Biophysical Characterization of Novel DNA Aptamers against K103N/Y181C Double Mutant HIV-1 Reverse Transcriptase
Abstract
:1. Introduction
2. Results
2.1. Post Selection
2.2. Study of the Function of Aptamers on HIV-1 RTs Activity
2.3. Affinity Analysis of KY DNA Aptamers and HIV-1 RTs
2.4. Investigation of HIV-1 RTs Binding to DNA Aptamer by NMR
2.5. Toxicity Testing on HEK293 Cells
2.6. Inhibition of HIV Infection
3. Discussion
4. Materials and Methods
4.1. DNA Aptamer Preparation
4.2. In Vitro Selection of High-Affinity DNA Aptamers for KY-Mutant HIV-1 RT
4.3. HIV-1 Reverse Transcriptase Inhibition Assay
4.4. Fifty Percent Inhibitory Concentration (IC50) Determination
4.5. Surface Plasmon Resonance (SPR)
4.6. Nuclear Magnetic Resonance (NMR)
4.7. Cytotoxicity on HEK293 Cells
4.8. Pseudo-HIV-1 Particle Infection
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Hu, W.S.; Hughes, S.H. HIV-1 reverse transcription. Cold Spring Harb. Perspect. Med. 2012, 2, a006882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarafianos, S.G.; Marchand, B.; Das, K.; Himmel, D.M.; Parniak, M.A.; Hughes, S.H.; Arnold, E. Structure and function of HIV-1 reverse transcriptase: Molecular mechanisms of polymerization and inhibition. J. Mol. Biol. 2009, 385, 693–713. [Google Scholar] [CrossRef] [Green Version]
- Clutter, D.S.; Mazarei, G.; Sinha, R.; Manasa, J.; Nouhin, J.; LaPrade, E.; Bolouki, S.; Tzou, P.L.; Hannita-Hui, J.; Sahoo, M.K.; et al. Multiplex Solid-Phase Melt Curve Analysis for the Point-of-Care Detection of HIV-1 Drug Resistance. J. Mol. Diagn. 2019, 21, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.; Deng, X.; Li, L.; Cai, W.; Li, J.; Cai, X.; Li, F.; Hu, F.; Lei, C.; Tang, X. HIV-1 Drug Resistance and Genetic Transmission Networks Among MSM Failing Antiretroviral Therapy in South China 2014–2019. Infect. Drug Resist. 2021, 14, 2977–2989. [Google Scholar] [CrossRef]
- Ngo-Giang-Huong, N.; Jourdain, G.; Amzal, B.; Sang-A-Gad, P.; Lertkoonalak, R.; Eiamsirikit, N.; Tansuphasawasdikul, S.; Buranawanitchakorn, Y.; Yutthakasemsunt, N.; Mekviwattanawong, S.; et al. Resistance patterns selected by nevirapine vs. efavirenz in HIV-infected patients failing first-line antiretroviral treatment: A bayesian analysis. PLoS ONE 2011, 6, e27427. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Xing, H.; Liao, L.; Wang, Z.; Su, B.; Zhao, Q.; Feng, Y.; Ma, P.; Liu, J.; Wu, J.; et al. The development of drug resistance mutations K103N Y181C and G190A in long term Nevirapine-containing antiviral therapy. AIDS Res. Ther. 2014, 11, 36. [Google Scholar] [CrossRef] [Green Version]
- Wensing, A.M.; Calvez, V.; Ceccherini-Silberstein, F.; Charpentier, C.; Günthard, H.F.; Paredes, R.; Shafer, R.W.; Richman, D.D. 2019 update of the drug resistance mutations in HIV-1. Top. Antivir. Med. 2019, 27, 111–121. [Google Scholar] [PubMed]
