LC-ESI/LTQ-Orbitrap-MS Based Metabolomics in Evaluation of Bitter Taste of Arbutus unedo Honey
Abstract
:1. Introduction
2. Results and Discussion
2.1. LC-ESI/LTQ-Orbitrap-MS
2.2. Untargeted Metabolomic Analysis of Strawberry Tree Honey Fractions
2.3. Quantitative Analysis of Isoprenoid Compounds by HPLC-DAD
3. Materials and Methods
3.1. Chemicals
3.2. Strawberry Tree Honey and Preparation of the Hydrophilic Fractions
3.3. Sensory Analysis
3.4. LC-MS/MS Analysis
3.5. Quantitative Analysis by HPLC-DAD
3.6. Multivariate Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Rosa, A.; Tuberoso, C.I.G.; Atzeri, A.; Melis, M.P.; Bifulco, E.; Dessì, M.A. Antioxidant profile of strawberry tree honey and its marker homogentisic acid in several models of oxidative stress. Food Chem. 2011, 129, 1045–1053. [Google Scholar] [CrossRef]
- Tuberoso, C.I.G.; Boban, M.; Bifulco, E.; Budimir, D.; Pirisi, F.M. Antioxidant capacity and vasodilatory properties of Mediterranean food: The case of Cannonau wine, myrtle berries liqueur and strawberry-tree honey. Food Chem. 2013, 140, 686–691. [Google Scholar] [CrossRef] [PubMed]
- Afrin, S.; Forbes-Hernandez, T.Y.; Gasparrini, M.; Bompadre, S.; Quiles, J.L.; Sanna, G.; Spano, N.; Giampieri, F.; Battino, M. Strawberry-tree honey induces growth inhibition of human colon cancer cells and increases ROS generation: A comparison with Manuka honey. Int. J. Mol. Sci. 2017, 18, 613. [Google Scholar] [CrossRef] [Green Version]
- Ośes, S.M.; Nieto, S.; Rodrigo, S.; Pérez, S.; Rojo, S.; Sancho, M.T.; Fernández-Muiño, M.Á. Authentication of strawberry tree (Arbutus unedo L.) honeys from southern Europe based on compositional parameters and biological activities. Food Biosci. 2020, 38, 100768. [Google Scholar] [CrossRef]
- Di Petrillo, A.; Santos-Buelga, C.; Era, B.; González-Paramás, A.M.; Tuberoso, C.; Medda, R.; Pintus, F.; Fais, A. Sardinian honeys as sources of xanthine oxidase and tyrosinase inhibitors. Food Sci. Biotechnol. 2018, 27, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Jurič, A.; Gašić, U.; Brčić Karačonji, I.; Jurica, K.; Milojković-Opsenica, D. The phenolic profile of strawberry tree (Arbutus unedo L.) honey. J. Serb. Chem. Soc. 2020, 85, 1011–1019. [Google Scholar] [CrossRef] [Green Version]
- Miguel, M.G.; Faleiro, M.L.; Guerreiro, A.C.; Antunes, M.D. Arbutus unedo L.: Chemical and biological properties. Molecules 2014, 19, 15799–15823. [Google Scholar] [CrossRef] [Green Version]
- Cabras, P.; Angioni, A.; Tuberoso, C.; Floris, I.; Reniero, F.; Ghelli, S. Homogentisic acid: A phenolic acid as a marker of strawberry-tree (Arbutus unedo) honey. Food Chem. 1999, 47, 4064–4067. [Google Scholar] [CrossRef]
- Tuberoso, C.I.G.; Bifulco, E.; Caboni, P.; Cottiglia, F.; Cabras, P.; Floris, I. Floral markers of strawberry tree (Arbutus unedo L.) honey. J. Agric. Food Chem. 2010, 58, 384–389. [Google Scholar] [CrossRef] [PubMed]
- Fierro, F.; Giorgetti, A.; Carloni, P.; Meyerhof, W.; Alfonso-Prieto, M. Dual binding mode of “bitter sugars” to their human bitter taste receptor target. Sci. Rep. 2019, 9, 8437. [Google Scholar] [CrossRef] [Green Version]
