Relationship between Phenolic Compounds, Antioxidant Properties, and the Allergenic Protein Mal d 1 in Different Selenium-Biofortified Apple Cultivars (Malus domestica)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Correlation Analysis between Selenium Content and Mal d 1 Content
2.2. Relationship between PPO Activity and Mal d 1 Content
2.3. Analysis of the Relation between TPC and Mal d 1 Content
2.4. Individual Phenolic Compounds Influence the Content of Mal d 1
2.5. Relationship between AOA and Mal d 1
3. Materials and Methods
3.1. Chemicals
3.2. Sample Material
3.3. Determination of the Polyphenol Oxidase (PPO) Activity
3.4. Method for Extracting Phenolic Compounds
3.5. Determination of the Total Phenolic Content (TPC) according to Folin-Ciocalteu
3.6. Identification and Quantification of Single Phenolic Compounds Using High Performance Liquid Chromatography Mass Spectrometry (HPLC-MS)
3.7. Analysis of the Antioxidant Activity (AOA) Using the Trolox Equivalent Antioxidant Capacity Assay (TEAC) and the Oxygen Radical Absorbance Capacity Assays (ORAC)
3.8. Extraction of Proteins
3.9. Determination of the Mal d 1 Content Using ELISA
3.10. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Hyson, D.A. A comprehensive review of apples and apple components and their relationship to human health. Adv. Nutr. 2011, 2, 408–420. [Google Scholar] [CrossRef]
- Kschonsek, J.; Wolfram, T.; Stöckl, A.; Böhm, V. Polyphenolic compounds analysis of old and new apple cultivars and contribution pf polyphenolic profile to the in vitro antioxidant capacity. Antioxidants 2018, 7, 20. [Google Scholar] [CrossRef] [Green Version]
- Souci, S.W.; Fachmann, W.; Kraut, H. Lebensmitteltabelle für die Praxis, 5th ed.; Wissenschaftliche Verlagsgesellschaft: Stuttgart, Germany, 2011; pp. 873–876. [Google Scholar]
- Tsao, R.; Yang, R.; Xie, S.; Sockovie, E.; Khanizadeh, S. Which polyphenolic compounds contribute to the total antioxidant activities of apple? J. Agric. Food Chem. 2005, 53, 4989–4995. [Google Scholar] [CrossRef]
- Knekt, P.; Jarvinen, R.; Reunanen, A.; Maatela, J. Flavonoid intake and coronary mortality in Finland: A cohort study. Br. Med. J. 1996, 312, 478–481. [Google Scholar] [CrossRef] [Green Version]
- Le Marchand, L.; Murphy, S.P.; Hankin, J.H.; Wilkens, L.R.; Kolonel, L.N. Intake of flavonoids and lung cancer. J. Natl. Cancer Inst. 2000, 92, 154–160. [Google Scholar] [CrossRef] [Green Version]
- Gerhauser, C. Cancer chemopreventive potential of apples, apple juice, and apple components. Planta Med. 2008, 74, 1608–1624. [Google Scholar] [CrossRef] [Green Version]
- Knekt, P.; Isotupa, S.; Rissanen, H.; Heliovaara, M.; Jarvinen, R.; Hakkinen, S.; Aromaa, A.; Reunanen, A. Quercetin intake and the incidence of cerebrovascular disease. Eur. J. Clin. Nutr. 2000, 54, 415–417. [Google Scholar] [CrossRef] [Green Version]
- Botton, A.; Lezzer, P.; Dorigoni, A.; Barcaccia, G.; Ruperti, B.; Ramina, A. Genetic and envirnonmental factors affecting allergen-related gene expression in apple fruit (Malus domestica L. Borkh). J. Agric. Food Chem. 2008, 56, 6707–6716. [Google Scholar] [CrossRef]
