A Metal-Based Receptor for Selective Coordination and Fluorescent Sensing of Chloride
Abstract
:1. Introduction
2. Results and Discussion
2.1. Spectrophotometric Studies
2.2. NMR Studies
3. Materials and Methods
3.1. General Methods
3.2. Synthesis
3.3. Spectroscopic Experiments
3.4. NMR Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Sample Availability
References
- Lehn, J.M. Supramolecular Chemistry. In Concepts and Perspectives; Wiley-VCH: Weinheim, Germany, 1995. [Google Scholar]
- Bianchi, A.; Bowman-James, K.; García-España, E. Supramolecular Chemistry of Anions; Wiley-VCH Verlag, GmbH: New York, NY, USA, 1997. [Google Scholar]
- Sessler, J.L.; Gale, P.A.; Cho, W.-S. Anion Receptor Chemistry; Royal Society of Chemistry: Cambridge, UK, 2006. [Google Scholar]
- Bowman-James, K.; Bianchi, A.; García-España, E. Anion Coordination Chem; Wiley-VCH, Verlag GmbH & Co.: Weinheim, Germany, 2012. [Google Scholar]
- Huston, M.E.; Akkaya, E.U.; Czarnik, A.W. Chelation enhanced fluorescence detection of non-metal ions. J. Am. Chem. Soc. 1989, 111, 8735–8737. [Google Scholar] [CrossRef]
- De Silva, A.P.; Gunaratne, H.Q.N.; Gunnlaugsson, T.; Huxley, A.J.M.; McCoy, C.P.; Rademacher, J.T.; Rice, T.E. Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 1997, 97, 1515–1566. [Google Scholar] [CrossRef]
- Pina, F.; Bernardo, M.A.; García-España, E. Fluorescent chemosensors containing polyamine receptors. Eur. J. Inorg. Chem. 2000, 2143–2157. [Google Scholar] [CrossRef]
- Bencini, A.; Bernardo, M.A.; Bianchi, A.; García-España, E.; Giorgi, C.; Luis, S.; Pina, F.; Valtancoli, B. Sensing cations and anions by luminescent polyamine receptors in solution. Adv. Supramol. Chem. 2002, 8, 79–130. [Google Scholar]
- Martínez-Máñez, R.; Sancenón, F. Fluorogenic and chromogenic chemosensors and reagents for anions. Chem. Rev. 2003, 103, 4419–4476. [Google Scholar] [CrossRef]
- Albelda, M.T.; Frías, J.C.; García-España, E.; Schneider, H.-J. Supramolecular complexation for environmental control. Chem. Soc. Rev. 2012, 41, 3859–3877. [Google Scholar] [CrossRef] [PubMed]
- Ambrosi, G.; Formica, M.; Fusi, V.; Giorgi, L.; Macedi, E.; Piersanti, G.; Retini, M.; Varrese, M.A.; Zappia, G. New coumarin-urea based receptor for anions: A selective off-on fluorescence response to fluoride. Tetrahedron 2012, 68, 3768–3775. [Google Scholar] [CrossRef]
- Bartoli, F.; Bencini, A.; Conti, L.; Giorgi, C.; Valtancoli, B.; Paoli, P.; Rossi, P.; Le Bris, N.; Tripier, R. Catching anions with coloured assemblies: Binding of pH indicators by a giant-size polyammonium macrocycle for anion naked-eye recognition. Org. Biomol. Chem. 2016, 14, 8309–8321. [Google Scholar] [CrossRef] [PubMed]
- Ambrosi, G.; Ciattini, S.; Formica, M.; Fusi, V.; Giorgi, L.; Macedi, E.; Micheloni, M.; Paoli, P.; Rossi, P.; Zappia, G. A new versatile solvatochromic amino-macrocycle. From metal ions to cell sensing in solution and in the solid state. Chem. Commun. 2009, 7039–7041. [Google Scholar] [CrossRef]
- Amendola, V.; Fabbrizzi, L.; Mangano, C.; Pallavacini, P.; Poggi, A.; Taglietti, A. Anion recognition by dimetallic cryptates. Coord. Chem. Rev. 2001, 219, 821–837. [Google Scholar] [CrossRef]
- Wang, K.J.F. Detection of Metal Ions, Anions and Small Molecules Using Metal Complexes. In Inorganic Chemical Biology: Principles, Techniques and Applications, 1st ed.; Gasser, G., Ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2014. [Google Scholar]
