Fruits Vinegar: Quality Characteristics, Phytochemistry, and Functionality
Abstract
:1. Introduction
2. Methodology
3. Quality Characteristics
4. Chemical Characteristics of FsV
Variety | Country | Method of Vinegarmaking | Methods | Bioactive Compounds Identified | References |
---|---|---|---|---|---|
Grape vinegar | Turkey | Artisanal and industrial | HPLC-DAD | Gallic acid (16.36–18.23 mg/L), catechin (13.76–27.50 mg/L), epicatechin (4.96–8.20 mg/L), caffeic acid (6.30–10.30 mg/L), chlorogenic acid (0.16–3.73 mg/L), syringic acid (0.33–0.70 mg/L), p-coumaric acid (0.23–0.56 mg/L), and ferulic acid (0.06–0.35 mg/L) | [4] |
Grape vinegar | Industrial | HPLC-PDA | Gallic acid (6 ± 2 mg/100 mL) and p-hydroxybenzoic acid (0.90 ± 0.05 mg/100 mL) | [7] | |
Apple vinegar | Gallic acid (0.8 ± 0.04 mg/100 mL), p-hydroxybenzoic acid (0.2 ± 0.1 mg/100 mL), catechin (2.4 ± 0.1 mg/100 mL), syringic acid (0.12 ± 0.02 mg/100 mL), caffeic acid (0.40 ± 0.01 mg/100 mL), and p-coumaric acid (0.08 ± 0.01 mg/100 mL) | ||||
Apple vinegar | Artisanal | HPLC-DAD | Gallic acid (61.24 ± 2.21 mg/L), chlorogenic acid (347.70 ± 31.94 mg/L), catechin (68.20 mg/L), and caffeic acid (17.21 ± 0.33 mg/L) | [45] | |
Pomegranate vinegar | Gallic acid (67.80 ± 2.88 mg/L), catechin (47 ± 1.10 mg/L), and caffeic acid (13.41 ± 0.60 mg/L) | ||||
Aromatic vinegar * | China | Artisanal | HPLC | Gallic acid, p-hydroxybenzoic acid, vanillic acid, catechin, caffeic acid, chlorogenic acid, syringic acid, ethyl gallate, p-coumaric acid, ferulic acid, sinapic acid, and rutin. | [46] |
Grape vinegar | Turkey | Industrial | LC-DAD-ESI-MS/MS | Gallic acid (7.45–21.84 mg/L), tyrosol (11.54–17.68 mg/L), protocatechuic acid (7.21–11.05 mg/L), caftaric acid (1.76–15.83 mg/L), cholorogenic acid (0.09–1.77 mg/L), coutaric acid (0–1.95 mg/L) caffeic acid (0.11–2.58 mg/L), ferulic acid (0.01–0.21 mg/L), fertaric acid (0.03–0.83 mg/L), vanilic acid (0–2.58 mg/L), p-coumaric acid (0.02–0.45 mg/L), syringic acid (1.24–9.04 mg/L), procyanidin B2 (0.09–3.11 mg/L), catechin (3.73–27.11 mg/L), epicatechin (0.57–15.13 mg/L), quercetin-3-O-galactoside (0.04–0.39 mg/L), kaempferol-3-O-rutinoside (0–0.04 mg/L), rutin (0.02–0.20 mg/L), isorhamnetin-3-O-glucoside (0.05–0.09 mg/L), and quercetin (0.06–0.69 mg/L). | [8] |
Apple vinegar | Gallic acid (0.47–2.57 mg/L), protocatechuic acid (1.15–6.35 mg/L), cholorogenic acid (2.96–16.29 mg/L), caffeic acid (0.19–1.77 mg/L), vanilic acid (0.63–3.42 mg/L), p-coumaric acid (0.13–0.81 mg/L), procyanidin B2 (0.12–1.35 mg/L), catechin (0.14–0.95 mg/L), epicatechin (0.04–1.36 mg/L), luteolin-3-O-rutinoside (0.30–1.98 mg/L), isorhamnetin-3-O-rutinoside (0.10–0.63 mg/L), isorhamnetin-3-O-glucoside (0.08–0.48 mg/L), kaempferol-3-O-glucoside (0.03–0.20 mg/L), quercetin-3-O-rhamnoside (0.20–3.41 mg/L), quercetin (0.20–1.41 mg/L), rutin (0.04–0.29 mg/L), luteolin (0.27–1.63 mg/L), apigenin0.02–0.13 mg/L), phloretin (0.59–7.86 mg/L), and phloridzin (7.64–44.35 mg/L). | ||||
Apple vinegar | Japan | Industrial | LC-MS | Chlorogenic acid (3.1–19.6 mg/100 mL), 4-p-coumaric acid (0–0.21 mg/100 mL), isomer of p-coumaroyquinic acid (0–1.3 mg/100 mL), 5-hydroxymethylfurfural (2.7–4.1 mg/100 mL), protocatechic acid (0–0.41 mg/100 mL), p-hydroxybenzoic acid (0–0.77 mg/100 mL), caffeic acid (0–0.76 mg/100 mL), isomer of chlorogenic acid (0–3.1 mg/100 mL), and p-coumaric acid (0–0.21 mg/100 mL) | [47] |
Persimmon vinegar | China | Artisanal | HPLC | Gallic acid (22.91 ± 1.22 mg/L), (+/−)-catechin hydrate (0.16 ± 0.89 mg/L), chlorogenic acid (0.06 ± 0.12 mg/L), caffeic acid (0.04 ± 0.06 mg/L), p-coumaric acid (0.03 ± 0.21 mg/L), trans-ferulic acid (0.02 ± 0.11 mg/L), (-)-epicatechin gallate (0.13 ± 0.09 mg/L), and phloridzin (0.38 ± 0.12 mg/L) | [48] |
Apple vinegar | Gallic acid (0.35 ± 0.02 mg/L), vanillic acid (0.06 ± 0.04 mg/L), chlorogenic acid (6.56 ± 0.43 mg/L), caffeic acid (3.03 ± 0.02 mg/L), p-coumaric acid (0.33 ± 0.28 mg/L), trans-ferulic acid (0.24 ± 0.07 mg/L), (-)-epicatechin gallate (0.77 ± 0.34), and phloridzin (1.76 ± 0.34 mg/L). | ||||
Kiwifruit vinegar | Gallic acid (9.67 ± 0.59 mg/L), (+/−)-catechin hydrate (1.47 ± 0.34 mg/L), vanillic acid (1.77 ± 0.23 mg/L), chlorogenic acid (3.12 ± 0.21 mg/L), caffeic acid (0.04 ± 0.05 mg/L), p-coumaric acid (0.34 ± 0.01 mg/L), trans-ferulic acid (0.01 ± 0.03 mg/L), and phloridzin (0.49 ± 0.02 mg/L) | ||||
Apple vinegar | Brazil | Industrial | HPLC-PDA | Phloretin-2′-β-d-glucoside (4.81–15.55 mg/L), 5-caffeoylquinic acid (20.62–26.85 mg/L), caffeic acid (0.51–3.87 mg/L), p-coumaric acid (1.16–2.03 mg/L), quercetin-3-rutinoside (2.69–4.65 mg/L), quercetin-3-d-galactoside (0.73–9.75 mg/L), quercetin-3-β-d-glucoside (1.58–3.45 mg/L), quercetin-3-d-xyloside (1.62–2.54 mg/L), quercetin-O-α-l-arabinofuranoside (0.85–1.34 mg/L), and quercetin-3-O-rhamnoside (1.13–3.37 mg/L). | [49] |
Apple vinegar | China | Industrial | HPLC-PDA | Chlorogenic acid (0.11–10.91 µg/mL), protocatechuic acid (0.08–1.54 µg/mL), and p-coumaric acid (0.10–0.17 µg/mL | [5] |
Red wine vinegar | Gallic acid (4.10–9.99 µg/mL), protocatechuic acid (0.47–1.38 µg/mL), p-coumaric acid (0.81–1.39 µg/mL), and caffeic acid (1.48–1.73 µg/mL) | ||||
White wine vinegar | Protocatechuic acid (0.16–0.32 µg/mL), p-coumaric acid (0–0.18 µg/mL), caffeic acid (0–0.32 µg/mL), and ferulic acid (0–0.31 µg/mL) | ||||
Balsamic vinegar | Gallic acid (7.50–12.56 µg/mL), protocatechuic acid (0–3.29 µg/mL), p-coumaric acid (1.17–1.97 µg/mL), and caffeic acid (0–3.58 µg/mL) | ||||