- Grafe, C. Apfelallergie: Aktueller Wissensstand und Ausblick. Obstbau 2009, 34, 618–620. [Google Scholar]
- Burney, P.G.J.; Potts, J.; Kummeling, I.; Mills, E.N.C.; Clausen, M.; Dubakiene, R.; Barreales, L.; Fernandez-Perez, C.; Fernandez-Rivas, M.; Le, T.-M.; et al. The prevalence and distribution of food sensitization in European adults. Allergy 2014, 69, 365–371. [Google Scholar] [CrossRef] [Green Version]
- Breiteneder, H.; Ebner, C. Molecular and biochemical classification of plant-derived food allergens. J. Allergy Clin. Immunol. 2000, 106, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, K.; Zuberbier, J.; Zuberbier, T.; Zapp, J.; Hennebrüder, W. Apfelallergie—Toleranzentwicklung durch regelmäßigen Konsum allergenarmer Äpfel. Eine Beobachtungsstudie. Erwerbs-Obstbau 2020, 62, 264–273. [Google Scholar] [CrossRef] [Green Version]
- Gilissen, L.J.W.J.; Bolhaar, S.T.H.P.; Matos, C.I.; Rouwendal, G.J.A.; Boone, M.J.; Krens, F.A.; Zuidmeer, L.; van Leeuwen, A.; Akkerdaas, J.; Hoffmann-Sommergruber, K.; et al. Silencing the major apple allergen Mal d 1 by using the RNA interference approach. J. Allergy Clin. Immunol. 2005, 115, 364–369. [Google Scholar] [CrossRef]
- Gell, P.; Coombs, R. The classification of allergic reactions underlying disease. In Clinical Aspects of Immunology (Chapter 13); Blackwell Scientific Publications: Oxford, UK, 1963. [Google Scholar]
- Bernert, T.; Münstermann, J.; Kothe, A.; Zapp, J. Polyphenolgehalt in Alten und Neuen Apfelsorten im Bezug auf Allergene Wirkungen; Hochschule Ostwestfalen-Lippe: Lemgo, Germany, 2012. [Google Scholar]
- Kschonsek, J.; Wiegand, C.; Hipler, U.C.; Böhm, V. Influence of polyphenolic content on the in vitro allergenicity of old and new apple cultivars: A pilot study. Nutrition 2019, 58, 30–35. [Google Scholar] [CrossRef]
- Marzban, G.; Puehringer, H.; Dey, R.; Brynda, S.; Ma, Y.; Martinelli, A.; Zaccarini, M.; van der Weg, E.; Housley, Z.; Kolarich, D.; et al. Localisation and distribution of the major allergens in apple fruits. Plant Sci. 2005, 169, 387–394. [Google Scholar] [CrossRef]
- Carnés, J.; Ferrer, A.M.; Fernández-Caldas, E. Allergenicity of 10 different apple varieties. Ann. Allergy Asthma Immunol. 2006, 96, 564–570. [Google Scholar] [CrossRef]
- Kschonsek, J.; Dietz, A.; Wiegand, C.; Hipler, U.C.; Böhm, V. Allergenicity of apple allergen Mal d 1 as effected by polyphenols and polyphenol oxidase due to enzymatic browning. LWT 2019, 113, 108289. [Google Scholar] [CrossRef]
- Matthes, A.; Schmitz-Eiberger, M. Apple (Malus domestica L. Borkh.) Allergen Mal d 1: Effect of Cultivar, Cultivation System, and Storage Conditions. J. Agric. Food Chem. 2009, 57, 10548–10553. [Google Scholar] [CrossRef] [PubMed]
- Schmitz-Eiberger, M.; Matthes, A. Effect of harvest maturity, duration of storage and shelf life of apples on the allergen Mal d 1, polyphenoloxidase activity and polyphenol content. Food Chem. 2011, 127, 1459–1464. [Google Scholar] [CrossRef]
