Thiol-ene Reaction: An Efficient Tool to Design Lipophilic Polyphosphoesters for Drug Delivery Systems
Abstract
:1. Introduction
2. Results
2.1. Synthesis of Thiol Functional Tocopherol (TocoSH)
2.2. Synthesis of the Starting PEG-b-PBenEP Copolymer
2.3. Post-Polymerization Functionalization by Thiol-ene Reaction
2.4. Thermal Characterization of the Copolymers
2.5. Behavior in Water of the PEG-b-PPE Diblock Copolymers
2.6. Ketoconazole Encapsulation and Release
2.7. In Vitro Cytotoxicity of PEG-b-PPE Copolymers
3. Materials and Methods
3.1. Materials
3.2. Instruments
3.3. Synthesis
3.4. Micelles Size and Morphology
3.5. Ketoconazole Encapsulation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Lapienis, G.; Penczek, S. Kinetics and thermodynamics of the polymerization of the cyclic phosphate esters. II. Cationic polymerization of 2-methoxy-2-oxo-1,3,2-dioxaphosphorinane (1,3-propylene methyl phosphate). Macromolecules 1974, 7, 166–174. [Google Scholar] [CrossRef]
- Dove, A.P. Organic catalysis for ring-opening polymerization. ACS Macro Lett. 2012, 1, 1409–1412. [Google Scholar] [CrossRef]
- Clément, B.; Grignard, B.; Koole, L.; Jérome, C.; Lecomte, P. Metal-free strategies for the synthesis of functional and well-defined polyphosphoesters. Macromolecules 2012, 45, 4476–4486. [Google Scholar] [CrossRef]
- Bauer, K.N.; Tee, H.T.; Velencoso, M.M.; Wurm, F.R. Main-chain poly(phosphoester)s: History, syntheses, degradation, bio-and flame-retardant applications. Prog. Polym. Sci. 2017, 73, 61–122. [Google Scholar] [CrossRef]
- Riva, R.; Shah, U.; Thomassin, J.M.; Yilmaz, Z.; Lecat, A.; Colige, A.; Jérôme, C. Design of degradable polyphosphoester networks with tailor-made stiffness and hydrophilicity as scaffolds for tissue engineering. Biomacromolecules 2020, 21, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-C.; Yuan, Y.-Y.; Du, J.-Z.; Yang, X.-Z.; Wang, J. Recent progress in polyphosphoesters: From controlled synthesis to biomedical applications. Macromol. Biosci. 2009, 9, 1154–1164. [Google Scholar] [CrossRef] [PubMed]
- Becker, G.; Wurm, F.R. Functional biodegradable polymers via ring-opening polymerization of monomers without protective groups. Chem. Soc. Rev. 2018, 47, 7739–7782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ergül Yilmaz, Z.; Jérôme, C. Polyphosphoesters: New trends in synthesis and drug delivery applications. Macromol. Biosci. 2016, 16, 1745–1751. [Google Scholar] [CrossRef]
- Pelosi, C.; Tinè, M.R.; Wurm, F.R. Main-chain water-soluble polyphosphoesters: Multi-functional polymers as degradable PEG-alternatives for biomedical applications. Eur. Polym. J. 2020, 141, 110079. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Yuan, Y.-Y.; Wang, F.; Wang, J. Syntheses and characterization of block copolymers of poly(aliphatic ester) with clickable polyphosphoester. J. Polym. Sci. Part A 2011, 49, 487–494. [Google Scholar] [CrossRef]
- Zhang, S.; Li, A.; Zou, J.; Lin, L.Y.; Wooley, K.L. Facile synthesis of clickable, water-soluble, and degradable polyphosphoesters. ACS Macro Lett. 2012, 1, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zou, J.; Elsabahy, M.; Karwa, A.; Li, A.; Moore, D.A.; Dorshowdf, R.B.; Wooley, K.L. Poly(ethylene oxide)-block-polyphosphester-based paclitaxel conjugates as a platform for ultra-high paclitaxel-loaded multifunctional nanoparticles. Chem. Sci. 2013, 4, 2122–2126. [Google Scholar] [CrossRef] [PubMed]