Sour cherry vinegar | Turkey | Industrial | HPLC | Gallic acid (160–170 mg/mL), chlorogenic acid (45–55 mg/mL), p-coumaric acid (17–23 mg/mL), caffeic acid (3.5–4 mg/mL), ferulic acid (1.3–4.6 mg/mL), catechin (0.7–1 mg/mL), and epicatechin (1.7–3.5 mg/mL) | [50] |
Palm vinegar | Thailand | Artisanal | LC-MS | Gallic acid (14.14 ± 0.07 µg/mL), catechin (8.61 ± 0.32 µg/mL), rutin (6.67 ± 0.03 µg/mL), isoquercetin (11.27 ± 0.12 µg/mL), and quercetin (10.33 ± 0.16 µg/mL) | [51] |
Brow beer vinegar | Italy | Industrial | HPLC-DAD-ESI(+)-MS | Protocatechuic acid O-glucoside (7.42 ± 0.03 mg/L), 3-caffeoylquinic acid (40.01 ± 1.13 mg/L), (4-Hydroxyphenyl) acetic acid (11.84 ± 0.02 mg/L), 4-vinylguaiacol (10.22 ± 0.04 mg/L), Catechin 7 O-glucoside (8.84 ± 0.02 mg/L), 4-hydroxybenzoic acid (38.23 ± 0.05 mg/L), (3-hydroxyphenyl)acetic acid (18.95 ± 0.04 mg/L), catechin 5 O-glucoside (7.24 ± 0.06 mg/L), coumaric acid O-glucoside (4.90 ± 0.05 mg/L), cerulic acid O-glucoside (4.33 ± 0.02 mg/L), gallic acid (5.72 ± 0.04 mg/L), vanilic acid O-glucoside (10.25 ± 0.03 mg/L), gallocatechin (7.66 ± 0.10 mg/L), sinapic acid O-glucoside (14.03 ± 0.12 mg/L), catechin O-diglucoside (8.41 ± 0.04 mg/L), kaempferol O-glucoside (6.28 ± 0.04 mg/L), feruloylquinic acid (6.60 ± 0.15 mg/L), chlorogenic acid (18.30 ± 0.02 mg/L), (+)-catechin (7.89 ± 0.04 mg/L), (−)-epicatechin (7.78 ± 0.12 mg/L), caffeic acid (10.58 ± 0.08 mg/L), sinapic acid (15.5 ± 0.06 mg/L), apigenin O-glucoside (6.15 ± 0.02 mg/L), quercetin O-glucoside (7.05 ± 0.06 mg/L), cohumulone I (4.44 ± 0.02 mg/L), cohumulone II (6.58 ± 0.10 mg/L), 8-prenylnaringenin (2.33 ± 0.02 mg/L), 6-prenylnaringenin (1.86 ± 0.02 mg/L), humulone (5.62 ± 0.08 mg/L), and isohumulone (4.14 ± 0.03 mg/L) | [52] |
Pineapple vinegar | Industrial | UHPLC-QTOF-MS | Catechol, peonidin, (+)-catechin 3-O-gallate, m-coumaric acid, 7,3’,4’-trihydroxyflavone, 4-vinylsyringol, ferulic acid, mullein, genistin, 3,4-dihydroxyphenylglycol, 4-ethylcatechol, 6-prenylnaringenin, gallic acid, kaempferol 3-O-xylosyl-glucoside, 6,8-Dihydroxykaempferol, spinacetin 3-O-glucosyl-(1-6)-[apiosyl(1-2)]-glucoside, and malvidin 3-O-arabinoside | [53] | |
Cherry vinegar | Spain | Industrial | UPLC-DAD | Gallic acid (2.08–2.99 mg/L), HMF (6.96–9.48 mg/L), protocatechuic acid (2.12–2.43 mg/L), caftaric acid (2.05–2.81 mg/L), furoic acid (2.46–16.53 mg/L), protocatechualdehyde (0.046–0.263 mg/L), cis-p-Coutaric acid (1.83–2.25 mg/L), trans-p-Coutaric acid (1.15–1.55 mg/L), tyrosol (24.6–28.9 mg/L), catequin (0.165–0.334 mg/L), caffeic acid (0.184–0.308 mg/L), vanillic acid (2.66–3.44 mg/L), syringic acid (2.16–5.44 mg/L), vanillin (1.05–2.97 mg/L), cis-p-coumaric acid (0.174–0.481 mg/L), syringaldehyde (0.50–5.12 mg/L), coniferyl aldehyde (0.959–2.85 mg/L), and sinapaldehyde (16.1–19.1 mg/L) | [54] |
Sugarcane vinegar | China | Industrial | UPLC-MS | Benzoic acid (1.027 ± 0.07 mg/L), ferulic acid (1.1240.063 mg/L), quinic acid (0.031 ± 0.002 mg/L), chlorogenic acid (1.217 ± 0.063 mg/L), apigenin (0.004 ± 0 mg/L), kaempferol (0.003 ± 0.0001 mg/L), caffeic acid (0.005 ± 0.0001 mg/L), luteolin (0.005 ± 0.0001 mg/L), and p-coumaric acid (0.027 ± 0.0001 mg/L) | [55] |
Citrus vinegar | Italy | Industrial | UPLC-UV | Gallic acid (2.62–5.63 mg/L), neochlorogenic acid (2.69–5.83 mg/L), chlorogenic acid (2.95–58.51 mg/L), vanillic acid (0.47–3.64 mg/L), caffeic acid (1.39–3.64 mg/L), epicatechin (0–2.91 mg/L), procyanidin (0–9.43 mg/L), rutin (1.76–146.3 mg/L), quercetin (0.23–8.62 mg/L), eriocitrin (0.27–13.20 mg/L), neoeriocitrin (53.41–513.30 mg/L), narirutin (3.05–18.24 mg/L), naringin (61.19–700.56 mg/L), hesperidin (12.15–92.12 mg/L), neohesperidin (63.51–366.93 mg/L), didymin (1.73–9.82 mg/L), and hesperetin (0–15.54 mg/L) | [37] |
4.1. Organic Acids
4.2. Mineral Content
5. Beneficial Properties of FsV
5.1. Antihyperglycemic Effect
5.1.1. Animal Studies
5.1.2. Human Studies
5.2. Antihyperlipidemic Effect
5.3. Antimicrobial Effect
5.4. Antioxidant Effect
5.5. Anti-Inflammatory Effect
5.6. Other Effects
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Ramírez-Guzmán, K.N.; Torres-León, C.; Martinez-Medina, G.A.; de la Rosa, O.; Hernández-Almanza, A.; Alvarez-Perez, O.B.; Araujo, R.; González, L.R.; Londoño, L.; Ventura, J. Traditional Fermented Beverages in Mexico. In Fermented Beverages; Elsevier: Amsterdam, The Netherlands, 2019; pp. 605–635. [Google Scholar]
- Robledo-Márquez, K.; Ramírez, V.; González-Córdova, A.F.; Ramírez-Rodríguez, Y.; García-Ortega, L.; Trujillo, J. Research Opportunities: Traditional Fermented Beverages in Mexico. Cultural, Microbiological, Chemical, and Functional Aspects. Food Res. Int. 2021, 147, 110482. [Google Scholar] [CrossRef]
- Bounihi, A.; Bitam, A.; Bouazza, A.; Yargui, L.; Koceir, E.A. Fruit Vinegars Attenuate Cardiac Injury via Anti-Inflammatory and Anti-Adiposity Actions in High-Fat Diet-Induced Obese Rats. Pharm. Biol. 2017, 55, 43–52. [Google Scholar] [CrossRef]
- Budak, H.N.; Guzel-Seydim, Z.B. Antioxidant Activity and Phenolic Content of Wine Vinegars Produced by Two Different Techniques. J. Sci. Food Agric. 2010, 90, 2021–2026. [Google Scholar] [CrossRef]
- Liu, Q.; Tang, G.-Y.; Zhao, C.-N.; Gan, R.-Y.; Li, H.-B. Antioxidant Activities, Phenolic Profiles, and Organic Acid Contents of Fruit Vinegars. Antioxidants 2019, 8, 78. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Li, L.; Yue, Q.; Zhang, Q. Determination of Organic Acids in Apple Vinegar by Ion Exclusion Chromatography. China Brew. 2005, 12. Available online: http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZNGZ200512018.htm (accessed on 22 April 2021).