- Son, D.; Lee, S. Comparison of the characteristics of the major allergen Mal d 1 according to apple varieties. Food Sci. Biotechnol. 2001, 10, 132–136. [Google Scholar]
- Zuidmeer, L.; van Leeuwen, W.A.; Kleine Budde, I.; Breiteneder, H.; Ma, Y.; Mills, C.; Sancho, A.I.; Meulenbroek, E.J.; van de Weg, E.; Gilissen, L.; et al. Allergenicity Assessment of Apple Cultivars: Hurdles in Quantifying Labile Fruit Allergens. Int. Arch. Allergy Immunol. 2006, 141, 230–240. [Google Scholar] [CrossRef]
- Sancho, A.I.; Foxall, R.; Browne, T.; Dey, R.; Zuidmeer, L.; Marzban, G.; Waldron, K.W.; van Ree, R.; Hoffmann-Sommergruber, K.; Laimer, K.; et al. Effect of postharvest storage on the expression of the apple allergen Mal d 1. J. Agric. Food Chem. 2006, 54, 5917–5923. [Google Scholar] [CrossRef]
- Bolhaar, S.T.; van de Weg, W.E.; van Ree, R.; Gonzalez-Mancebo, E.; Zuidmeer, L.; Bruijnzeel-Koomen, C.A.; Fernandez-Rivas, M.; Jansen, J.; Hoffmann-Sommergruber, K.; Knulst, A.C. In vivo assessment with prick-to-prick testing and double-blind, placebo-controlled food challenge of allergenicity 930 of apple cultivars. J. Allergy Clin. Immunol. 2005, 116, 1080–1086. [Google Scholar] [CrossRef] [PubMed]
- Kiewning, D.; Baab, G.; Schmitz-Eiberger, M. Effect of 1-MCP treatment on the apple (Malus domestica L. Borkh.) allergen Mal d 1 during long-term storage. LWT 2013, 53, 198–203. [Google Scholar] [CrossRef]
- Kiewning, D.; Schmitz-Eiberger, M. Effects of long-term storage on Mal d 1 content of four apple cultivars with initial low Mal d 1 content. J. Sci. Food Agric. 2014, 94, 798–802. [Google Scholar] [CrossRef] [PubMed]
- Klockenbring, T.; Bez, C.; Klowat, B.; Liappis, N.; Köpke, U.; Noga, G.; Zielen, S.; Goerlich, R. Allergenic potential of apple cultivars from organic and integrated fruit production. Allergy Suppl. 2001, 68, 889. [Google Scholar]
- Rudeschko, O.; Fahlbusch, B.; Henzgen, M.; Schlenvoigt, G.; Herrmann, D.; Vieths, S. Investigation of the stability of apple allergen extracts. Allergy 1995, 50, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Rudeschko, O.; Fahlbush, B.; Henzgen, M.; Schlenvoigt, G.; Herrmann, D.; Jager, L. Optimization of apple allergen preparation for in vitro and in vivo diagnostics. Allergy 1995, 50, 262–268. [Google Scholar] [CrossRef]
- Garcia, A.; Wichers, J.H.; Wichers, H.J. Decrease of the IgE-binding by Mal d 1, the major apple allergen, by means of polyphenol oxidase and peroxidase treatments. Food Chem. 2007, 103, 94–100. [Google Scholar] [CrossRef]
- Nothegger, B.; Reider, N.; Covaciu, C.E.; Cova, V.; Ahammer, L.; Eidelpes, R.; Unterhauser, J.; Platzgummer, S.; Tollinger, M.; Letschka, T.; et al. Allergen-specific immunotherapy with apples: Selected cultivars could be a promising tool for bich pollen allergy. J. Eur. Acad. Dermatol. Venerol. 2020. [Google Scholar] [CrossRef]