- Bala, J.; Chinnapaiyan, S.; Dutta, R.K.; Unwalla, H. Aptamers in HIV research diagnosis and therapy. RNA Biol. 2018, 15, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990, 249, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Bala, J.; Bhaskar, A.; Varshney, A.; Singh, A.K.; Dey, S.; Yadava, P. In vitro selected RNA aptamer recognizing glutathione induces ROS mediated apoptosis in the human breast cancer cell line MCF 7. RNA Biol. 2011, 8, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-H.B.; Chernis, G.A.; Hoang, V.Q.; Landgraf, R. Inhibition of heregulin signaling by an aptamer that preferentially binds to the oligomeric form of human epidermal growth factor receptor-3. Proc. Natl. Acad. Sci. USA 2003, 100, 9226–9231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mondragon, E.; Maher, L.J., 3rd. RNA aptamer inhibitors of a restriction endonuclease. Nucleic Acids Res. 2015, 43, 7544–7555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamula, C.L.A.; Zhang, H.; Li, F.; Wang, Z.; Chris Le, X.; Li, X.F. Selection and analytical applications of aptamers binding microbial pathogens. Trends Anal. Chem. 2011, 30, 1587–1597. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, Y.; Xie, Y.; An, Y.; Huang, Y.; Zhu, Z.; Yang, C.J. A controllable aptamer-based self-assembled DNA dendrimer for high affinity targeting, bioimaging and drug delivery. Sci Rep. 2015, 5, 10099. [Google Scholar] [CrossRef]
- Elskens, J.P.; Elskens, J.M.; Madder, A. Chemical Modification of Aptamers for Increased Binding Affinity in Diagnostic Applications: Current Status and Future Prospects. Int. J. Mol. Sci. 2020, 21, 4522. [Google Scholar] [CrossRef] [PubMed]
- Stein, C.A.; Castanotto, D. FDA-Approved Oligonucleotide Therapies in 2017. Mol. Ther. 2017, 25, 1069–1075. [Google Scholar] [CrossRef] [Green Version]
- Rogers, H.; Adeniyi, O.; Ramamoorthy, A.; Bailey, S.; Pacanowski, M. Clinical Pharmacology Studies Supporting Oligonucleotide Therapy Development: An Assessment of Therapies Approved and in Development Between 2012 and 2018. Clin. Transl. Sci. 2021, 14, 468–475. [Google Scholar] [CrossRef]
- Sanchez-Luque, F.J.; Stich, M.; Manrubia, S.; Briones, C.; Berzal-Herranz, A. Efficient HIV-1 inhibition by a 16 nt-long RNA aptamer designed by combining in vitro selection and in silico optimisation strategies. Sci. Rep. 2014, 4, 6242. [Google Scholar] [CrossRef] [PubMed]
- Virgilio, A.; Amato, T.; Petraccone, L.; Esposito, F.; Grandi, N.; Tramontano, E.; Romero, R.; Haider, S.; Gomez-Monterrey, I.; Novellino, E.; et al. Improvement of the activity of the anti-HIV-1 integrase aptamer T30175 by introducing a modified thymidine into the loops. Sci. Rep. 2018, 8, 7447. [Google Scholar] [CrossRef]
- Ratanabunyong, S.; Aeksiri, N.; Yanaka, S.; Yagi-Utsumi, M.; Kato, K.; Choowongkomon, K.; Hannongbua, S. Characterization of New DNA Aptamers for Anti-HIV-1 Reverse Transcriptase. ChemBioChem 2021, 22, 915–923. [Google Scholar] [CrossRef] [PubMed]
- Antonio, M.; Ferreira, R.; Vitorino, R.; Daniel-da-Silva, A.L. A simple aptamer-based colorimetric assay for rapid detection of C-reactive protein using gold nanoparticles. Talanta 2020, 214, 120868. [Google Scholar] [CrossRef] [PubMed]
