Fully Automated Synthesis of Novel TSPO PET Imaging Ligand [18F]Fluoroethyltemazepam
Abstract
:1. Introduction
- i.
- 2-Phenylindolylglyoxylamides;
- ii.
- Quinazoline carboxamides;
- iii.
- Aryloxyanilides;
- iv.
- Benzoxazolone and benzimidazolone derivatives;
- v.
- Imidazopyridine, pyrroloquinoline, pyrazoloquinoline and pyrazolopyrimidine derivatives.
2. Results
3. Discussion
4. Materials and Methods
4.1. Chemicals and Materials
4.2. Precursor and Standard Synthesis
4.3. Synthesis and Quality Control
4.4. Radiochemistry
4.5. Preproduction Procedures
4.6. [18.F]Fluoride Production
4.7. [18.F]F-FETEM Production
- After irradiation, [18F]Fluoride was trapped in a preconditioned QMA cartridge.
- Aqueous [18F]Fluoride was eluted with 0.55 mL of 6 mg/mL potassium carbonate solution and transferred to the reactor.
- Once aqueous [18F]fluoride was transferred to the reactor, Kryptofix® 222 was added to the reactor.
- The dry K222/[18F]−/K+-complex was formed by azeotropic distillation under reduced pressure and helium flow. Reactor was heated for 1.5 min at 97 °C. Controlled vacuum was applied and He flow supplied.
- After azeotropic distillation step, heater and reactor were cooled at 60 °C under He and air flows and controlled vacuum.
- Pre-loaded TEM-EtTos precursor solution (15 mg/1 mL DMSO) was added to reactor. The reactor was heated for 5 min at 100 °C under magnetic stirring. After reaction, reactor was cooled at 33 °C under He and air flows and controlled vacuum.
- After cooling, purification solution WFI:EtOH 7:3 v/v 4.0 mL was added to reactor.
- Reaction mix was transferred by reactor needle and loaded to C18 Sep-Pak cartridge. Eluate produced by this transfer was sent to the waste bottle.
- After loading the reaction mix onto the purification cartridges, eluent solution EtOH:WFI 7:3 v/v 4.0 mL was added to reactor and directly sent to purification cartridge. Eluate containing radiopharmaceutical [18F]F-FETEM was collected inside the collect vial of the synthesizer.
- [18F]F-FETEM was sent to the isolator (grade A), purified on Sep-Pak Plus Long Alumina N cartridge in a sterile pyrogen-free glass vial previously labelled.
- After addition of the formulation solution, integrity test was performed to sterile filter.
- In isolator a QC sample (1 mL) was collected into another sterile pyrogen-free glass vial previously labelled.
- After obtaining the QC sample, all filters and needles were removed from the end-product vial and the radioactivity was measured.
4.8. Specifications and Quality Control (QC) Tests
- Appearance: A clear and yellow solution, free of particles (Method: visual inspection).
- Radiochemical purity (RCP): the fluorine-18 radioactivity in the form [18F]F-FETEM is ≥90.0% (Method: TLC).
- Radionuclidic identity: half-life of 105–115 min (Method: measured in dose calibrator).
- Radionuclidic purity: ≥99.9% of the radioactivity corresponds to fluorine-18 (Method: gamma-ray spectrometry).
- pH: 4.0–7.5 (Method: pH indicator strip).