- Groth, S.; Budke, C.; Weber, T.; Oest, M.; Brockmann, S.; Holz, M.; Daum, D.; Rohn, S. Selenium biofortification of different varieties of apples (Malus domestica)—Influence on protein content and the allergenic proteins Mal d 1 and Mal d 3. 2021; submitted. [Google Scholar]
- Romer, E.; Chebib, S.; Bergmann, K.C.; Plate, K.; Becker, S.; Ludwig, C.; Meng, C.; Fischer, T.; Dierend, W.; Schwab, W. Tiered approach for the identification of Mal d 1 reduced, well tolerated apple genotypes. Sci. Rep. 2020, 10, 9144. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Rivas, M.; Bolhaar, M.; González-Mancebo, E.; Asero, R.; van Leeuwen, A.; Bohle, B.; Ma, Y.; Ebner, C.; Rigby, N.; Sancho, A.I. Apple allergy across Europe: How allergen sensitization profiles determine the clinical expression of allergies to plant foods. J. Allergy Clin. Immunol. 2006, 118, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Vanga, S.K.; Raghavan, V. Effect of pre-harvest and post-harvest conditions on the fruit allergenicity: A review. Crit. Rev. Food Sci. Nutr. 2017. [Google Scholar] [CrossRef] [PubMed]
- Rawel, H.M.; Kroll, J.; Rohn, S. Reactions of phenolic substances with lysozyme—Physicochemical characterisation and proteolytic digestion of the derivatives. Food Chem. 2001, 72, 59–71. [Google Scholar] [CrossRef]
- Rohn, S. Possibilities and limitations in the analysis of covalent interactions between phenolic compounds and proteins. Food Res. Int. 2014, 65, 13–19. [Google Scholar] [CrossRef]
- Björksten, F.; Halmepuro, L.; Hannuksela, M.; Lahti, A. Extraction and Properties of Apple Allergens. Allergy 1980, 35, 671–677. [Google Scholar] [CrossRef]
- Chung, S.Y.; Champagne, E.T. Reducing the allergenic capacity of peanut extracts and liquid peanut butter by phenolic compounds. Food Chem. 2009, 115, 1345–1349. [Google Scholar] [CrossRef]
- Singh, A.; Holvoet, S.; Mercenier, A. Dietary polyphenols in the prevention and treatment of allergic diseases. Clin. Exp. Allergy 2011, 41, 1346–1359. [Google Scholar] [CrossRef]
- Rana, S.; Bhushan, S. Apple phenolics as nutraceuticals: Assessment, analysis and application. J. Food Sci. Technol. 2016, 53, 1727–1738. [Google Scholar] [CrossRef]
- Dhyani, P.; Bahukhandi, A.; Rawat, S.; Bhatt, I.D.; Rawal, R.S. Diversity of bioactive compounds and antioxidant activity in Delicious group in Western Himalaya. J. Food Sci. Technol. 2018, 55, 2587–2599. [Google Scholar] [CrossRef]
- Zardo, D.M.; Silva, K.M.; Guyot, S.; Nogueira, A. Phenolic profile and antioxidant capacity of the principal apples produced in Brazil. Int. J. Food Sci. Nutr. 2013, 64, 611–620. [Google Scholar] [CrossRef]
- Wojdylo, A.; Oszmianski, J.; Laskowski, P. Polyphenolic compounds and antioxidant activity of new and old apple varieties. J. Agric. Food Chem. 2008, 56, 6520–6530. [Google Scholar] [CrossRef]
- Mussaci, S.; Serra, S. Apple fruit quality: Overview in pre-harvest factors. Sci. Hortic. 2018, 234, 409–430. [Google Scholar] [CrossRef]