- Bakir, S.; Toydemir, G.; Boyacioglu, D.; Beekwilder, J.; Capanoglu, E. Fruit Antioxidants during Vinegar Processing: Changes in Content and In Vitro Bio-Accessibility. Int. J. Mol. Sci. 2016, 17, 1658. [Google Scholar] [CrossRef] [PubMed]
- Kelebek, H.; Kadiroğlu, P.; Demircan, N.B.; Selli, S. Screening of Bioactive Components in Grape and Apple Vinegars: Antioxidant and Antimicrobial Potential. J. Inst. Brew. 2017, 123, 407–416. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Chen, T.; Giudici, P.; Chen, F. Vinegar Functions on Health: Constituents, Sources, and Formation Mechanisms. Compr. Rev. Food Sci. Food Saf. 2016, 15, 1124–1138. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Zhang, Y.; Wang, W.; Huang, Z.; Wang, J.; Li, X.; Sun, S. Structural Characterisation and Antioxidant Activity of Melanoidins from High-Temperature Fermented Apple. Int. J. Food Sci. Technol. 2020, 56, 2471–2480. [Google Scholar] [CrossRef]
- Chen, J.-C.; Chen, Q.-H.; Guo, Q.; Ruan, S.; Ruan, H.; He, G.-Q.; Gu, Q. Simultaneous Determination of Acetoin and Tetramethylpyrazine in Traditional Vinegars by HPLC Method. Food Chem. 2010, 122, 1247–1252. [Google Scholar] [CrossRef]
- Wu, J.; Zhao, H.; Du, M.; Song, L.; Xu, X. Dispersive Liquid–Liquid Microextraction for Rapid and Inexpensive Determination of Tetramethylpyrazine in Vinegar. Food Chem. 2019, 286, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Budak, N.H.; Kumbul Doguc, D.; Savas, C.M.; Seydim, A.C.; Kok Tas, T.; Ciris, M.I.; Guzel-Seydim, Z.B. Effects of Apple Cider Vinegars Produced with Different Techniques on Blood Lipids in High-Cholesterol-Fed Rats. J. Agric. Food Chem. 2011, 59, 6638–6644. [Google Scholar] [CrossRef]
- Raspor, P.; Goranovič, D. Biotechnological Applications of Acetic Acid Bacteria. Crit. Rev. Biotechnol. 2008, 28, 101–124. [Google Scholar] [CrossRef]
- Budak, N.H.; Aykin, E.; Seydim, A.C.; Greene, A.K.; Guzel-Seydim, Z.B. Functional Properties of Vinegar. J. Food Sci. 2014, 79, R757–R764. [Google Scholar] [CrossRef]
- Ousaaid, D.; Laaroussi, H.; Bakour, M.; ElGhouizi, A.; Aboulghazi, A.; Lyoussi, B.; ElArabi, I. Beneficial Effects of Apple Vinegar on Hyperglycemia and Hyperlipidemia in Hypercaloric-Fed Rats. Available online: https://www.hindawi.com/journals/jdr/2020/9284987/ (accessed on 4 November 2020).
- Kondo, T.; Kishi, M.; Fushimi, T.; Kaga, T. Acetic Acid Upregulates the Expression of Genes for Fatty Acid Oxidation Enzymes in Liver to Suppress Body Fat Accumulation. J. Agric. Food Chem. 2009, 57, 5982–5986. [Google Scholar] [CrossRef]
- Sakakibara, S.; Yamauchi, T.; Oshima, Y.; Tsukamoto, Y.; Kadowaki, T. Acetic Acid Activates Hepatic AMPK and Reduces Hyperglycemia in Diabetic KK-A (y) Mice. Biochem. Biophys. Res. Commun. 2006, 344, 597–604. [Google Scholar] [CrossRef]
- Yamashita, H.; Maruta, H.; Jozuka, M.; Kimura, R.; Iwabuchi, H.; Yamato, M.; Saito, T.; Fujisawa, K.; Takahashi, Y.; Kimoto, M. Effects of Acetate on Lipid Metabolism in Muscles and Adipose Tissues of Type 2 Diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) Rats. Biosci. Biotechnol. Biochem. 2009, 73, 570–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lafraxo, H.; Bakour, M.; Laaroussi, H.; El Ghouizi, A.; Ousaaid, D.; Aboulghazi, A.; Lyoussi, B. The Synergistic Beneficial Effect of Thyme Honey and Olive Oil against Diabetes and Its Complications Induced by Alloxan in Wistar Rats. Evid.-Based Complement. Alternat. Med. 2021, 2021, 9949056. [Google Scholar] [CrossRef]
- Laaroussi, H.; Bakour, M.; Ousaaid, D.; Aboulghazi, A.; Ferreira-Santos, P.; Genisheva, Z.; Teixeira, J.A.; Lyoussi, B. Effect of Antioxidant-Rich Propolis and Bee Pollen Extracts against d-Glucose Induced Type 2 Diabetes in Rats. Food Res. Int. 2020, 138, 109802. [Google Scholar] [CrossRef] [PubMed]
- Launholt, T.L.; Kristiansen, C.B.; Hjorth, P. Safety and Side Effects of Apple Vinegar Intake and Its Effect on Metabolic Parameters and Body Weight: A Systematic Review. Eur. J. Nutr. 2020, 59, 2273–2289. [Google Scholar] [CrossRef]
- Décret n°2-10-385 Réglementation de La Fabrication et Du Commerce Des Vinaigres. 2011. Available online: http://www.onssa.gov.ma/images/reglementation/reglementation-sectorielle/vegetaux-et-produits-dorigine-vegetaux/Produits-dorigine-vegetale/Produits_alimentaires/DEC.2-10-385.FR.pdf (accessed on 22 April 2021).
- Tesfaye, W.; Morales, M.L.; García-Parrilla, M.C.; Troncoso, A.M. Wine Vinegar: Technology, Authenticity and Quality Evaluation. Trends Food Sci. Technol. 2002, 13, 12–21. [Google Scholar] [CrossRef]
- Kharchoufi, S.; Gomez, J.; Lasanta, C.; Castro, R.; Sainz, F.; Hamdi, M. Benchmarking Laboratory-Scale Pomegranate Vinegar against Commercial Wine Vinegars: Antioxidant Activity and Chemical Composition. J. Sci. Food Agric. 2018, 98, 4749–4758. [Google Scholar] [CrossRef] [PubMed]
- FAO-WHO. Commission DU Codex Alimentarius Treizième Session Rome Décembre 1979 Rapport de la Onzieme Session du Comite de Coordination pour L’europe Innsbruck, 28 Mai–1er Juin 1979. 1979. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/de/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FMeetings%252FCX-701-13%252Fal79_38f.pdf (accessed on 22 April 2021).