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Chen, H.; Chan, D.C. Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases. Hum. Mol. Genet. 2009, 18, R169–R176. [Google Scholar] [CrossRef] [PubMed]
- Morohaku, K.; Pelton, S.H.; Daugherty, D.J.; Butler, W.R.; Deng, W.; Selvaraj, V. Translocator protein/peripheral benzodiazepine receptor is not required for steroid hormone biosynthesis. Endocrinology 2014, 155, 89–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papadopoulos, V.; Fan, J.; Zirkin, B. Translocator protein (18 kDa): An update on its function in steroidogenesis. J. Neuroendocr. 2018, 30, e12500. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, C.T.; Decaudin, D.; Susin, S.A.; Marchetti, P.; Larochette, N.; Resche-Rigon, M.; Kroemer, G. PK11195, a ligand of the mitochondrial benzodiazepine receptor, facilitates the induction of apoptosis and reverses Bcl-2-mediated cytoprotection. Exp. Cell Res. 1998, 241, 426–434. [Google Scholar] [CrossRef]
- Lee, D.; Kang, S.K.; Lee, R.H.; Ryu, J.M.; Park, H.Y.; Choi, H.S.; Bae, Y.C.; Suh, K.T.; Kim, Y.K.; Jung, J.S. Effects of peripheral benzodiazepine receptor ligands on proliferation and differentiation of human mesenchymal stem cells. J. Cell Physiol. 2004, 198, 91–99. [Google Scholar] [CrossRef]
- Kim, E.T.; Pae, A.N. Translocator protein (TSPO) ligands for the diagnosis or treatment of neurodegenerative diseases: A patent review (2010–2015, part 1). Expert Opin. Ther. Pat. 2016, 26, 1325–1351. [Google Scholar] [CrossRef]
- Papadopoulos, V.; Baraldi, M.; Guilarte, T.R.; Knudsen, T.B.; Lacapère, J.J.; Lindemann, P.; Norenberg, M.D.; Nutt, D.; Weizman, A.; Zhang, M.R.; et al. Translocator protein (18kDa): New nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol. Sci. 2006, 27, 402–409. [Google Scholar] [CrossRef]
- Werry, E.L.; Bright, F.M.; Piguet, O.; Ittner, L.M.; Halliday, G.M.; Hodges, J.R.; Kiernan, M.C.; Loy, C.T.; Kril, J.J.; Kassiou, M. Recent developments in TSPO PET imaging as a biomarker of neuroinflammation in neurodegenerative disorders. Int. J. Mol. Sci. 2018, 20, 3161. [Google Scholar] [CrossRef] [Green Version]
- Barresi, E.; Robello, M.; Costa, B.; Da Pozzo, E.; Baglinia, E.; Salerno, S.; Da Settimo, F.; Martini, C.; Taliani, S. An update into the medicinal chemistry of translocator protein (TSPO) ligands. Eur. J. Med. Chem. 2021, 209, 112924. [Google Scholar] [CrossRef]
- Fafalios, A.; Akhavan, A.; Parwani, A.V.; Bies, R.R.; McHugh, K.J.; Pflug, B.R. Translocator protein blockade reduces prostate tumor growth. Clin. Cancer Res. 2009, 15, 6177–6184. [Google Scholar] [CrossRef] [Green Version]
- Schweitzer, P.J.; Fallon, B.A.; Mann, J.J.; Kumar, L.S.D. PET tracers for the peripheral benzodiazepine receptor and uses thereof. Drug Discov. Today 2010, 15, 933–942. [Google Scholar] [CrossRef]
- Fan, Z.; Harold, D.; Pasqualetti, G.; Williams, J.; Brooks, D.J.; Edison, P. Can Studies of Neuroinflammation in a TSPO Genetic Subgroup (HAB or MAB) Be Applied to the Entire AD Cohort? J. Nucl. Med. 2015, 56, 707–713. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.M.; Lee, J.; Lee, S.Y. Recent progress in the development of TSPO PET ligands for neuroinflammation imaging in neurological diseases. Nucl. Med. Mol. Imaging 2018, 51, 283–296. [Google Scholar] [CrossRef]
- Zanotti-Fregonara, P.; Pascual, B.; Rostomily, R.C.; Rizzo, G.; Veronese, M.; Masdeu, J.C.; Turkheimer, F. Anatomy of 18 F-GE180, a failed radioligand for the TSPO protein. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 2233–2236. [Google Scholar] [CrossRef]
- Jiang, H.; Fairweather, D.; Parent, E.; Jain, M.; Cooper, L.; Cai, H. Improved production of (R)-[11C]PK11195 for PET imaging of inflammation. J. Nucl. Med. 2020, 61 (Suppl. S1), 1004. [Google Scholar]
- Wickstrøm, T.; Clarke, A.; Gausemel, I.; Horn, E.; Jørgensen, K.; Khan, I.; Mantzilas, D.; Rajanayagam, T.; Veld, D.-J.I.T.; Trigg, W. The development of an automated and GMP compliant FASTlab™ synthesis of [(18) F]GE-180; a radiotracer for imaging translocator protein (TSPO). J. Label. Compd. Radiopharm. 2014, 57, 42–48. [Google Scholar] [CrossRef]