- Groth, S.; Budke, C.; Neugart, S.; Ackermann, S.; Kappenstein, F.-S.; Daum, D.; Rohn, S. Influence of a selenium biofortification on antioxidant properties and phenolic compounds of apples (Malus domestica). Antioxidants 2020, 9, 187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachiega, P.; Salgado, J.M.; de Carvalho, J.E.; Ruiz, A.L.; Schwarz, K.; Tezotto, T.; Morzelle, M.C. Antioxidant and antiproliferative activities in different maturation stages of broccoli (Brassica oleracea var. italica) biofortified with selenium. Food Chem. 2016, 190, 771–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Amato, R.; Proietti, P.; Onofri, A.; Regni, L.; Esposto, S.; Servili, M.; Businelli, D.; Selvaggini, R. Biofortification (Se): Does it increase the content of phenolic compounds in virgin olive oil (VOO)? PLoS ONE 2017, 12. [Google Scholar] [CrossRef] [PubMed]
- D’Amato, R.; Fontanella, M.C.; Falcinelli, B.; Beone, G.M.; Bravi, E.; Marconi, O.; Benincasa, P.; Businelli, D. Selelium biofortification in rice (Oryza sativa L.) sprouting: Effects on Se yield and nutritional traits with focus on phenolic acid profile. J. Agric. Food Chem. 2018, 66, 4082–4090. [Google Scholar] [CrossRef]
- Pezzarossa, B.; Remorini, D.; Gentile, M.L.; Massai, R. Effects of foliar and fruit addition of sodium selenate on selenium accumulation and fruit quality. J Sci. Food Agric. 2012, 92, 781–786. [Google Scholar] [CrossRef] [PubMed]
- Schiavon, M.; dall’Acqua, S.; Mietto, A.; Pilon-Smits, E.A.H.; Sambo, P.; Masi, A.; Malagoli, M. Selenium fertilization alters the chemical composition and antioxidant constituents of tomato (Solanum lycopersicon L.). J. Agric. Food Chem. 2013, 61, 10542–10554. [Google Scholar] [CrossRef]
- Schiavon, M.; Berto, C.; Malagoli, M.; Trentin, A.; Sambo, P.; Dall’Acqua, S.; Pilon-Smits, E.A.H. Selenium biofortification in radish enhances nutritional quality via accumulation of methyl-selenocystein and promotion of transcripts and metabolites related to glucosinolates, phenolics, and amino acids. Front. Plant Sci. 2016, 7, 1371. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Wu, P.; Wang, Y.; Feng, H. Different approaches for selenium biofortification of pear-jujube (Zizyphus jujuba M. cv. Lizao) and associated effects on fruit quality. J. Food Agric. Environ. 2013, 11, 529–534. [Google Scholar]
- Gupta, M.; Gupta, S. An overview of selenium uptake, metabolism, and toxicity in plants. Front. Plant Sci. 2017, 7, 2074. [Google Scholar] [CrossRef] [Green Version]
- Feng, R.; Wei, C.; Tu, S. The roles of selenium in protecting plants against abiotic stresses. Environ. Experim. Bot. 2013, 87, 58–68. [Google Scholar] [CrossRef]
- Hawrylak-Nowak, B.; Hasanuzzaman, M.; Matraszek-Gawron, R. Mechanisms of selenium-induced enhancement of abiotic stress tolerance in plants. In Plant Nutrients and Abiotic Stress Tolerance; Springer: Singapore, 2018; pp. 269–295. [Google Scholar]
- WETTERKONTOR GMBH, Monats-und Jahreswerte für Deutschland. Available online: https://www.wetterkontor.de/de/wetter/deutschland/monatswerte.asp?y=2018&m=15 (accessed on 8 September 2020).