- Dabija, A.; Hatnean, C.A. Study Concerning the Quality of Apple Vinegar Obtained through Classical Method. J. Agroaliment. Process. Technol. 2014, 20, 304–310. [Google Scholar]
- Ousaaid, D.; Imtara, H.; Laaroussi, H.; Lyoussi, B.; Elarabi, I. An Investigation of Moroccan Vinegars: Their Physicochemical Properties and Antioxidant and Antibacterial Activities. Available online: https://www.hindawi.com/journals/jfq/2021/6618444/ (accessed on 10 February 2021).
- Ozturk, I.; Caliskan, O.; Tornuk, F.; Ozcan, N.; Yalcin, H.; Baslar, M.; Sagdic, O. Antioxidant, Antimicrobial, Mineral, Volatile, Physicochemical and Microbiological Characteristics of Traditional Home-Made Turkish Vinegars. LWT Food Sci. Technol. 2015, 63, 144–151. [Google Scholar] [CrossRef]
- Solieri, L.; Giudici, P. Vinegars of the World. In Vinegars of the World; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–16. [Google Scholar]
- Matloob, M.H. Zahdi Date Vinegar: Production and Characterization. Am. J. Food Technol. 2014, 9, 231–245. [Google Scholar] [CrossRef] [Green Version]
- Bouazza, A.; Bitam, A.; Amiali, M.; Bounihi, A.; Yargui, L.; Koceir, E.A. Effect of Fruit Vinegars on Liver Damage and Oxidative Stress in High-Fat-Fed Rats. Pharm. Biol. 2016, 54, 260–265. [Google Scholar] [CrossRef]
- Jia, C.-F.; Yu, W.-N.; Zhang, B.-L. Manufacture and Antibacterial Characteristics of Eucommia ulmoides Leaves Vinegar. Food Sci. Biotechnol. 2019, 29, 657–665. [Google Scholar] [CrossRef]
- Theapparat, Y.; Chandumpai, A.; Leelasuphakul, W.; Laemsak, N.; Ponglimanont, C. Physicochemical Characteristics of Wood Vinegars from Carbonization of Leucaena leucocephala, Azadirachta Indica, Eucalyptus camaldulensis, Hevea brasiliensis and Dendrocalamus asper. Agric. Nat. Resour. 2014, 48, 916–928. [Google Scholar]
- Da Silva Fonseca, M.; Santos, V.A.Q.; Calegari, G.C.; Dekker, R.F.H.; Barbosa-Dekker, A.d.M.; da Cunha, M.A.A. Blueberry and Honey Vinegar: Successive Batch Production, Antioxidant Potential and Antimicrobial Ability. Braz. J. Food Technol. 2018, 21, e2017101. [Google Scholar] [CrossRef]
- Yusoff, H.; Saw, J.W.; Fadzilah, I. Physicochemical Properties, Total Phenolic Content, and Antioxidant Capacity of Homemade and Commercial Date (Phoenix dactylifera L.) Vinegar. Int. Food Res. J. 2017, 24, 2557–2562. [Google Scholar]
- Giuffrè, A.M.; Zappia, C.; Capocasale, M.; Poiana, M.; Sidari, R.; Di Donna, L.; Bartella, L.; Sindona, G.; Corradini, G.; Giudici, P.; et al. Vinegar Production to Valorise Citrus bergamia By-Products. Eur. Food Res. Technol. 2019, 245, 667–675. [Google Scholar] [CrossRef]
- Patrignani, F.; D’Alessandro, M.; Vannini, L.; Lanciotti, R. Use of Functional Microbial Starters and Probiotics to Improve Functional Compound Availability in Fermented Dairy Products and Beverages. In Sustainability of the Food System; Elsevier: Amsterdam, The Netherlands, 2020; pp. 167–180. [Google Scholar]
- Xia, T.; Zhang, B.; Duan, W.; Zhang, J.; Wang, M. Nutrients and Bioactive Components from Vinegar: A Fermented and Functional Food. J. Funct. Foods 2020, 64, 103681. [Google Scholar] [CrossRef]
- De Jong, C.; Hazelwood, L.A.; Dijkstra, A.; Pepin, L. Use of the Micro-Scale Platform for High Throughput Screening of Flavor Characteristics in Strains (Yeast/LAB) for Alcoholic Beverages. In Flavour Science; Elsevier: Amsterdam, The Netherlands, 2014; pp. 355–359. ISBN 978-0-12-398549-1. [Google Scholar]
- Lee, J.H.; Choi, K.H.; Kim, S.H.; Park, K.S.; Park, S.H.; Kim, J.S.; Kang, S.A.; Cheong, C.; Jang, K.H. Physicochemical Characteristics and Electric Conductivity of Various Fruit Wines. Int. Food Res. J. 2013, 20, 2987–2993. [Google Scholar]
- Xia, T.; Zhang, J.; Yao, J.; Zhang, B.; Duan, W.; Zhao, C.; Du, P.; Song, J.; Zheng, Y.; Wang, M. Shanxi Aged Vinegar Protects against Alcohol-Induced Liver Injury via Activating Nrf2-Mediated Antioxidant and Inhibiting TLR4-Induced Inflammatory Response. Nutrients 2018, 10, 805. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Tian, J.; Ge, H.; Liu, R.; Xiao, J. Effects of Tetramethylpyrazine from Chinese Black Vinegar on Antioxidant and Hypolipidemia Activities in HepG2 Cells. Food Chem. Toxicol. 2017, 109, 930–940. [Google Scholar] [CrossRef]
- El-Sayed, T.S.; Nour El-Deen, M.M.; Rokaya, M.E.; Sherif, M.M. Evaluation of the Antibacterial Effect of Apple Vinegar as a Root Canal Irrigant Using Endovac Irrigation System. Al-Azhar Dent. J. Girls 2019, 6, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Aykın, E.; Budak, N.H.; Güzel-Seydim, Z.B. Bioactive Components of Mother Vinegar. J. Am. Coll. Nutr. 2015, 34, 80–89. [Google Scholar] [CrossRef]
- Duan, W.; Xia, T.; Zhang, B.; Li, S.; Zhang, C.; Zhao, C.; Song, J.; Wang, M. Changes of Physicochemical, Bioactive Compounds and Antioxidant Capacity during the Brewing Process of Zhenjiang Aromatic Vinegar. Molecules 2019, 24, 3935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, K.; Ogasawara, Y.; Endou, K.; Fujimori, S.; Koyama, M.; Akano, H. Phenolic Compounds Responsible for the Superoxide Dismutase-like Activity in High-Brix Apple Vinegar. J. Agric. Food Chem. 2010, 58, 10124–10132. [Google Scholar] [CrossRef]
- Ren, M.; Wang, X.; Tian, C.; Li, X.; Zhang, B.; Song, X.; Zhang, J. Characterization of Organic Acids and Phenolic Compounds of Cereal Vinegars and Fruit Vinegars in China. J. Food Process. Preserv. 2017, 41, e12937. [Google Scholar] [CrossRef]
- Bortolini, D.G.; Benvenutti, L.; Demiate, I.M.; Nogueira, A.; Alberti, A.; Zielinski, A.A.F. A New Approach to the Use of Apple Pomace in Cider Making for the Recovery of Phenolic Compounds. LWT 2020, 126, 109316. [Google Scholar] [CrossRef]