- Izawa, K.; Amino, Y.; Kohmura, M.; Ueda, Y.; Kuroda, M. 4.16—Human–Environment Interactions—Taste. In Comprehensive Natural Products II, 1st ed.; Liu, H.-W., Mander, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; Volume 4, pp. 631–671. ISBN 9780080453828. [Google Scholar] [CrossRef]
- Meyerhof, W.; Batram, C.; Kuhn, C.; Brockhoff, A.; Chudoba, E.; Bufe, B.; Appendino, G.; Behrens, M. The molecular receptive ranges of human TAS2R bitter taste receptors. Chem. Senses 2010, 35, 157–170. [Google Scholar] [CrossRef]
- Valdés, A.; Cifuentes, A.; León, C. Foodomics evaluation of bioactive compounds in foods. Trends Anal. Chem. 2017, 96, 2–13. [Google Scholar] [CrossRef]
- Cerulli, A.; Masullo, M.; Montoro, P.; Hosek, J.; Pizza, C.; Piacente, S. Metabolite profiling of “green” extracts of Corylus avellana leaves by 1H NMR spectroscopy and multivariate statistical analysis. J. Pharm. Biomed. Anal. 2018, 160, 168–178. [Google Scholar] [CrossRef]
- La Barbera, G.; Capriotti, A.L.; Cavaliere, C.; Montone, C.M.; Piovesana, S.; Samperi, R.; Zenezini Chiozzi, R.; Laganà, A. Liquid chromatography-high resolution mass spectrometry for the analysis of phytochemicals in vegetal-derived food and beverages. Food Res. Int. 2017, 100, 28–52. [Google Scholar] [CrossRef]
- D’Urso, G.; d’Aquino, L.; Pizza, C.; Montoro, P. Integrated mass spectrometric and multivariate data analysis approaches for the discrimination of organic and conventional strawberry (Fragaria ananassa Duch.) crops. Food Res. Int. 2015, 77, 264–272. [Google Scholar] [CrossRef]
- Pascale, R.; Bianco, G.; Cataldi, T.R.I.; Schmitt Kopplin, P.; Bosco, F.; Vignola, L.; Uhl, J.; Lucio, M.; Milella, L. Mass spectrometry-based phytochemical screening for hypoglycemic activity of Fagioli di Sarconi beans (Phaseolus vulgaris L.). Food Chem. 2018, 242, 497–504. [Google Scholar] [CrossRef] [Green Version]
- D′Urso, G.; Montoro, P.; Piacente, S. Detection and comparison of phenolic compounds in different extracts of black currant leaves by liquid chromatography coupled with High-Resolution ESI-LTQ-Orbitrap MS and High-Sensitivity ESI-QTrap MS. J. Pharm. Biomed. Anal. 2020, 179, 112926. [Google Scholar] [CrossRef]
- KNApSAcK Core System. Available online: http://www.knapsackfamily.com/knapsack_core/top.php (accessed on 11 December 2020).
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis—Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pimpao, R.C.; Dew, T.; Figueira, M.E.; McDougall, G.J.; Stewart, D.; Ferreira, R.B.; Santos, C.N.; Williamson, G. Urinary metabolite profiling identifies novel colonic metabolites and conjugates of phenolics in healthy volunteers. Mol. Nutr. Food Res. 2014, 58, 1414–1425. [Google Scholar] [CrossRef] [PubMed]
- Karikas, G.A.; Giannitsaros, A. Phenolic glucosides from leaves of Arbutus unedo. Plantes Med. Phytothe. 1990, 24, 27–30. [Google Scholar]
- Marmarinos, V.; Paschalakis, P. Photopolymerization Material for Gums Isolation. U.S. Patent 8,334,328, 18 December 2012. Available online: https://patentimages.storage.googleapis.com/77/fb/c3/c3cf3433898be2/CA2677468C.pdf (accessed on 11 December 2020).