- Kroll, J.; Rawel, H.M.; Rohn, S. A review. Reactions of plant phenolics with food proteins and enzymes under special consideration of covalent bonds. Food Sci. Technol. Res. 2003, 9, 205–218. [Google Scholar] [CrossRef] [Green Version]
- Gruber, P.; Vieths, S.; Wangorsch, A.; Nerkamp, J.; Hofmann, T. Maillard reaction and enzymatic browning affect the allergenicity of Pru av 1, the major allergen from cherry (Prunus avium). J. Agric. Food Chem. 2004, 52, 4002–4007. [Google Scholar] [CrossRef]
- Rocha, A.M.C.N.; Morais, A.M.M.B. Characterization of polyphenol oxidase (PPO) extracted from ‘Jonagored’ apple. Food Control 2001, 12, 85–90. [Google Scholar] [CrossRef]
- Ullah, C.; Unsicker, S.B.; Fellenberg, C.; Constabel, C.P.; Schmidt, A.; Gershenzon, J.; Hammerbacher, A. Flavan-3-ols are an effective chemical defense against rust infection. Plant Physiol. 2017, 175, 1560–1578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casanal, A.; Zander, U.; Dupeux, F.; Valpuesta, V.; Marquez, J.A. Purification, crystallization and preliminary X-ray analysis of the strawberry allergens Fra a 1E and Fra a 3 in the presence of catechin. Acta Cryst. F 2013, 69, 510–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.; Lian, J.; Han, Y.; Zhou, N.; Li, X.; Yang, A.; Tong, P.; Chen, H. Crosslinking of peanut allergen Ara h 2 by polyphenol oxidase: Digestibility and potential allergenicity assessment. J. Sci. Food Agric. 2016, 96, 3567–3574. [Google Scholar] [CrossRef]
- Kanda, T.; Akiyama, H.; Yanagida, A.; Tanabe, M.; Goda, Y.; Toyoda, M.; Teshima, R.; Saito, Y. Inhibitory effects of apple polyphenol on induced histamine release from RBL-2H3 cells and rat mast cells. Biosci. Biotechnol. Biochem. 1998, 62, 1284–1289. [Google Scholar] [CrossRef] [PubMed]
- Tokura, T.; Nakano, N.; Ito, T.; Matsuda, H.; Nagasako-Akazome, Y.; Kanda, T.; Ikeda, M.; Okumura, K.; Ogawa, H.; Nishiyama, C. Inhibitory effect of polyphenol-enriched apple extracts on mast cell degranulation in vitro targeting the binding between IgE and FcERI. Biosci. Biotechnol. Biochem. 2005, 69, 1974–1977. [Google Scholar] [CrossRef] [PubMed]
- Jakobek, L. Interactions of polyphenols with carbohydrates, lipids, and proteins. Food Chem. 2015, 175, 556–567. [Google Scholar] [CrossRef]
- Rohn, S.; Rawel, H.M.; Kroll, J. Inhibitory effects of plant phenols on the activity of selected enzymes. J. Agric. Food Chem. 2002, 50, 3566–3571. [Google Scholar] [CrossRef] [PubMed]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Vieths, S.; Janek, K.; Aulepp, H.; Petersen, A. Isolation and characterization of the 18-kDa major apple allergen and comparison with the major birch pollen allergen (Bet v I). Allergy 1995, 50, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Schmitz-Eiberger, M.; Weber, V.; Treutter, D.; Baab, G.; Lorenz, J. Bioactive components in fruits from different apple varieties. J. Appl. Bot. 2003, 77, 167–171. [Google Scholar]