- Özen, M.; Özdemir, N.; Filiz, B.E.; Budak, N.H.; Kök-Taş, T. Sour Cherry (Prunus cerasus L.) Vinegars Produced from Fresh Fruit or Juice Concentrate: Bioactive Compounds, Volatile Aroma Compounds and Antioxidant Capacities. Food Chem. 2020, 309, 125664. [Google Scholar] [CrossRef]
- Chatatikun, M.; Kwanhian, W. Phenolic Profile of Nipa Palm Vinegar and Evaluation of Its Antilipidemic Activities. Evid.-Based Complement. Alternat. Med. 2020, 2020, 6769726. [Google Scholar] [CrossRef]
- Mudura, E.; Coldea, T.E.; Socaciu, C.; Ranga, F.; Pop, C.R.; Rotar, A.M.; Pasqualone, A. Brown Beer Vinegar: A Potentially Functional Product Based on Its Phenolic Profile and Antioxidant Activity. J. Serb. Chem. Soc. 2018, 83, 19–30. [Google Scholar] [CrossRef]
- Roda, A.; Lucini, L.; Torchio, F.; Dordoni, R.; De Faveri, D.M.; Lambri, M. Metabolite Profiling and Volatiles of Pineapple Wine and Vinegar Obtained from Pineapple Waste. Food Chem. 2017, 229, 734–742. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Sánchez, M.; Durán-Guerrero, E.; Rodríguez-Dodero, M.C.; Barroso, C.G.; Castro, R. Use of Ultrasound at a Pilot Scale to Accelerate the Ageing of Sherry Vinegar. Ultrason. Sonochem. 2020, 69, 105244. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.-L.; Zheng, F.-J.; Lin, B.; Lao, S.-B.; He, J.; Huang, Z.; Zeng, Y.; Sun, J.; Verma, K.K. Phenolic and Volatile Compounds in the Production of Sugarcane Vinegar. ACS Omega 2020, 5, 30587–30595. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Jo, Y.; Chung, N.; Gu, S.-Y.; Jeong, Y.-J.; Kwon, J.-H. Physicochemical Qualities and Flavor Patterns of Traditional Chinese Vinegars Manufactured by Different Fermentation Methods and Aging Periods. Prev. Nutr. Food Sci. 2017, 22, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Johnston, C.S.; Quagliano, S.; White, S. Vinegar Ingestion at Mealtime Reduced Fasting Blood Glucose Concentrations in Healthy Adults at Risk for Type 2 Diabetes. J. Funct. Foods 2013, 5, 2007–2011. [Google Scholar] [CrossRef]
- Johnston, K.L.; Clifford, M.N.; Morgan, L.M. Possible Role for Apple Juice Phenolic Compounds in the Acute Modification of Glucose Tolerance and Gastrointestinal Hormone Secretion in Humans. J. Sci. Food Agric. 2002, 82, 1800–1805. [Google Scholar] [CrossRef]
- Johnston, C.S.; Buller, A.J. Vinegar and Peanut Products as Complementary Foods to Reduce Postprandial Glycemia. J. Am. Diet. Assoc. 2005, 105, 1939–1942. [Google Scholar] [CrossRef]
- Shah, Q.A.; Bibi, F.; Shah, A.H. Anti-Microbial Effects of Olive Oil and Vinegar against Salmonella and Escherichia coli. Pac. J. Sci. Technol. 2013, 14, 479–486. [Google Scholar]
- Shishehbor, F.; Mansoori, A.; Sarkaki, A.R.; Jalali, M.T.; Latifi, S.M. Apple Cider Vinegar Attenuates Lipid Profile in Normal and Diabetic Rats. Pak. J. Biol. Sci. PJBS 2008, 11, 2634–2638. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, S.; Mazumder, P.M. Apple Cider Vinegar (ACV) and Their Pharmacological Approach towards Alzheimer’s Disease (AD): A Review. Indian J. Pharm. Educ. Res. 2020, 54, s67–s74. [Google Scholar] [CrossRef]
- Mitrou, P.; Petsiou, E.; Papakonstantinou, E.; Maratou, E.; Lambadiari, V.; Dimitriadis, P.; Spanoudi, F.; Raptis, S.A.; Dimitriadis, G. Vinegar Consumption Increases Insulin-Stimulated Glucose Uptake by the Forearm Muscle in Humans with Type 2 Diabetes. J. Diabetes Res. 2015, 2015, 175204. [Google Scholar] [CrossRef]
- Naseem, E.; Shamim, M.; Khan, N.I. Cardioprotective Effects of Herbal Mixture (Ginger, Garlic, Lemon, Apple Cider Vinegar & Honey) in Experimental Animal Models of Hyperlipidemia. Int. J. Biol. Res. 2016, 4, 28–33. [Google Scholar]
- Nazıroğlu, M.; Güler, M.; Özgül, C.; Saydam, G.; Küçükayaz, M.; Sözbir, E. Apple Cider Vinegar Modulates Serum Lipid Profile, Erythrocyte, Kidney, and Liver Membrane Oxidative Stress in Ovariectomized Mice Fed High Cholesterol. J. Membr. Biol. 2014, 247, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Omar, N.A.A.; Allithy, A.N.E.A.; Faleh, F.M.; Mariah, R.A.; Ayat, M.M.A.; Shafik, S.R.; Elshweikh, S.A.; Baghdadi, H.; Sayed, S.M.E. Apple Cider Vinegar (A Prophetic Medicine Remedy) Protects against Nicotine Hepatotoxicity: A Histopathological and Biochemical Report. Am. J. Cancer Prev. 2015, 3, 122–127. [Google Scholar]
- Öztürk, A.; Özdemir, Y.; Göksel, Z. Apple Vinegar and Its Therapeutic Effects. TABAD Tarım Bilimleri Araştırma Dergisi 2009, 2, 155–158. [Google Scholar]
- Petsiou, E.I.; Mitrou, P.I.; Raptis, S.A.; Dimitriadis, G.D. Effect and Mechanisms of Action of Vinegar on Glucose Metabolism, Lipid Profile, and Body Weight. Nutr. Rev. 2014, 72, 651–661. [Google Scholar] [CrossRef]
- Salbe, A.D.; Johnston, C.S.; Buyukbese, M.A.; Tsitouras, P.D.; Harman, S.M. Vinegar Lacks Antiglycemic Action on Enteral Carbohydrate Absorption in Human Subjects. Nutr. Res. 2009, 29, 846–849. [Google Scholar] [CrossRef]
- Setorki, M.; Asgary, S.; Eidi, A.; KHazaei, M. Acute Effects of Vinegar Intake on Some Biochemical Risk Factors of Atherosclerosis in Hypercholesterolemic Rabbits. Lipids Health Dis. 2010, 9, 10. [Google Scholar] [CrossRef] [Green Version]
- Thinathayalan, D.; Yuan, B.T.K.; Kaur, J.; Albert, Y.; Yan, N.J. The Effects of Apple Cider Vinegar on Weight, Blood Pressure, Blood Glucose Level and Heart Rate of 60 MMMC Medical Students Randomized Controlled Trial. Med. J. 2019, 6, 88. [Google Scholar]
- Mateos-Aparicio, I.; de la Peña, R.J.; Pérez-Cózar, M.L.; Rupérez, P.; Redondo-Cuenca, A.; Villanueva-Suárez, M.J. Apple By-Product Dietary Fibre Exhibits Potential Prebiotic and Hypolipidemic Effectsin High-Fat Fed Wistar Rats. Bioact. Carbohydr. Diet. Fibre 2020, 23, 100219. [Google Scholar] [CrossRef]
- Krusong, W.; Sriphochanart, W.; Suwapanich, R.; Mekkerdchoo, O.; Sriprom, P.; Wipatanawin, A.; Massa, S. Healthy Dried Baby Corn Silk Vinegar Production and Determination of Its Main Organic Volatiles Containing Antimicrobial Activity. LWT 2020, 117, 108620. [Google Scholar] [CrossRef]