- Keller, T.; Krzyczmonik, A.; Forsback, S.; López Picón, F.R.; Kirjavainen, A.K.; Takkinen, J.; Rajander, J.; Cacheux, F.; Damont, A.; Dollé, F.; et al. Radiosynthesis and preclinical evaluation of [18F]F-DPA, A novel Pyrazolo[1,5a]pyrimidine Acetamide TSPO radioligand, in healthy sprague dawley rats. Mol. Imaging Biol. 2017, 19, 736–745. [Google Scholar] [CrossRef] [Green Version]
- Wanga, M.; Gao, M.; Miller, K.D.; Zheng, Q. Synthesis of [11C]PBR06 and [18F]PBR06 as agents for positron emission tomographic (PET) imaging of the translocator protein (TSPO). Steroids 2011, 76, 1331–1340. [Google Scholar] [CrossRef]
- Solingapuram Sai, K.K.; Gage, D.; Nader, M.; Mach, R.H.; Mintz, A. Improved automated radiosynthesis of [11C]PBR28. Sci. Pharm. 2015, 83, 413–427. [Google Scholar] [CrossRef] [Green Version]
- Vignal, N.; Cisternino, S.; Rizzo-Padoin, N.; San, C.; Hontonnou, F.; Gelé, T.; Declèves, X.; Sarda-Mantel, L.; Hosten, B. [18F]FEPPA a TSPO radioligand: Optimized radiosynthesis and evaluation as a PET radiotracer for brain inflammation in a peripheral LPS-injected mouse model. Molecules 2018, 23, 1375. [Google Scholar] [CrossRef] [Green Version]
- Shao, X.; Hoareau, R.; Hockley, B.G.; Tluczek, L.J.M.; Henderson, B.D.; Padgett, H.C.; Scott, P.J.H. Highlighting the versatility of the tracerlab synthesis modules. Part 1: Fully automated production of [18F]labelled radiopharmaceuticals using a Tracerlab FXFN. J. Label. Compd. Radiopharm. 2011, 54, 292–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hancu, G.; Fülöp, E.; Rusu, A.; Mircia, E.; Gyéresi, Á. Thin layer chromatographic separation of Benzodiazepine derivates. An. Univ. din Bucur. 2011, 20, 181–188. [Google Scholar]
- Lindemann, P.; Koch, A.; Degenhardt, B.; Hause, G.; Grimm, B.; Papadopoulos, V. A novel Arabidopsis thaliana protein is a functional peripheral-type benzodiazepine receptor. Plant Cell Physiol. 2004, 45, 723–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
PET Tracer | Chemical Structure | TSPO Generation | Reference |
---|---|---|---|
[11C]C-PK11195 (isoquinoline carboxamide ligand) | First generation | [15] | |
[18F]F-GE-180 (tetrahydrocarbazole ligand) | Third generation | [16] | |
[18F]F-DPA-714 (pyrazolepyrimidines ligand) | Second generation | [17] | |
[18F]F-PBR06 (phenoxyarylacetamides ligand) | Second generation | [18] | |
[11C]C-PBR28 (phenoxyarylacetamides ligand) | Second generation | [19] | |
[18F]F-FEPPA (phenoxyarylacetamides ligand) | Second generation | [20] |
Synthesis of (3S)-7-chloro-3-ethylhydroxy-1-methyl-5-phenyl-3H-1,4-benzodiazepin-2-one (TEM-EtOH) |
---|
|
Synthesis of (3S)-7-chloro-3-ethyltosyl-1-methyl-5-phenyl-3H-1,4-benzodiazepin-2-one (TEM-EtTos) |
|
Synthesis of [18F]F-FETEM |
---|
|
Purification of [18F]F-FETEM |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiorenza, D.; Nicolai, E.; Cavaliere, C.; Fiorino, F.; Esposito, G.; Salvatore, M. Fully Automated Synthesis of Novel TSPO PET Imaging Ligand [18F]Fluoroethyltemazepam. Molecules 2021, 26, 2372. https://doi.org/10.3390/molecules26082372
Fiorenza D, Nicolai E, Cavaliere C, Fiorino F, Esposito G, Salvatore M. Fully Automated Synthesis of Novel TSPO PET Imaging Ligand [18F]Fluoroethyltemazepam. Molecules. 2021; 26(8):2372. https://doi.org/10.3390/molecules26082372
Chicago/Turabian StyleFiorenza, Dario, Emanuele Nicolai, Carlo Cavaliere, Ferdinando Fiorino, Giovanna Esposito, and Marco Salvatore. 2021. "Fully Automated Synthesis of Novel TSPO PET Imaging Ligand [18F]Fluoroethyltemazepam" Molecules 26, no. 8: 2372. https://doi.org/10.3390/molecules26082372
APA StyleFiorenza, D., Nicolai, E., Cavaliere, C., Fiorino, F., Esposito, G., & Salvatore, M. (2021). Fully Automated Synthesis of Novel TSPO PET Imaging Ligand [18F]Fluoroethyltemazepam. Molecules, 26(8), 2372. https://doi.org/10.3390/molecules26082372