- Ouchemoukh, S.; Amessis-Ouchemoukh, N.; Gomez-Romero, M.; Aboud, F.; Giuseppe, A.; Fernandez-Gutierrez, A.; Segura-Carretero, A. Characterisation of phenolic compounds in Algerian honeys by RP-HPLC coupled to electrospray time-of-flight mass spectrometry. LWT—Food Sci. Technol. 2017, 85 Pt B, 460–469. [Google Scholar] [CrossRef]
- Long, E.Y.; Krupke, C.H. Non-cultivated plants present a season-long route of pesticide exposure for honey bees. Nat. Commun. 2016, 7, 11629. [Google Scholar] [CrossRef]
- Wilkins, A.L.; Lu, Y.; Tan, S.T. Extractives from New Zealand honeys. 4. Linalool derivatives and other components from nodding thistle (Carduus nutans) honey. J. Agric. Food Chem. 1993, 41, 873–878. [Google Scholar] [CrossRef]
- Kaskoniene, V.; Maruska, A.; Kornysova, O.; Charczun, N.; Ligor, M.; Buszewski, B. Quantitative and qualitative determination of phenolic compounds in honey. Chem. Technol. 2009, 74–80. [Google Scholar]
- Rouphael, Y.; Bernardi, J.; Cardarelli, M.; Bernardo, L.; Kane, D.; Colla, G.; Lucini, L. Phenolic compounds and sesquiterpene lactones profile in leaves of nineteen artichoke cultivars. J. Agric. Food Chem. 2016, 64, 8540–8548. [Google Scholar] [CrossRef]
- Blunt, J.; Munro, M.G.; Swallow, W. Carbon-13 NMR analysis of tutin and related substances: Application to the identification of minor components of toxic honey. Aust. J. Chem. 1979, 32, 1339–1343. [Google Scholar] [CrossRef]
- Dalla Serra, A.; Franco, M.A.; Mattivi, F.; Ramponi, M.; Vacca, V.; Versini, G. Aroma characterization of Sardinian strawberry tree (Arbutus unedo L.) honey. Ital. J. Food Sci. 1999, 11, 47–56. [Google Scholar]
- Sun, M.; Zhao, L.; Wang, K.; Han, L.; Shan, J.; Wu, L.; Xue, X. Rapid identification of “mad honey” from Tripterygium wilfordii Hook. f. and Macleaya cordata (Willd) R. Br using UHPLC/Q-TOF-MS. Food Chem. 2019, 294, 67–72. [Google Scholar] [CrossRef]
- Ma, L.; Ashworth, D.; Yates, S.R. Simultaneous determination of estrogens and progestogens in honey using high performance liquid chromatography-tandem mass spectrometry. J. Pharm. Biomed. 2016, 131, 303–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staub Spörri, A.; Jan, P.; Cognard, E.; Ortelli, D.; Edder, P. Comprehensive screening of veterinary drugs in honey by ultra-high-performance liquid chromatography coupled to mass spectrometry. Food Addit. Contam. A 2014, 31, 806–816. [Google Scholar] [CrossRef] [PubMed]
- Bentivenga, G.; D’Auria, M.; Fedeli, P.; Mauriello, G.; Racioppi, R. SPME-GC-MS analysis of volatile organic compounds in honey from Basilicata. Evidence for the presence of pollutants from anthropogenic activities. Int. J. Food Sci. 2004, 39, 1079–1086. [Google Scholar] [CrossRef]
- Cešen, M.; Lambropoulou, D.; Laimou-Geraniou, M.; Kosjek, T.; Blaznik, U.; Heath, D.; Heath, E. Determination of bisphenols and related compounds in honey and their migration from selected food contact materials. J. Agric. Food Chem. 2016, 64, 8866–8875. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Gonzalo, E.; Domínguez-Alvarez, J.; García-Gómez, D.; García-Jiménez, M.G.; Carabias-Martínez, R. Determination of endocrine disruptors in honey by CZE-MS using restricted access materials for matrix cleanup. Electrophoresis 2010, 31, 2279–2288. [Google Scholar] [CrossRef]
- Sosath, S.; Ott, H.H.; Hecker, E. Irritant principles of the spurge family (Euphorbiaceae). XIII. Oligocyclic and macrocyclic diterpene esters from latexes of some Euphorbia species utilized as source plants of honey. J. Nat. Prod. 1988, 51, 1062–1074. [Google Scholar] [CrossRef] [PubMed]