- Tanamool, V.; Chantarangsee, M.; Soemphol, W. Simultaneous Vinegar Fermentation from a Pineapple By-Product Using the Co-Inoculation of Yeast and Thermotolerant Acetic Acid Bacteria and Their Physiochemical Properties. 3 Biotech 2020, 10, 115. [Google Scholar] [CrossRef]
- Takeda, A.; Tamano, H. The Impact of Synaptic Zn2+ Dynamics on Cognition and Its Decline. Int. J. Mol. Sci. 2017, 18, 2411. [Google Scholar] [CrossRef] [Green Version]
- Cherasse, Y.; Urade, Y. Dietary Zinc Acts as a Sleep Modulator. Int. J. Mol. Sci. 2017, 18, 2334. [Google Scholar] [CrossRef] [Green Version]
- Akram, M.; Munir, N.; Daniyal, M.; Egbuna, C.; Găman, M.-A.; Onyekere, P.F.; Olatunde, A. Vitamins and Minerals: Types, Sources and Their Functions. In Functional Foods and Nutraceuticals; Springer: Berlin/Heidelberg, Germany, 2020; pp. 149–172. [Google Scholar]
- Ousaaid, D.; Mansouri, I.; Rochdi, M.; Lyoussi, B.; El Arabi, I. Etude Des Paramètres Physico-Chimiques et de L’Activité Antioxydante de Trois Vinaigres de Cidre Traditionnels Issus de Trois Variétés de Pomme de La Région de Midelt Au Maroc. Elwahat Recherches Etudes 2017, 10, 37–50. [Google Scholar] [CrossRef]
- Akpinar-Bayizit, A.; Turan, M.A.; Yilmaz-Ersan, L.; Taban, N. Inductively Coupled Plasma Optical-Emission Spectroscopy Determination of Major and Minor Elements in Vinegar. Not. Bot. Horti Agrobot. Cluj-Napoca 2010, 38, 64–68. [Google Scholar]
- Zhang, Y.; Wang, X.; Liu, B.; Liu, Q.; Zheng, H.; You, X.; Sun, K.; Luo, X.; Li, F. Comparative Study of Individual and Co-Application of Biochar and Wood Vinegar on Blueberry Fruit Yield and Nutritional Quality. Chemosphere 2020, 246, 125699. [Google Scholar] [CrossRef]
- Kahraman, H.A.; Tutun, H.; Keyvan, E.; Balkan, B.M. Investigation of Chemical, Antibacterial and Antiradical Properties of Home-Made Apple and Grape Vinegars. Ankara Üniversitesi Veteriner Fakültesi Dergisi 2021. [Google Scholar] [CrossRef]
- Prisacaru, A.E.; Ghinea, C.; Apostol, L.C.; Ropciuc, S.; Ursachi, V.F. Physicochemical Characteristics of Vinegar from Banana Peels and Commercial Vinegars before and after In Vitro Digestion. Processes 2021, 9, 1193. [Google Scholar] [CrossRef]
- Sabrina, B.; Mohamed, D.O.E.H. Contribution a L’Etude des Caracteristiques Physico-Chimiques et Biochimiques de Quelques Types de Vinaigres Traditionnels de Dattes Obtenues a Partir de Quelques Varietes de la Region de Ouargla. Ann. Sci. Technol. 2010, 2, 80–86. [Google Scholar]
- Tripathi, S.; Kumari, U.; Mazumder, P.M. Ameliorative Effects of Apple Cider Vinegar on Neurological Complications via Regulation of Oxidative Stress Markers. J. Food Biochem. 2020, 44, e13504. [Google Scholar] [CrossRef]
- Yagnik, D.; Serafin, V.; Shah, A.J. Antimicrobial Activity of Apple Cider Vinegar against Escherichia Coli, Staphylococcus Aureus and Candida Albicans; Downregulating Cytokine and Microbial Protein Expression. Sci. Rep. 2018, 8, 1732. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, Z.G.; Wang, J.H.; Wang, A.R. Advances in Antimicrobial Molecular Mechanism of Organic Acids. Acta Vet. Zootech. Sin. Chin. J. Anim. Vet. Sci. 2011, 42, 323–328. [Google Scholar]
- Ebihara, K.; Nakajima, A. Effect of Acetic Acid and Vinegar on Blood Glucose and Insulin Responses to Orally Administered Sucrose and Starch. Agric. Biol. Chem. 1988, 52, 1311–1312. [Google Scholar]
- Halima, B.H.; Sonia, G.; Sarra, K.; Houda, B.J.; Fethi, B.S.; Abdallah, A. Apple Cider Vinegar Attenuates Oxidative Stress and Reduces the Risk of Obesity in High-Fat-Fed Male Wistar Rats. J. Med. Food 2017, 21, 70–80. [Google Scholar] [CrossRef]
- Ogawa, N.; Satsu, H.; Watanabe, H.; Fukaya, M.; Tsukamoto, Y.; Miyamoto, Y.; Shimizu, M. Acetic Acid Suppresses the Increase in Disaccharidase Activity That Occurs during Culture of Caco-2 Cells. J. Nutr. 2000, 130, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Brighenti, F.; Castellani, G.; Benini, L.; Casiraghi, M.C.; Leopardi, E.; Crovetti, R.; Testolin, G. Effect of Neutralized and Native Vinegar on Blood Glucose and Acetate Responses to a Mixed Meal in Healthy Subjects. Eur. J. Clin. Nutr. 1995, 49, 242–247. [Google Scholar] [PubMed]
- Bahesheti, Z.; Chan, Y.H.; Nia, H.S.; Hajihosseini, F.; Nazari, R.; Shaabani, M. Influence of Apple Cider Vinegar on Blood Lipids. Life Sci. J. 2012, 9, 2431–2440. [Google Scholar]
- Beh, B.K.; Mohamad, N.E.; Yeap, S.K.; Ky, H.; Boo, S.Y.; Chua, J.Y.H.; Tan, S.W.; Ho, W.Y.; Sharifuddin, S.A.; Long, K. Anti-Obesity and Anti-Inflammatory Effects of Synthetic Acetic Acid Vinegar and Nipa Vinegar on High-Fat-Diet-Induced Obese Mice. Sci. Rep. 2017, 7, 6664. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Lee, J.-A.; Park, G.-G.; Jang, J.-K.; Park, Y.-S. Semi-Continuous Fermentation of Onion Vinegar and Its Functional Properties. Molecules 2017, 22, 1313. [Google Scholar] [CrossRef] [Green Version]
- Park, J.E.; Kim, J.Y.; Kim, J.; Kim, Y.J.; Kim, M.J.; Kwon, S.W.; Kwon, O. Pomegranate Vinegar Beverage Reduces Visceral Fat Accumulation in Association with AMPK Activation in Overweight Women: A Double-Blind, Randomized, and Placebo-Controlled Trial. J. Funct. Foods 2014, 8, 274–281. [Google Scholar] [CrossRef]
- Kondo, S.; Tayama, K.; Tsukamoto, Y.; Ikeda, K.; Yamori, Y. Antihypertensive Effects of Acetic Acid and Vinegar on Spontaneously Hypertensive Rats. Biosci. Biotechnol. Biochem. 2001, 65, 2690–2694. [Google Scholar] [CrossRef]
- Yamashita, H.; Fujisawa, K.; Ito, E.; Idei, S.; Kawaguchi, N.; Kimoto, M.; Hiemori, M.; Tsuji, H. Improvement of Obesity and Glucose Tolerance by Acetate in Type 2 Diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) Rats. Biosci. Biotechnol. Biochem. 2007, 71, 1236–1243. [Google Scholar] [CrossRef]