- Ngo, H.T.; Liu, X.; Jolliffe, K.A. Anion recognition and sensing with Zn(II)–Dipicolylamine complexes. Chem. Soc. Rev. 2012, 41, 4928–4965. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.K.-C.; Sun, S.-S.; Odago, M.O.; Lees, A.J. Anion recognition and sensing by transition-metal complexes with polarized N-H recognition motifs. Coord. Chem. Rev. 2015, 284, 111–123. [Google Scholar] [CrossRef] [Green Version]
- Amatori, S.; Ambrosi, G.; Fanelli, M.; Formica, M.; Fusi, V.; Giorgi, L.; Macedi, E.; Micheloni, M.; Paoli, P.; Pontellini, R.; et al. Multi-use NBD-based tetra-amino macrocycle: Fluorescent probe for metals and anions and live cell marker. Chem.—A Eur. J. 2012, 18, 4274–4284. [Google Scholar] [CrossRef]
- Hudnall, T.W.; Chiu, C.-W.; Gabba., F.P. Fluoride ion recognition by chelating and cationic boranes. Acc. Chem. Res. 2009, 42, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Naseer, M.M.; Jurkschat, K. Organotin-based receptors for anions and ion pairs. Chem. Commun. 2017, 53, 8122–8135. [Google Scholar] [CrossRef]
- Alashkar, N.; Arca, M.; Alnasr, H.; Lutter, M.; Lippolis, V.; Jurkschat, K. Water-soluble organotin compounds—Syntheses, structures and reactivity towards fluoride anions in water. Eur. J. Inorg. Chem. 2020, 2020, 3925–3936. [Google Scholar] [CrossRef]
- Binh, T.; Nguyen, B.T.; Anslyn, E.V. Indicator—Displacement assays. Coord. Chem. Rev. 2006, 250, 3118–3127. [Google Scholar]
- Wiskur, S.L.; Ait-Haddou, H.; Lavigne, J.J.; Anslyn, E.V. Teaching old indicators new tricks. Accounts Chem. Res. 2001, 34, 963–972. [Google Scholar] [CrossRef] [PubMed]
- You, L.; Anslyn, E.V. Supramolecular Chemistry. From Molecules to Nanomaterials; Steed, J.W., Gale, P.A., Eds.; Wiley: Hoboken, NJ, USA, 2012; pp. 135–160. [Google Scholar]
- Ambrosi, G.; Formica, M.; Fusi, V.; Giorgi, L.; Guerri, A.; Macedi, E.; Micheloni, M.; Paoli, P.; Pontellini, R.; Rossi, P. Phosphates sensing: Two polyamino-phenolic zinc receptors able to discriminate and signal phosphates in water. Inorg. Chem. 2009, 48, 5901–5912. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Pulley-Blank, D.E.; Murray, N.L.; Evans, D.H. Review: Ethidium fluorescence assays. Part 1. Physicochemical studies. Nucleic Acids Res. 1979, 7, 547–569. [Google Scholar]
- Suh, D.; Chaires, J.B. Criteria for the mode of binding of DNA binding agents. Bioorganic Med. Chem. 1995, 3, 723–728. [Google Scholar] [CrossRef]
- Monchaud, D.; Allain, C.; Teulade-Fichou, M.-P. Development of a fluorescent intercalator displacement assay (G4-FID) for establishing quadruplex-DNA affinity and selectivity of putative ligands. Bioorganic Med. Chem. Lett. 2006, 16, 4842–4845. [Google Scholar] [CrossRef]
- Di Stasio, E. Anionic regulation of biological systems: The special role of chloride in the coagulation cascade. Biophys. Chem. 2004, 112, 245–252. [Google Scholar] [CrossRef]
- Ashcroft, F.M. Ion Channels and Disease; Academic Press: San Diego, CA, USA, 2000. [Google Scholar]
- Murray, R.K.; Granner, D.K.; Mayes, P.A.; Rodwell, V.W. Harper’s Biochemistry; Prentice-Hall International: Hoboken, NJ, USA, 2000. [Google Scholar]
- Kubik, S. Anion recognition in water. Chem. Soc. Rev. 2010, 39, 3648–3663. [Google Scholar] [CrossRef]
- Ashton, T.D.; Jolliffe, K.A.; Pfeffer, F.M. Luminescent probes for the bioimaging of small anionic species in vitro and in vivo. Chem. Soc. Rev. 2015, 44, 4547–4595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tutol, J.N.; Kam, H.C.; Dodani, S.C. Identification of mNeonGreen as a pH-dependent, turn-on fluorescent protein sensor for chloride. ChemBioChem 2019, 20, 1759–1765. [Google Scholar]
- Knighton, R.C.; Dapin, S.; Beer, P.D. Luminescent anion sensing by transition-metal dipyridylbenzene complexes incorporated into acyclic, macrocyclic and interlocked host. Chem. Eur. J. 2020, 26, 5288–5296. [Google Scholar] [CrossRef] [PubMed]