- Duke, C.C.; Tran, V.H.; Duke, R.K.; Abu-Mellal, A.; Plunkett, G.T.; King, D.I.; Hamid, K.; Wilson, K.L.; Barrett, R.L.; Bruhl, J.J. A sedge plant as the source of Kangaroo Island propolis rich in prenylated p-coumarate ester and stilbenes. Phytochemistry 2017, 134, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Leyva-Jimenez, F.J.; Lozano-Sanchez, J.; Borras-Linares, I.; Cadiz-Gurrea, M.d.l.L.; Mahmoodi-Khaledi, E. Potential antimicrobial activity of honey phenolic compounds against Gram positive and Gram negative bacteria. LWT—Food Sci. Technol. 2019, 101, 236–245. [Google Scholar] [CrossRef]
- Seraglio, S.K.T.; Valese, A.C.; Daguer, H.; Bergamo, G.; Azevedo, M.S.; Gonzaga, L.V.; Fett, R.; Costa, A.C.O. Development and validation of a LC-ESI-MS/MS method for the determination of phenolic compounds in honeydew honeys with the diluted-and-shoot approach. Food Res. Int. 2016, 87, 60–67. [Google Scholar] [CrossRef]
- Liu, P.; Deng, T.; Ye, C.; Qin, Z.; Hou, X.; Wang, J. Identification of kurarinone by LC/MS and investigation of its thermal stability. J. Chil. Chem. Soc. 2009, 54, 80–82. [Google Scholar] [CrossRef]
- MZmine 2. Available online: http://mzmine.github.io/ (accessed on 11 December 2020).
- Schievano, E.; Stocchero, M.; Morelato, E.; Facchin, C.; Mammi, S. An NMR-based metabolomic approach to identify the botanical origin of honey. Metabolomics 2012, 8, 679–690. [Google Scholar] [CrossRef]
- Stocchero, M. Relevant and irrelevant predictors in PLS2. J. Chemom. 2020, 34, e3237. [Google Scholar] [CrossRef]
- Pydi, S.P.; Jaggupilli, A.; Nelson, K.M.; Abrams, S.R.; Bhullar, R.P.; Loewen, M.C.; Chelikani, P. Abscisic acid acts as a blocker of the bitter taste G protein-coupled receptor T2R4. Biochemistry 2015, 28, 2622–2631. [Google Scholar] [CrossRef]
- Remya, C.; Dileep, K.V.; Tintu, I.; Variyar, E.J.; Sadasivan, C. Flavanone glycosides as acetylcholinesterase inhibitors: Computational and experimental evidence. Indian J. Pharm. Sci. 2014, 76, 567–570. [Google Scholar]
- Yang, J.; Chen, H.; Wang, Q.; Deng, S.; Huang, M.; Ma, X.; Song, P.; Du, J.; Huang, Y.; Wen, Y.; et al. Inhibitory effect of kurarinone on growth of human non-small cell lung cancer: An experimental study both in vitro and in vivo studies. Front. Pharm. 2018, 9, 252. [Google Scholar] [CrossRef] [PubMed]
- Huai, D. Anti-fibrotic effect of kurarinone in treatment of chronic hepatitis B. Xiandai Zhenduan Yu Zhiliao 2014, 25, 4641–4642. [Google Scholar]
- Deiana, V.; Tuberoso, C.; Satta, A.; Pinna, C.; Camarda, I.; Spano, N.; Ciulu, M.; Floris, I. Relationship between markers of botanical origin in nectar and honey of the strawberry tree (Arbutus unedo) throughout flowering periods in different years and in different geographical areas. J. Apic. Res. 2016, 54, 342–349. [Google Scholar] [CrossRef]
- D′Urso, G.; Maldini, M.; Pintore, G.; d′Aquino, L.; Montoro, P.; Pizza, C. Characterisation of Fragaria vesca fruit from Italy following a metabolomics approach through integrated mass spectrometry techniques. LWT—Food Sci. Technol. 2016, 74, 387–395. [Google Scholar] [CrossRef]
- EMEA. Quality Guidelines: Validation of Analytical Procedures: Text and Methodology (ICH Q2). Available online: http://www.emea.europa.eu/pdfs/human/ich/038195en.pdf (accessed on 11 December 2020).