- Hindi, N.K. In Vitro Antibacterial Activity of Aquatic Garlic Extract, Apple Vinegar and Apple Vinegar-Garlic Extract Combination. Am. J. Phytomed. Clin. Ther. 2013, 1, 42–51. [Google Scholar]
- Hindi, N.K.K.; Al-Mahdi, Z.K.A.; Chabuck, Z.A.G. Antibacterial Activity of the Aquatic Extractof Fresh, Dry Powder Ginger, Apple Vinegar Extract of Fresh Ginger and Crud Oil of Ginger (Zingiberofficinale) against Different Types of Bacteria in Hilla City, Iraq. Prostate 2014, 3, 6. [Google Scholar]
- Yagnik, D.; Ward, M.; Shah, A.J. Antibacterial Apple Cider Vinegar Eradicates Methicillin Resistant Staphylococcus aureus and Resistant Escherichia coli. Sci. Rep. 2021, 11, 1854. [Google Scholar] [CrossRef]
- Alakomi, H.-L.; Skyttä, E.; Saarela, M.; Mattila-Sandholm, T.; Latva-Kala, K.; Helander, I.M. Lactic Acid Permeabilizes Gram-Negative Bacteria by Disrupting the Outer Membrane. Appl. Environ. Microbiol. 2000, 66, 2001–2005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brul, S.; Coote, P. Preservative Agents in Foods: Mode of Action and Microbial Resistance Mechanisms. Int. J. Food Microbiol. 1999, 50, 1–17. [Google Scholar] [CrossRef]
- Hirshfield, I.N.; Terzulli, S.; O’Byrne, C. Weak Organic Acids: A Panoply of Effects on Bacteria. Sci. Prog. 2003, 86, 245–269. [Google Scholar] [CrossRef]
- AL-Salihi, S.S. Antibacterial Activity of Some Disinfectants and Detergents on Some Pathogenic Bacteria. J. Pharm. Sci. Res. 2019, 11, 590–597. [Google Scholar]
- Mota, A.C.L.G.; de Castro, R.D.; de Araújo Oliveira, J.; de Oliveira Lima, E. Antifungal Activity of Apple Cider Vinegar on Candida Species Involved in Denture Stomatitis. J. Prosthodont. 2015, 24, 296–302. [Google Scholar] [CrossRef]
- Wang, H.; Liu, J.; Liu, Z. Effect of Enzymatic Digestion, Chemical and Boiled Water Extraction Techniques on Apparent Antioxidant Bioactivities of Apple Peel. J. Food Meas. Charact. 2019, 13, 959–966. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Qian, H.; Yao, W.-R. Melanoidins Produced by the Maillard Reaction: Structure and Biological Activity. Food Chem. 2011, 128, 573–584. [Google Scholar] [CrossRef]
- Sakanaka, S.; Ishihara, Y. Comparison of Antioxidant Properties of Persimmon Vinegar and Some Other Commercial Vinegars in Radical-Scavenging Assays and on Lipid Oxidation in Tuna Homogenates. Food Chem. 2008, 107, 739–744. [Google Scholar] [CrossRef]
- Ho, C.W.; Lazim, A.M.; Fazry, S.; Zaki, U.K.H.H.; Lim, S.J. Varieties, Production, Composition and Health Benefits of Vinegars: A Review. Food Chem. 2017, 221, 1621–1630. [Google Scholar] [CrossRef]
- Wakuda, T.; Azuma, K.; Saimoto, H.; Ifuku, S.; Morimoto, M.; Arifuku, I.; Asaka, M.; Tsuka, T.; Imagawa, T.; Okamoto, Y. Protective Effects of Galacturonic Acid-Rich Vinegar Brewed from Japanese Pear in a Dextran Sodium Sulfate-Induced Acute Colitis Model. J. Funct. Foods 2013, 5, 516–523. [Google Scholar] [CrossRef]
- Ross, C.M.; Poluhowich, J.J. The Effect of Apple Cider Vinegar on Adjuvant Arthritic Rats. Nutr. Res. 1984, 4, 737–741. [Google Scholar] [CrossRef]
- Golzarand, M.; Ebrahimi-Mamaghani, M.; Arefhosseini, S.R.; Asgarzadeh, A.A. Effect of Processed Berberis Vulgaris in Apple Vinegar on Blood Pressure and Inflammatory Markers in Type 2 Diabetic Patients. Iran. J. Diabetes Metab. Disord. 2008, 7, 15–20. [Google Scholar]
- Choi, J.-H.; Park, S.-E.; Yeo, S.-H.; Kim, S. Anti-Inflammatory and Cytotoxicity Effects of Cudrania Tricuspidata Fruits Vinegar in a Co-Culture System with RAW264. 7 Macrophages and 3T3-L1 Adipocytes. Foods 2020, 9, 1232. [Google Scholar] [CrossRef]
- Tasdemir, S.S.; Sanlier, N. An Insight into the Anticancer Effects of Fermented Foods: A Review. J. Funct. Foods 2020, 75, 104281. [Google Scholar] [CrossRef]
- Hashimoto, M.; Obara, K.; Ozono, M.; Furuyashiki, M.; Ikeda, T.; Suda, Y.; Fukase, K.; Fujimoto, Y.; Shigehisa, H. Separation and Characterization of the Immunostimulatory Components in Unpolished Rice Black Vinegar (Kurozu). J. Biosci. Bioeng. 2013, 116, 688–696. [Google Scholar] [CrossRef] [PubMed]
- Kohchi, C.; Inagawa, H.; Nishizawa, T.; Yamaguchi, T.; Nagai, S.; Soma, G.-I. Applications of Lipopolysaccharide Derived from Pantoea Agglomerans (IP-PA1) for Health Care Based on Macrophage Network Theory. J. Biosci. Bioeng. 2006, 102, 485–496. [Google Scholar] [CrossRef]
- Mimura, A.; Suzuki, Y.; Toshima, Y.; Yazaki, S.; Ohtsuki, T.; Ui, S.; Hyodoh, F. Induction of Apoptosis in Human Leukemia Cells by Naturally Fermented Sugar Cane Vinegar (Kibizu) of Amami Ohshima Island. Biofactors 2004, 22, 93–97. [Google Scholar] [CrossRef]
- Seki, T.; Morimura, S.; Shigematsu, T.; Maeda, H.; Kida, K. Antitumor Activity of Rice-Shochu Post-Distillation Slurry and Vinegar Produced from the Post-Distillation Slurry via Oral Administration in a Mouse Model. Biofactors 2004, 22, 103–105. [Google Scholar] [CrossRef]
- Ohnami, K. Effects of Kurosu on the Blood Pressure of the Spontaneously Hypertension Rats. Kiso Rinsho 1985, 19, 237–241. [Google Scholar]
- Na, L.; Chu, X.; Jiang, S.; Li, C.; Li, G.; He, Y.; Liu, Y.; Li, Y.; Sun, C. Vinegar Decreases Blood Pressure by Down-Regulating AT1R Expression via the AMPK/PGC-1α/PPARγ Pathway in Spontaneously Hypertensive Rats. Eur. J. Nutr. 2016, 55, 1245–1253. [Google Scholar] [CrossRef]
Vinegar | Source | pH | Conductivity (mS/cm) | Acidity Titrable (%) | Ethanol (°) | Reference |
---|---|---|---|---|---|---|
Apple vinegar | Morocco | 3.18–3.83 | 2.11–2.90 | 0.24–5.6 | - | [28] |
Apple vinegar | Algeria | - | - | 0.73 ± 0.06 | - | [32] |
Pomegranate vinegar | - | - | 0.98 ± 0.01 | - | ||
Prickly pear vinegar | - | - | 0.31 ± 0.02 | - | ||
Date vinegar | Iraq | 2.85–3.07 | 1.81–7.48 | 2.85–7.24 | 0.01–1.44 | [31] |