- Du, J.-Z.; Du, X.J.; Mao, C.-Q.; Wang, J. Tailor-made dual pH-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery. J. Am. Chem. Soc. 2011, 133, 17560–17563. [Google Scholar] [CrossRef]
- Yang, X.-Z.; Du, J.Z.; Dou, S.; Mao, C.-Q.; Long, H.Y.; Wang, J. Sheddable ternary nanoparticles for tumor acidity-targeted siRNA delivery. ACS Nano 2012, 6, 771–781. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.-Y.; Mao, C.-Q.; Du, X.-J.; Du, J.-Z.; Wang, F.; Wang, J. Surface charge switchable nanoparticles based on zwitterionic polymer for enhanced drug delivery to tumor. Adv. Mater. 2012, 24, 5476–5480. [Google Scholar] [CrossRef]
- Yuan, Y.-Y.; Du, J.-Z.; Wang, J. Two consecutive click reactions as a general route to functional cyclic polyesters. Chem. Commun. 2012, 48, 570–572. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.-Y.; Dou, S.; Du, J.-Z.; Yang, X.-Z.; Li, Y.-P.; Wang, J. Doxorubicin conjugate of poly(ethylene glycol)-block-polyphosphoester for cancer therapy. Adv. Healthc. Mater. 2014, 3, 261–272. [Google Scholar] [CrossRef]
- Baeten, E.; Vanslambrouck, S.; Jérôme, C.; Lecomte, P.; Junkers, T. Anionic flow polymerizations toward functional polyphosphoesters in microreactors: Polymerization and UV-modification. Eur. Polym. J. 2016, 80, 208–218. [Google Scholar] [CrossRef]
- Zhang, S.; Zou, J.; Zhang, F.; Elsabahy, M.; Felder, S.E.; Zhu, J.; Pochan, D.J.; Wooley, K.L. Rapid and versatile construction of diverse and functional nanostructures derived from a polyphosphoester-based biomimetic block copolymer system. J. Am. Chem. Soc. 2012, 134, 18467–18474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, Y.H.; Heo, G.S.; Cho, S.; Wooley, K.L. Construction of a reactive diblock copolymer, polyphosphoester block- poly(L-lactide), as a versatile framework for functional materials that are capable of full degradation and nanoscopic assembly formation. ACS Macro Lett. 2013, 2, 785–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ergül Yilmaz, Z.; Debuigne, A.; Calvignac, B.; Boury, F.; Jérôme, C. Double hydrophilic polyphosphoester containing copolymers as efficient templating agents for calcium carbonate microparticles. J. Mater. Chem. B 2015, 3, 7227–7236. [Google Scholar] [CrossRef]
- Sun, C.-Y.; Ma, Y.-C.; Cao, Z.-Y.; Li, D.-D.; Fan, F.; Wang, J.-X.; Tao, W.; Yang, X.-Z. Effect of hydrophobicity of core on the anticancer efficiency of micelles as drug delivery carriers. ACS Appl. Mater. Interfaces 2014, 6, 22709–22718. [Google Scholar] [CrossRef] [PubMed]
- Vanslambrouck, S.; Clément, B.; Riva, R.; Koole, L.H.; Molin, D.G.M.; Broze, G.; Lecomte, P.; Jérôme, C. Synthesis and tensioactive properties of PEO-b-polyphosphate copolymers. RSC Adv. 2015, 5, 27330–27337. [Google Scholar] [CrossRef]
- Karmowski, J.; Hintze, V.; Kschonsek, J.; Killenberg, M.; Böhm, V. Antioxidant activities of tocopherols/tocotrienols and lipophilic antioxidant capacity of wheat, vegetable oils, milk and milk cream by using photochemiluminescence. Food Chem. 2015, 175, 593–600. [Google Scholar] [CrossRef]