- Mari, A.; Montoro, P.; Pizza, C.; Piacente, S. Liquid chromatography tandem mass spectrometry determination of chemical markers and principal component analysis of Vitex agnus-castus L. fruits (Verbenaceae) and derived food supplements. J. Pharm. Biomed. Anal 2012, 70, 224–230. [Google Scholar] [CrossRef]
- Soufi, S.; D′Urso, G.; Pizza, C.; Rezgui, S.; Bettaieb, T.; Montoro, P. Steviol glycosides targeted analysis in leaves of Stevia rebaudiana (Bertoni) from plants cultivated under chilling stress conditions. Food Chem. 2016, 190, 572–580. [Google Scholar] [CrossRef]
N° | Rt | [M − H] | Molecular Formula | ppm | Identification | MS/MS | Fraction | L.I. | Reference |
---|---|---|---|---|---|---|---|---|---|
1 | 3.97 | 329.0868 | C14H18O9 | 0.4 | glucopiranosyl vanillic acid | 167 | A | 2 | [21] |
2 | 6.38 | 167.0346 | C8H8O4 | 4.3 | homogenistic acid | 123 | A | 1 | [8] |
3 | 6.86 | 481.1310 | C22H26O12 | 4.9 | arbutin peracetate | 271 | A | 2 | [22] |
4 | 10.27 | 285.1333 | C14H22O6 | 0.1 | methacrylic acid, diester with triethylene glycol | - | L | 3 | [23] |
5 | 11.34 | 199.0972 | C10H16O4 | 3.7 | camphoric acid | 155 | B, Z | 2 | [24] |
6 | 13.76 | 301.1798 | C19H26O3 | −0.03 | allethrin | 133 | V | 2 | [25] |
7 | 13.85 | 275.1280 | C16H20O4 | 0.9 | propenoic acid, dimethoxyphenyl-methyl-butenyl ester | 71 | D | 3 | [26] |
8 | 14.32 | 447.1277 | C22H24O10 | −1.4 | sakuranin | 285 | Z | 2 | [27] |
9 | 14.62 | 303.1228 | C17H20O5 | 0.8 | (±)-oleocanthal isomer | 137/119 | F | 3 | [28] |
10 | 14.71 | 263.1278 | C15H20O4 | 0.9 | (±)-2-cis, 4-trans-abscisicacid (c,t-ABA) | 219/204/153 | A/B/C | 1 | [9] |
11 | 15.05 | 335.1126 | C17H20O7 | 0.3 | tutin, 6-acetate | 293 | Z | 3 | [29] |
12 | 15.40 | 153.0922 | C9H14O2 | 4.8 | 2-hydroxyisophorone | 135 | A/B/C/D | 2 | [30] |
13 | 15.44 | 219.1385 | C14H20O2 | 2.7 | di-tert-butyl-benzoquinone | 107 | L | 2 | [24] |
14 | 15.78 | 263.1281 | C15H20O4 | 1 | (±)-2-trans, 4-trans-abscisic acid (t,t-ABA) | 219/204/153 | A/B/C/D/E/F/H | 1 | [9] |
15 | 15.83 | 239.091 | C13H20O4 | 1.2 | unedone | 151/107 | Z | 2 | [9] |
16 | 15.83 | 359.1489 | C20H24O6 | 0.29 | triptolide | 340/329/311 | Z | 2 | [31] |
17 | 16.18 | 287.1642 | C18H24O3 | −0.2 | estriol | 171 | V | 2 | [32] |
18 | 16.39 | 415.2107 | C24H32O6 | −1.6 | desonide | 397 | L | 2 | [33] |
19 | 16.39 | 201.1280 | C14H18O | 3.5 | amylcinnamaldehyde | 183 | A | 2 | [34] |