- Neugart, S.; Baldermann, S.; Ngwene, B.; Wesonga, J.; Schreiner, M. Indigenous leafy vegetables of Eastern Africa—A source of extraordinary secondary plant metabolites. Food Res. Int. 2017, 100, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.; Zietz, M.; Schreiner, M.; Rohn, S.; Kroh, L.W.; Krumbein, A. Identification of complex, naturally occurring flavonoid glycosides in kale (Brassica oleracea var. sabellica) by high-performance liquid chromatography diode-array detection/electrospray ionization multistage mass spectrometry. Rapid Commun. Mass Spectrom. 2010, 24, 2009–2022. [Google Scholar] [CrossRef]
- Merck KGaA. Package insert for the goat-anti-mouse IgG antibody assay, conjugated with peroxidase (H+L); Sigma-Aldrich: Darmstadt, Germany, 2019. [Google Scholar]
- Luttmann, W.; Bratke, K.; Küpper, M.; Myrtek, D. Der Experimentator Immunologie; Springer: Berlin-Heidelberg, Germany, 2014; pp. 111–118. [Google Scholar]
Cultivar and Year of Cultivation | Correlation Coefficient Selenium—Mal d 1 |
---|---|
All | −0.0154 |
‘Fiesta’ 2017 | 0.0244 |
‘Jonica’ 2017 | −0.4099 |
‘Golden Delicious’ 2017 | −0.6493 * |
‘Jonagold’ 2017 | −0.7673 ** |
‘Boskoop’ 2018 | −0.7463 * |
‘Jonica’ 2018 | −0.3524 |
‘Golden Delicious’ 2018 | −0.7318 * |
‘Jonagold’ 2018 | 0.2491 |
‘Elstar’ 2019 | 0.3922 |
Cultivar and Year of Cultivation | Correlation Coefficient R2 PPO—Mal d 1 | Correlation Coefficient R2 TPC—Mal d 1 | Correlation Coefficient R2 TEAC—Mal d 1 | Correlation Coefficient R2 ORAC—Mal d 1 |
---|---|---|---|---|
All | −0.1164 | 0.0582 | −0.1676 | −0.0211 |
All control samples | −0.1635 | −0.0115 | −0.3207 | −0.0375 |
All biofortified samples | −0.1524 | 0.1378 | 0.0006 | −0.1382 |
‘Fiesta’ 2017 | 0.1463 | 0.0529 | −0.1343 | −0.4863 |
‘Jonica’ 2017 | −0.7158 * | −0.4915 | −0.3110 | −0.3962 |
‘Golden Delicious’ 2017 | −0.5614 | −0.2115 | −0.3889 | 0.1618 |
‘Jonagold’ 2017 | −0.0444 | 0.1980 | −0.4260 | 0.6741 * |
‘Boskoop’ 2018 | 0.8589 ** | −0.2949 | −0.4697 | 0.0013 |
‘Jonica’ 2018 | 0.3496 | −0.0322 | 0.0759 | 0.0767 |
‘Golden Delicious’ 2018 | 0.3847 | 0.5139 | 0.8740 * | 0.3760 |
‘Jonagold’ 2018 | −0.0296 | −0.6023 | −0.5536 | 0.4483 |
‘Elstar’ 2019 | −0.4324 | 0.3780 | 0.4998 | −0.2930 |
‘Fiesta’ 2017 Control | 0.3081 | −0.6859 | −0.6037 | −0.4795 |
‘Fiesta’ 2017 Selenium | −0.1074 | 0.5634 | 0.0820 | −0.9576 *** |
‘Jonica’ 2017 Control | −0.9364 | −0.4338 | −0.3799 | −0.3814 |
‘Jonica’ 2017 Selenium | −0.5521 | −0.4679 | −0.2717 | 0.1818 |
‘Golden Delicious’ 2017 Control | 0.5215 | −0.4503 | −0.4439 | −0.5066 |
‘Golden Delicious’ 2017 Selenium | −0.4871 | −0.7232 * | −0.5940 | 0.1390 |
‘Jonagold’ 2017 Control | −0.1373 | 0.7581 | 0.8501 | −0.6730 |
‘Jonagold’ 2017 Selenium | 0.7316 * | 0.1126 | 0.5074 | 0.7491 * |
‘Boskoop’ 2018 Control | 0.7455 | −0.7328 | −0.8318 | −0.3367 |
‘Boskoop’ 2018 Selenium | 0.2508 | −0.1612 | −0.2445 | 0.7092 |
‘Jonica’ 2018 Control | 0.0281 | −0.6060 | −0.4973 | −0.6569 |
‘Jonica’ 2018 Selenium | 0.8033 | 0.7256 | 0.7631 | 0.4636 |
‘Golden Delicious’ 2018 Control | −0.5166 | 0.9170 | 0.7411 | 0.3569 |