- Silprasit, K.; Thammaporn, R.; Tecchasakul, S.; Hannongbua, S.; Choowongkomon, K. Simple and rapid determination of the enzyme kinetics of HIV-1 reverse transcriptase and anti-HIV-1 agents by a fluorescence based method. J. Virol. Methods 2011, 171, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Tassa, C.; Duffner, J.L.; Lewis, T.A.; Weissleder, R.; Schreiber, S.L.; Koehler, A.N.; Shaw, S.Y. Binding affinity and kinetic analysis of targeted small molecule-modified nanoparticles. Bioconjug. Chem. 2010, 21, 14–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thammaporn, R.; Yagi-Utsumi, M.; Yamaguchi, T.; Boonsri, P.; Saparpakorn, P.; Choowongkomon, K.; Techasakul, S.; Kato, K.; Hannongbua, S. NMR characterization of HIV-1 reverse transcriptase binding to various non-nucleoside reverse transcriptase inhibitors with different activities. Sci. Rep. 2015, 5, 15806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mbisa, J.L.; Delviks-Frankenberry, K.A.; Thomas, J.A.; Gorelick, R.J.; Pathak, V.K. Real-time PCR analysis of HIV-1 replication post-entry events. Methods Mol. Biol. 2009, 485, 55–72. [Google Scholar] [CrossRef]
- Domaoal, R.; Domaoal, R.; Demeter, L.M. Structural and biochemical effects of human immunodeficiency virus mutants resistant to non-nucleoside reverse transcriptase inhibitors. Int. J. Biochem. Cell Biol. 2004, 36, 1735–1751. [Google Scholar] [CrossRef]
- Kiertiburanakul, S.; Pinsai, S.; Chantratita, W.; Pasomsub, E.; Leechawengwongs, M.; Thipmontree, W.; Siriyakorn, N.; Sungkanuparph, S. Prevalence of Primary HIV Drug Resistance in Thailand Detected by Short Reverse Transcriptase Genotypic Resistance Assay. PLoS ONE 2016, 11, e0147945. [Google Scholar] [CrossRef] [Green Version]
- Yuan, D.; Liu, M.; Jia, P.; Li, Y.; Huang, Y.; Ye, L.; Api, L.; Chen, M.; Yao, L.; Wang, Z.; et al. Prevalence and determinants of virological failure, genetic diversity and drug resistance among people living with HIV in a minority area in China: A population-based study. BMC Infect. Dis. 2020, 20, 443. [Google Scholar] [CrossRef]
- Kissel, J.D.; Held, D.M.; Hardy, R.W.; Burke, D.H. Active site binding and sequence requirements for inhibition of HIV-1 reverse transcriptase by the RT1 family of single-stranded DNA aptamers. Nucleic Acids Res. 2007, 35, 5039–5050. [Google Scholar] [CrossRef]
- Kissel, J.D.; Held, D.M.; Hardy, R.W.; Burke, D.H. Single-stranded DNA aptamer RT1t49 inhibits RT polymerase and RNase H functions of HIV type 1, HIV type 2, and SIVCPZ RTs. AIDS Res. Hum. Retrovir. 2007, 23, 699–708. [Google Scholar] [CrossRef]
- Miller, M.T.; Tuske, S.; Das, K.; DeStefano, J.J.; Arnold, E. Structure of HIV-1 reverse transcriptase bound to a novel 38-mer hairpin template-primer DNA aptamer. Protein Sci. 2016, 25, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Donkor, D.A.; Bhakta, V.; Eltringham-Smith, L.J.; Stafford, A.R.; Weitz, J.I.; Sheffield, W.P. Selection and characterization of a DNA aptamer inhibiting coagulation factor XIa. Sci. Rep. 2017, 7, 2102. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Yan, J.; Xiong, H.; Liu, Y.; Peng, D.; Liu, Z. Investigations on the interface of nucleic acid aptamers and binding targets. Analyst 2018, 143, 5317–5338. [Google Scholar] [CrossRef] [PubMed]
- Oishi, J.; Asami, Y.; Mori, T.; Kang, J.H.; Niidome, T.; Katayama, Y. Colorimetric enzymatic activity assay based on noncrosslinking aggregation of gold nanoparticles induced by adsorption of substrate peptides. Biomacromolecules 2008, 9, 2301–2308. [Google Scholar] [CrossRef]