- Constantinides, P.P.; Han, J.; Davis, S.S. Advances in the use of tocols as drug delivery vehicles. Pharm. Res. 2006, 23, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Duhem, N.; Danhier, F.; Préat, V. Vitamin E-based nanomedicines for anti-cancer drug delivery. J. Control. Release 2014, 182, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Brigelius-Flohé, R.; Traber, M.G. Vitamin E: Function and metabolism. FASEB J. 1999, 13, 1145–1155. [Google Scholar] [CrossRef]
- Lim, Y.H.; Heo, G.S.; Rezenom, Y.H.; Pollack, S.; Raymond, J.E.; Elsabahy, M.; Wooley, K.L. Development of a vinyl ether-functionalized polyphosphoester as a template for multiple postpolymerization conjugation chemistries and study of core degradable polymeric nanoparticles. Macromolecules 2014, 47, 4634–4644. [Google Scholar] [CrossRef] [PubMed]
- Balata, G.; Maahdi, M.; Bakera, R.A. Improvement of solubility and dissolution properties of ketoconazole by solid dispersions and inclusion complexes. Asian J. Pharm. Sci. 2010, 5, 1–12. [Google Scholar]
- Gaucher, G.; Dufresne, M.-H.; Sant, V.P.; Kang, N.; Maysinger, D.; Leroux, J.-C. Block copolymer micelles: Preparation, characterization and application in drug delivery. J. Control. Release 2005, 109, 169–188. [Google Scholar] [CrossRef]
- Ergül Yilmaz, Z.; Vanslambrouck, S.; Cajot, S.; Thiry, J.; Debuigne, A.; Lecomte, P.; Jérôme, C.; Riva, R. Core cross-linked micelles of polyphosphoester containing amphiphilic block copolymers as drug nanocarriers. RSC Adv. 2016, 6, 42081–42088. [Google Scholar] [CrossRef]
RSH Used | Irradiation Time (min) | DP PEG | DP PPE (1H NMR) | Funct.1 Yield (%) | ||
---|---|---|---|---|---|---|
DodecSH | 45 | 120 | 8 | 100 | 6900 | 1.2 |
TocoSH | 60 | 120 | 9 | 60 | 7300 | 1.2 |
Copolymers | HLB 1 | Dh 2 | PDI 3 | CMC 4 mol L−1 |
---|---|---|---|---|
PEG-b-PBenEP | 15.4 (18.7) | 220 ± 40 | 0.318 | 4.2 × 10−5 |
PEG-b-PDodecS-BEP | 12.9 (14.9) | 22 ± 2 | 0.373 | 1.1 × 10−7 |
PEG-b-PTocoS-BEP | 10.8 (13.0) | 85 ± 1 | 0.311 | 8.3 × 10−8 |
Copolymers | LC (%, w/w) by Direct Dissolution | LC (%, w/w) by Solvent Evaporation |
---|---|---|
PEG-b-PButEP | 0.53 ± 0.01 | 0.60 ± 0.02 |
PEG-b-PBenEP | 0.64 ± 0.02 | 1.36 ± 0.06 |
PEG-b-PHEP | 1.10 ± 0.03 | 1.41 ± 0.02 |
PEG-b-PDodecS-BEP | 1.45 ± 0.01 | 2.11 ± 0.01 |
PEG-b-PTocoS-BEP | 2.04 ± 0.03 | 4.28 ± 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vanslambrouck, S.; Riva, R.; Ucakar, B.; Préat, V.; Gagliardi, M.; Molin, D.G.M.; Lecomte, P.; Jérôme, C. Thiol-ene Reaction: An Efficient Tool to Design Lipophilic Polyphosphoesters for Drug Delivery Systems. Molecules 2021, 26, 1750. https://doi.org/10.3390/molecules26061750
Vanslambrouck S, Riva R, Ucakar B, Préat V, Gagliardi M, Molin DGM, Lecomte P, Jérôme C. Thiol-ene Reaction: An Efficient Tool to Design Lipophilic Polyphosphoesters for Drug Delivery Systems. Molecules. 2021; 26(6):1750. https://doi.org/10.3390/molecules26061750
Chicago/Turabian StyleVanslambrouck, Stéphanie, Raphaël Riva, Bernard Ucakar, Véronique Préat, Mick Gagliardi, Daniel G. M. Molin, Philippe Lecomte, and Christine Jérôme. 2021. "Thiol-ene Reaction: An Efficient Tool to Design Lipophilic Polyphosphoesters for Drug Delivery Systems" Molecules 26, no. 6: 1750. https://doi.org/10.3390/molecules26061750
APA StyleVanslambrouck, S., Riva, R., Ucakar, B., Préat, V., Gagliardi, M., Molin, D. G. M., Lecomte, P., & Jérôme, C. (2021). Thiol-ene Reaction: An Efficient Tool to Design Lipophilic Polyphosphoesters for Drug Delivery Systems. Molecules, 26(6), 1750. https://doi.org/10.3390/molecules26061750