‘Golden Delicious’ 2018 Selenium | −0.8993 | 0.4206 | 0.8222 | −0.9424 |
‘Jonagold’ 2018 Control | 0.6978 | −0.9217 | −0.8754 | −0.4095 |
‘Jonagold’ 2018 Selenium | −0.9821 * | −0.7753 | −0.6820 | 0.6942 |
‘Elstar’ 2019 Control | −0.2390 | 0.1797 | 0.1275 | −0.1005 |
‘Elstar’ 2019 Selenium | −0.4857 | 0.3917 | 0.5802 | −0.3532 |
Cultivar and Year of Cultivation | Mal d 1 | Mal d 1 | Mal d 1 | Mal d 1 | Mal d 1 | Mal d 1 |
---|---|---|---|---|---|---|
Chlorogenic Acid | Epicatechin | Procyanidin Trimers | Caffeoyl Glucosides | Σ Phloretin Glucosides | Σ Quercetin Glycosides | |
All 2017 | −0.0379 | 0.2277 | 0.5165 *** | −0.2685 | −0.0361 | −0.1151 |
All controls 2017 | −0.3064 | 0.1077 | 0.4866 | −0.3484 | 0.3345 | 0.3230 |
‘Fiesta’ Control 2017 | −0.9558 * | 0.7474 | 0.9904 ** | 0.6394 | −0.4251 | −0.8979 |
‘Jonica’ Control 2017 | 0.4068 | 0.2401 | −0.9204 | 0.0662 | 0.7636 | −0.6081 |
‘Golden Delicious’ Control 2017 | −0.5851 | −0.8429 | −0.6738 | −0.2393 | −0.0145 | −0.7521 |
‘Jonagold’ Control 2017 | −0.8553 | 0.5818 | 0.6812 | −0.3038 | 0.6768 | 0.6710 |
All biofortified 2017 | 0.2869 | 0.3325 | 0.4929 ** | −0.1586 | −0.2357 | −0.1782 |
‘Fiesta’ Selenium 2017 | 0.2344 | 0.8735 * | 0.4806 | 0.1037 | −0.6540 | −0.6743 |
‘Jonica’ Selenium 2017 | −0.0262 | 0.0871 | 0.6946 | −0.6670 | −0.2565 | −0.0444 |
‘Golden Delicious’ Selenium 2017 | 0.6621 | 0.5236 | 0.6252 | 0.6760 | 0.8206 * | 0.7218 * |
‘Jonagold’ Selenium 2017 | 0.3544 | −0.0528 | 0.4626 | −0.0715 | −0.0557 | 0.2322 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Groth, S.; Budke, C.; Weber, T.; Neugart, S.; Brockmann, S.; Holz, M.; Sawadski, B.C.; Daum, D.; Rohn, S. Relationship between Phenolic Compounds, Antioxidant Properties, and the Allergenic Protein Mal d 1 in Different Selenium-Biofortified Apple Cultivars (Malus domestica). Molecules 2021, 26, 2647. https://doi.org/10.3390/molecules26092647
Groth S, Budke C, Weber T, Neugart S, Brockmann S, Holz M, Sawadski BC, Daum D, Rohn S. Relationship between Phenolic Compounds, Antioxidant Properties, and the Allergenic Protein Mal d 1 in Different Selenium-Biofortified Apple Cultivars (Malus domestica). Molecules. 2021; 26(9):2647. https://doi.org/10.3390/molecules26092647
Chicago/Turabian StyleGroth, Sabrina, Christoph Budke, Timo Weber, Susanne Neugart, Sven Brockmann, Martina Holz, Bao Chau Sawadski, Diemo Daum, and Sascha Rohn. 2021. "Relationship between Phenolic Compounds, Antioxidant Properties, and the Allergenic Protein Mal d 1 in Different Selenium-Biofortified Apple Cultivars (Malus domestica)" Molecules 26, no. 9: 2647. https://doi.org/10.3390/molecules26092647
APA StyleGroth, S., Budke, C., Weber, T., Neugart, S., Brockmann, S., Holz, M., Sawadski, B. C., Daum, D., & Rohn, S. (2021). Relationship between Phenolic Compounds, Antioxidant Properties, and the Allergenic Protein Mal d 1 in Different Selenium-Biofortified Apple Cultivars (Malus domestica). Molecules, 26(9), 2647. https://doi.org/10.3390/molecules26092647