- Ng, P.-L.; Lee, C.-S.; Kwong, H.-L.; Chan, A.S. Zinc complex of bipyridine crown macrocycle: Luminescence sensing of anions in aqueous media via the cooperative action of metal-ligand and hydrophobic interactions. Inorg. Chem. Commun. 2005, 8, 769–772. [Google Scholar] [CrossRef]
- Amatori, S.; Ambrosi, G.; Borgogelli, E.; Fanelli, M.; Formica, M.; Fusi, V.; Giorgi, L.; Macedi, E.; Micheloni, M.; Paoli, P.; et al. Modulating the sensor response to halide using NBD-based azamacrocycles. Inorg. Chem. 2014, 53, 4560–4569. [Google Scholar] [CrossRef] [PubMed]
- Ambrosi, G.; Dapporto, P.; Formica, M.; Fusi, V.; Giorgi, L.; Guerri, A.; Micheloni, M.; Paoli, P.; Pontellini, R.; Rossi, P. Synthesis of a large amino-phenolic cage. Synthesis, crystal structures, and acid-base and coordination behavior toward cations and anions. Inorg. Chem. 2006, 45, 304–314. [Google Scholar] [CrossRef] [PubMed]
- Minami, T.; Liu, Y.; Akdeniz, A.; Koutnik, P.; Esipenko, N.A.; Nishiyabu, R.; Kubo, Y.; Anzenbacher, P. Intramolecular indicator displacement assay for anions: Supramolecular sensor for glyphosate. J. Am. Chem. Soc. 2014, 136, 11396–11401. [Google Scholar] [CrossRef] [PubMed]
- Julliard, M.; Chanon, M. Photoelectron-transfer catalysis: Its connections with thermal and electrochemical analogs. Chem. Rev. 1983, 83, 425–506. [Google Scholar] [CrossRef]
- De Silva, A.P.; Rupasinghe, R.A.D.D. A new class of fluorescent pH indicators based on photo-induced electron transfer. J. Chem. Soc. Chem. Commun. 1985, 1669–1670. [Google Scholar] [CrossRef]
- Ambrosi, G.; Clares, M.P.; Pont, I.; Formica, M.; Fusi, V.; Ricci, A.; Paoli, P.; Rossi, P.; García-España, E.; Inclán, M. Zn2+ and Cu2+ complexes of a fluorescent scorpiand-type oxadiazole azamacrocyclic ligand: Crystal structures, solution studies and optical properties. Dalton Trans. 2020, 49, 1897–1906. [Google Scholar] [CrossRef] [PubMed]
- Ambrosi, G.; Formica, M.; Fusi, V.; Giorgi, L.; Macedi, E.; Micheloni, M.; Paoli, P.; Pontellini, R.; Rossi, P. A macrocyclic ligand as receptor and ZnII-complex receptor for anions in water: Binding properties and crystal structures. Chem. Eur. J. 2011, 17, 1670–1682. [Google Scholar] [CrossRef] [PubMed]
- Gans, P.; Sabatini, A.; Vacca, A. Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 1996, 43, 1739–1753. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Formica, M.; Fusi, V.; Paderni, D.; Ambrosi, G.; Inclán, M.; Clares, M.P.; Verdejo, B.; García-España, E. A Metal-Based Receptor for Selective Coordination and Fluorescent Sensing of Chloride. Molecules 2021, 26, 2352. https://doi.org/10.3390/molecules26082352
Formica M, Fusi V, Paderni D, Ambrosi G, Inclán M, Clares MP, Verdejo B, García-España E. A Metal-Based Receptor for Selective Coordination and Fluorescent Sensing of Chloride. Molecules. 2021; 26(8):2352. https://doi.org/10.3390/molecules26082352
Chicago/Turabian StyleFormica, Mauro, Vieri Fusi, Daniele Paderni, Gianluca Ambrosi, Mario Inclán, Maria Paz Clares, Begoña Verdejo, and Enrique García-España. 2021. "A Metal-Based Receptor for Selective Coordination and Fluorescent Sensing of Chloride" Molecules 26, no. 8: 2352. https://doi.org/10.3390/molecules26082352
APA StyleFormica, M., Fusi, V., Paderni, D., Ambrosi, G., Inclán, M., Clares, M. P., Verdejo, B., & García-España, E. (2021). A Metal-Based Receptor for Selective Coordination and Fluorescent Sensing of Chloride. Molecules, 26(8), 2352. https://doi.org/10.3390/molecules26082352