20 | 16.39 | 219.1386 | C14H20O2 | 2.9 | di-tert-butyl-benzoquinone | 107 | A | 2 | [24] |
21 | 16.99 | 241.1225 | C16H18O2 | 0.9 | Bisphenol B | 211 | P | 2 | [35] |
22 | 17.04 | 177.0917 | C11H14O2 | 3.6 | 4-tert-butylbenzoic acid | 121 | V | 2 | [36] |
23 | 17.04 | 417.2269 | C24H34O6 | −0.9 | deoxyphorbol -isobutyrate | 347 | V | 2 | [37] |
24 | 19.11 | 219.1385 | C14H20O2 | 2.4 | di-tert-butyl-benzoquinone isomer | 107 | P | 2 | [24] |
25 | 19.11 | 415.2110 | C24H32O6 | −0.8 | desonide | 397/197 | P | 2 | [33] |
26 | 20.71 | 325.1438 | C20H22O4 | 0.8 | hydroxy-methyl-butenyl-oxyphenyl-ethenyl-methoxyphenol | 153 | Z | 2 | [38] |
27 | 21.61 | 287.2220 | C16H32O4 | 1.1 | dihydroxypalmitic acid | 147/121/109 | Z/V | 2 | [39] |
28 | 22.60 | 253.0497 | C15H10O4 | 0.8 | chrysin | 255/153 | Z | 2 | [40] |
29 | 22.60 | 437.1952 | C26H30O6 | −0.7 | kurarinone | 301 | Z | 2 | [41] |
Sample | Bitter Taste a | c,t-ABA | t,t-ABA b | Unedone b |
---|---|---|---|---|
A | 0 | 28.39 ± 1.59 | 12.36 ± 1.62 | nd |
B | 0 | 46.14 ± 2.03 | 91.98 ± 2.05 | nd |
C | 0 | 11.29 ± 1.05 | 25.02 ± 1.87 | nd |
D | 1 | tr | 54.32 ± 2.60 | nd |
E | 1 | nd | 29.61 ± 1.43 | nd |
F | 2 | nd | 94.59 ± 1.55 | nd |
H | 3 | nd | 21.40 ± 1.75 | tr |
L | 3 | nd | tr | tr |
Z | 4 | nd | nd | 7.10 ± 0.50 |
LOD (mg/L) | 0.4 | 0.6 | 0.3 | |
LOQ (mg/L) | 1.2 | 1.9 | 0.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montoro, P.; D’Urso, G.; Kowalczyk, A.; Tuberoso, C.I.G. LC-ESI/LTQ-Orbitrap-MS Based Metabolomics in Evaluation of Bitter Taste of Arbutus unedo Honey. Molecules 2021, 26, 2765. https://doi.org/10.3390/molecules26092765
Montoro P, D’Urso G, Kowalczyk A, Tuberoso CIG. LC-ESI/LTQ-Orbitrap-MS Based Metabolomics in Evaluation of Bitter Taste of Arbutus unedo Honey. Molecules. 2021; 26(9):2765. https://doi.org/10.3390/molecules26092765
Chicago/Turabian StyleMontoro, Paola, Gilda D’Urso, Adam Kowalczyk, and Carlo Ignazio Giovanni Tuberoso. 2021. "LC-ESI/LTQ-Orbitrap-MS Based Metabolomics in Evaluation of Bitter Taste of Arbutus unedo Honey" Molecules 26, no. 9: 2765. https://doi.org/10.3390/molecules26092765
APA StyleMontoro, P., D’Urso, G., Kowalczyk, A., & Tuberoso, C. I. G. (2021). LC-ESI/LTQ-Orbitrap-MS Based Metabolomics in Evaluation of Bitter Taste of Arbutus unedo Honey. Molecules, 26(9), 2765. https://doi.org/10.3390/molecules26092765