- Engelberg, S.; Netzer, E.; Assaraf, Y.G.; Livney, Y.D. Selective eradication of human non-small cell lung cancer cells using aptamer-decorated nanoparticles harboring a cytotoxic drug cargo. Cell Death Dis. 2019, 10, 702. [Google Scholar] [CrossRef]
- Tiscornia, G.; Singer, O.; Verma, I.M. Production and purification of lentiviral vectors. Nat. Protoc. 2006, 1, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Bergallo, M.; Costa, C.; Gribaudo, G.; Tarallo, S.; Baro, S.; Ponzi, A.N.; Cavallo, R. Evaluation of six methods for extraction and purification of viral DNA from urine and serum samples. New Microbiol. 2006, 29, 111–119. [Google Scholar]
Sample No. | IC50 (nM) | |
---|---|---|
WT HIV-1 RT | KY HIV-1 RT | |
KY1 | 73.11 ± 5.72 | 115.10 ± 8.15 |
KY22 | 103.20 ± 8.60 | 77.98 ± 13.73 |
KY23 | 55.14 ± 4.33 | 81.57 ± 8.04 |
KY28 | 73.08 ± 8.70 | 81.30 ± 7.02 |
KY44 | 45.14 ± 5.75 | 63.82 ± 8.72 |
EFV | 16.03 ± 3.83 | 399.30 ± 4.86 |
Sample No. | WT HIV-1 RT | KY HIV-1 RT | ||||
---|---|---|---|---|---|---|
kon (1/(M×s)) | koff (1/s) | KD (M) | kon (1/(M×s)) | koff (1/s) | KD (M) | |
KY1 | 4.89 ± 0.1 × 104 | 1.06 ± 0.0001 × 10−1 | 2.17 ± 0.04 × 10−6 | 1.38 ± 0.1 × 104 | 2.99 ± 0.001 × 10−2 | 2.16 ± 0.2 × 10−6 |
KY22 | 1.01 ± 0.002 × 105 | 1.04 ± 0.00003 × 10−1 | 1.04 ± 0.002 × 10−6 | 7.27 ± 9.49 × 103 | 8.93 ± 0.006 × 10−2 | 1.23 ± 2.27 × 10−5 |
KY23 | 5.22 ± 0.2 × 104 | 2.88 ± 0.1 × 10−3 | 5.52 ± 0.4 × 10−8 | 6.33 ± 0.02 × 104 | 9.26 ± 0.003 × 10−3 | 1.46 ± 0.005 × 10−7 |
KY28 | 6.48 ± 0.05 × 104 | 6.62 ± 0.0008 × 10−2 | 1.02 ± 0.008 × 10−6 | 1.60 ± 0.03 × 104 | 2.65 ± 0.0003 × 10−2 | 1.66 ± 0.03 × 10−6 |
KY44 | 1.77 ± 9.08 × 105 | 3.08 ± 0.004 × 10−1 | 2.15 ± 0.4 × 10−6 | 3.47 ± 0.01 × 104 | 5.41 ± 0.0001 × 10−2 | 1.56 ± 0.004 × 10−6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ratanabunyong, S.; Seetaha, S.; Hannongbua, S.; Yanaka, S.; Yagi-Utsumi, M.; Kato, K.; Paemanee, A.; Choowongkomon, K. Biophysical Characterization of Novel DNA Aptamers against K103N/Y181C Double Mutant HIV-1 Reverse Transcriptase. Molecules 2022, 27, 285. https://doi.org/10.3390/molecules27010285
Ratanabunyong S, Seetaha S, Hannongbua S, Yanaka S, Yagi-Utsumi M, Kato K, Paemanee A, Choowongkomon K. Biophysical Characterization of Novel DNA Aptamers against K103N/Y181C Double Mutant HIV-1 Reverse Transcriptase. Molecules. 2022; 27(1):285. https://doi.org/10.3390/molecules27010285
Chicago/Turabian StyleRatanabunyong, Siriluk, Supaphorn Seetaha, Supa Hannongbua, Saeko Yanaka, Maho Yagi-Utsumi, Koichi Kato, Atchara Paemanee, and Kiattawee Choowongkomon. 2022. "Biophysical Characterization of Novel DNA Aptamers against K103N/Y181C Double Mutant HIV-1 Reverse Transcriptase" Molecules 27, no. 1: 285. https://doi.org/10.3390/molecules27010285
APA StyleRatanabunyong, S., Seetaha, S., Hannongbua, S., Yanaka, S., Yagi-Utsumi, M., Kato, K., Paemanee, A., & Choowongkomon, K. (2022). Biophysical Characterization of Novel DNA Aptamers against K103N/Y181C Double Mutant HIV-1 Reverse Transcriptase. Molecules, 27(1), 285. https://doi.org/10.3390/molecules27010285