against human breast cancer. Int. J. Cancer 2005, 116, 799–807. [Google Scholar] [CrossRef] [PubMed]
- Kirienko, N.V.; Mani, K.; Fay, D.S. Cancer models in Caenorhabditis elegans. Dev. Dyn. 2010, 239, 1413–1448. [Google Scholar]
- Honda, Y.; Honda, S.; Narici, M.; Szewczyk, N.J. Space flight and ageing: Reflecting on Caenorhabditis elegans in space. Gerontology 2014, 60, 138–142. [Google Scholar] [CrossRef]
- Hubbard, E.J.; Korta, D.Z.; Dalfo, D. Physiological control of germline development. Adv. Exp. Med. Biol. 2013, 757, 101–131. [Google Scholar] [PubMed] [Green Version]
- Feng, Z.; Li, W.; Ward, A.; Piggott, B.J.; Larkspur, E.R.; Sternberg, P.W.; Xu, X.Z. A C. elegans model of nicotine-dependent behavior: Regulation by TRP-family channels. Cell 2006, 127, 621–633. [Google Scholar] [CrossRef] [Green Version]
- Ewald, C.Y.; Li, C. Understanding the molecular basis of Alzheimer’s disease using a Caenorhabditis elegans model system. Brain Struct. Funct. 2009, 214, 263–283. [Google Scholar] [CrossRef] [Green Version]
- Gałuszka, A.; Migaszewski, Z.M.; Konieczka, P.; Namieśnik, J. Analytical Eco-Scale for assessing the greenness of analytical procedures. Trends Anal. Chem. 2012, 37, 61–72. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J. A new tool for the evaluation of the analytical procedure: Green Analytical Procedure Index. Talanta 2018, 181, 204–209. [Google Scholar] [CrossRef]
Analyte | Concentration, μg/g (%RSD)a | ||||
---|---|---|---|---|---|
Traditional Herbal Decoction, 100 °C | Subcritical Water Extraction | ||||
75 °C | 100 °C | 125 °C | 150 °C | ||
Protocatechualdehyde | 19.6 (12.7) | 11.4 (16.9) | 29.1 (9.37) | 701 (9.88) | 1760 (5.26) |
Caffeic Acid | 51.6 (15.8) | 47.3 (5.35) | 57.3 (10.4) | 48.2 (3.12) | 16.1 (1) |
Ferulic Acid | NDb | ND | ND | 1.30 (20.3) | 41.6 (13.9) |
Tanshinone I | 0.2 (10) | 4.0 (2.4) | 5.8 (7.4) | 19.1 (13.4) | 74.0 (3.43) |
Tanshinone IIA | 0.8 (20.1) | 3.3 (1.3) | 5.0 (13) | 5.18 (16.1) | 15.3 (12.7) |
Analyte | Concentration, μg/mL | |
---|---|---|
Traditional Herbal Decoction, 100 °C | Subcritical Water Extraction at 150 °C | |
Protocatechualdehyde | 0.392 | 352 |
Caffeic Acid | 1.03 | 3.22 |
Ferulic Acid | NDa | 8.32 |
Tanshinone I | 0.004 | 1.48 |
Tanshinone IIA | 0.016 | 0.306 |
Treatment NGM Plates | 3-Day Average Productiona (%RSD)b | %Reproduction Inhibition (%RSD)b | %Mortality (%RSD)b |
---|---|---|---|
Control | 111 (4.13) | 0 | 0 |
THD | 106 (5.35) | 5 (20) | 10 (20) |
SBWE at 75 °C | 104 (3.47) | 6 (40) | 17 (16) |
SBWE at 100 °C | 89 (12) | 20 (20) | 33 (15) |
SBWE at 125 °C | 67 (23) | 40 (18) | 42 (14) |
SBWE at 150 °C | 60 (34) | 46 (12) | 14 (21) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapalavavi, B.; Doctor, N.; Zhang, B.; Yang, Y. Subcritical Water Extraction of Salvia miltiorrhiza. Molecules 2021, 26, 1634. https://doi.org/10.3390/molecules26061634
Kapalavavi B, Doctor N, Zhang B, Yang Y. Subcritical Water Extraction of Salvia miltiorrhiza. Molecules. 2021; 26(6):1634. https://doi.org/10.3390/molecules26061634
Chicago/Turabian StyleKapalavavi, Brahmam, Ninad Doctor, Baohong Zhang, and Yu Yang. 2021. "Subcritical Water Extraction of Salvia miltiorrhiza" Molecules 26, no. 6: 1634. https://doi.org/10.3390/molecules26061634
APA StyleKapalavavi, B., Doctor, N., Zhang, B., & Yang, Y. (2021). Subcritical Water Extraction of Salvia miltiorrhiza. Molecules, 26(6), 1634. https://doi.org/10.3390/molecules26061634