Date vinegar | Syria | 2.99–3.23 | 5.43–3.91 | 4.22–5.26 | 1.07–2.53 | |
Ginger vinegar | 3.26 | 3.86 | 5.04 | 2.88 | ||
Grape vinegar | 2.95 | 2.98 | 4.63 | 0.50 | ||
Garlic vinegar | 3.12 | 4.26 | 4.98 | 0.01 | ||
Grape vinegar | Lebanon | 2.49–2.86 | 1.31–2.84 | 5.34–6.18 | 0.01–0.18 | |
Apple vinegar | Turkey | 2.71 | 1.72 | 5.17 | 0.09 | |
Grape vinegar | 2.99 | 3.45 | 5.11 | 0.01 | ||
Vegetable vinegar | USA | 2.40 | 1.57 | 6.12 | 0.16 | |
Grape vinegar | 2.53 | 1.56 | 5.40 | 0.18 | ||
Sugarcane vinegar | KSA | 2.43 | 1.57 | 6.36 | 0.01 | |
Grape vinegar | Turkey | 2.70–3.90 | - | 0.32–5.72 | - | [29] |
Apple vinegar | 2.71–3.56 | - | 0.66–7.20 | - | ||
Artichoke vinegar | 3.79 ± 0.00 | - | 1.22 ± 0.03 | - | ||
Pomegranate | 2.88–3.69 | - | 1.04–3.38 | - | ||
Apple-lemon | 3.64 ± 0.01 | - | 1.36 ± 0.03 | - | ||
Hawthorne vinegar | 3.76 ± 0.02 | - | 0.82 ± 0.03 | - | ||
Lemon vinegar | 2.63 ± 0.02 | - | 4.34 ± 0.07 | - | ||
Sour sherry vinegar | 3.05 ± 0.01 | - | 5.50 ± 0.07 | - | ||
Eucommia ulmoides leaves vinegar | China | - | - | 1.6–4.7 | - | [33] |
Wood vinegars | Thailand | 2.90–3.50 | - | 2.72–4.92 | - | [34] |
Blueberry vinegar | Brazil | 2.94–2.98 | - | 4.2–4.8 | 0.1–0.2 | [35] |
Apple vinegar | Romania | - | - | 3.9–9 | - | [27] |
Dates vinegar | Malaysia | 2.70–2.77 | - | 1.19–5.86 | - | [36] |
Citrus vinegar | Italy | 2.65–3.24 | - | 2.96–13.32 | 0 | [37] |
Vinegars | Country | Organic Acids * | References |
---|---|---|---|
Apple vinegar | China | Tartaric acid, malic acid, lactic acid, citric acid, succinic acid | [5] |
Red wine vinegar | Tartaric acid, succinic acid | ||
White wine vinegar | Tartaric acid, succinic acid | ||
Balsamic vinegar | Tartaric acid, malic acid | ||
Apple vinegar | Spain | Propionic acid, isobutyric acid, butyric acid, isovaleric acid | [72] |
baby corn silk vinegar | Thailand | Dimethyl ether, 2-Ethylthio-2-methoxy-3-oxo-n-phenylbutanamide, 1-Butanol, 3-methyl-, acetate, Cyclobutane,1,1,2,3,3-pentamethyl-Isoamylalcohol, pentanoic acid, Butanedioic acid, diethyl ester, 3-Cyclohexene-1-methanol, 4-rimethyl -ethyl 2-phenylacetate, 4-[1′-Phenylethenyloxymethyl] pyridine, hexanoic acid, 1H-Pyrrolizine-7-carboxylic acid, 2-(formyloxy), octaboic acid | [73] |
Sour cherry vinegar | Turkey | Isobutyric acid, isovaleric acid, hexanoic acid, octanoic acid, nonanoic acid, decanoic acid, dodecanoic acid, tetradecanoic acid, methyl acetate, ethyl acetate, ethyl propanoate, isobutyl acetate, isoamyl acetate, ethyl caproate, ethyl caprylate, ethyl decanoate, benzyl acetate, phenethyl acetate, 2-ethyl acetate, 2-ethyl hexanoic acid, ethanol, isobutyl alcohol, hexanol, nonanol, benzyl alcohol, phenethyl alcohol, 1-dodecanol | [50] |
Pineapple vinegar | Thailand | Methyl ester, ethyl acetate, isobutyl acetate, isobutanol, isopentyl alcohol (3-methyl butanol), acetoin, benzaldehyde, propanoic acid, butanoic acid, isobutyric acid, 4-methylbenzaldehyde, methylbutanoic acid, naphthalene, phenylethel acetate, phenylethyl alcohol | [74] |
Vinegars | Country | K | Na | Ca | Zn | Mg | Fe | P | Ni | Cr | Co | Mn | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Banana vinegar | Romania | - | 14.69–186.06 | 11.89–148.94 | 0.569–3.61 | 7.12–113.31 | - | - | 0.07–0.15 | 0.04–3.63 | 0.01–0.02 | 0.09–4.01 | [82] |
Apple vinegar | Turkey | 802.24 ± 114 | 360.21 ± 250.380 | 104.75 ± 28.695 | ND | 65.60 ± 7.565 | 1.31 ± 0.585 | 48.06 ± 17.044 | 0.01 ± 0.013 | - | - | 0.18 ± 0.130 | [79] |
Rice vinegar | 0.43 ± 0.056 | ND | ND | ND | ND | 0.62 ± 0.103 | 0.22 ± 0.020 | 0.01 ± 0.003 | - | - | 0.22 ± 0.011 | ||
Sour cherry vinegar | 1058.93 ± 103.502 | 303.20 ± 38.562 | 670.80 ± 30.811 | 0.32 ± 0.013 | 142.60 ± 46.11 | 10.68 ± 0.591 | 63.14 ± 11.078 | 0.12 ± 0.008 | - | - | 0.67 ± 0.009 | ||
Date vinegar | 1384.93 ± 132.745 | 181.40 ± 25.787 | 1136 ± 105.112 | 0.02 ± 0.024 | 195.60 ± 22.235 | 10.44 ± 2.526 | 70.32 ± 36.123 | 0.16 ± 0.008 | - | - | 0.28 ± 0.018 | ||
Balsamic vinegar | 1557.73 ± 416.841 | 264.96 ± 26.766 | 188.28 ± 46.997 | 0.36 ± 0.162 | 127.04 ± 18.470 | 6.94 ± 1.498 | 182.60 ± 50.577 | 0.03 ± 0.019 | - | - | 1.31 ± 0.180 | ||
Apple vinegar | Morocco | 32.403–41.863 | 0.039–0.199 | 1.569–2.620 | 0.014–4.212 | 1.572–1.746 | 0.499–0.581 | - | - | - | - | 0.045–0.053 | [78] |
Date vinegar | Algeria | 0.14–2.73 | 23.6–30.9 | 0.24–0.79 | - | 0.16–1.92 | 0.22–1.74 | - | - | - | - | - | [83] |
Date vinegar | Iraq | 1958 | 148 | 293 | 1.29 | 50 | 1.15 | - | - | - | 0.069 | 0.49 | [31] |
Wood vinegar | China | 7.66 ± 0.80 | - | 13 ± 0.78 | 0.166 ± 0.16 | 1.98 ± 0.34 | 3751 ± 60 | - | - | - | - | 23.7 ± 0.43 | [80] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ousaaid, D.; Mechchate, H.; Laaroussi, H.; Hano, C.; Bakour, M.; El Ghouizi, A.; Conte, R.; Lyoussi, B.; El Arabi, I. Fruits Vinegar: Quality Characteristics, Phytochemistry, and Functionality. Molecules 2022, 27, 222. https://doi.org/10.3390/molecules27010222
Ousaaid D, Mechchate H, Laaroussi H, Hano C, Bakour M, El Ghouizi A, Conte R, Lyoussi B, El Arabi I. Fruits Vinegar: Quality Characteristics, Phytochemistry, and Functionality. Molecules. 2022; 27(1):222. https://doi.org/10.3390/molecules27010222
Chicago/Turabian StyleOusaaid, Driss, Hamza Mechchate, Hassan Laaroussi, Christophe Hano, Meryem Bakour, Asmae El Ghouizi, Raffaele Conte, Badiaa Lyoussi, and Ilham El Arabi. 2022. "Fruits Vinegar: Quality Characteristics, Phytochemistry, and Functionality" Molecules 27, no. 1: 222. https://doi.org/10.3390/molecules27010222
APA StyleOusaaid, D., Mechchate, H., Laaroussi, H., Hano, C., Bakour, M., El Ghouizi, A., Conte, R., Lyoussi, B., & El Arabi, I. (2022). Fruits Vinegar: Quality Characteristics, Phytochemistry, and Functionality. Molecules, 27(1), 222. https://doi.org/10.3390/molecules27010222