Cyanide Biodegradation by Trichoderma harzianum and Cyanide Hydratase Network Analysis
Abstract
:1. Introduction
2. Results
2.1. Screening of Cyanide-Degrading Fungi
2.2. Measurement of Cyanide Degradation
2.3. Analyzing the Cyanide Detoxification Pathway and Gene Network of Trichoderma and the Effect of Cyanide on Fungal Growth
2.4. Cloning of Cyanide Hydratase
2.5. Sequence Alignment for Cyanide Hydratase Protein
3. Discussion
4. Materials and Methods
4.1. Materials, Fungal Strains and Growth Condition
4.2. Fungal Strains and Growth Condition
4.3. Fungi Screening by Cyanide
4.4. Measurement of Residual Cyanide and Cyanide Degradation by Biochemical Assay Method
4.5. Bioinformatics Analysis
Analyzing the Gene Network of Trichoderma and the Effect of Cyanide on Fungal Growth
4.6. Nucleic Acid Manipulations and Sequence Analysis
Cloning of Cyanide Hydratase
4.7. Sequence Alignment for Cyanide Hydratase Protein
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Dash, R.R.; Gaur, A.; Balomajumder, C. Cyanide in industrial wastewaters and its removal: A review on biotreatment. J. Hazard. Mater. 2009, 163, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Novak, D.; Franke-Whittle, I.H.; Pirc, E.T.; Jerman, V.; Insam, H.; Logar, R.M.; Stres, B. Biotic and abiotic processes contribute to successful anaerobic degradation of cyanide by UASB reactor biomass treating brewery waste water. Water Res. 2013, 47, 3644–3653. [Google Scholar] [CrossRef] [PubMed]
- Park, J.M.; Sewell, B.T.; Benedik, M.J. Cyanide bioremediation: The potential of engineered nitrilases. Appl. Microbiol. Biotechnol. 2017, 101, 3029–3042. [Google Scholar] [CrossRef] [PubMed]
- Luque-Almagro, V.M.; Cabello, P.; Sáez, L.P.; Olaya-Abril, A.; Moreno-Vivián, C.; Roldán, M.D. Exploring anaerobic environments for cyanide and cyano-derivatives microbial degradation. Appl. Microbiol. Biotechnol. 2018, 102, 1067–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, N.; Balomajumder, C.; Agarwal, V.K. Adsorption of cyanide ion on pressmud surface: A modeling approach. Chem. Eng. J. 2012, 191, 548–556. [Google Scholar] [CrossRef]
- Kumar, R.; Saha, S.; Dhaka, S.; Kurade, M.B.; Kang, C.U.; Baek, S.H.; Jeon, B.H. Remediation of cyanide-contaminated environments through microbes and plants: A review of current knowledge and future perspectives. Geosyst. Eng. 2017, 20, 28–40. [Google Scholar] [CrossRef]
- Tiong, B.; Bahari, Z.M.; Lee, N.S.I.S.; Jaafar, J.; Ibrahim, Z.; Shahir, S. Cyanide degradation by Pseudomonas pseudoalcaligenes strain W2 isolated from mining effluent. Sains Malays. 2015, 44, 233–238. [Google Scholar] [CrossRef]
- Luque-Almagro, V.M.; Merchan, F.; Blasco, R.; Igeno, M.I.; Martinez-Luque, M.; Moreno-Vivian, C.; Castillo, F.; Roldan, M.D. Cyanide degradation by Pseudomonas pseudoalcaligenes CECT5344 involves a malate: Quinone oxidoreductase and an associated cyanide-insensitive electron transfer chain. Microbiology 2011, 157, 739–746. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Kao, C.M.; Chen, S.C.; Chen, T.Y. Biodegradation of tetracyanonickelate by Klebsiella oxytoca under anaerobic conditions. Desalination 2009, 249, 1212–1216. [Google Scholar] [CrossRef]
- Patil, Y.; Paknikar, K. Development of a process for biodetoxification of metal cyanides from waste waters. Process Biochem. 2000, 35, 1139–1151. [Google Scholar] [CrossRef]
- Shete, H.; Kapdnis, B. Production and Characterization of Cyanide Hydratase from Micromonospora braunna. Univers. J. Environ. Res. Technol. 2012, 2, 609–615. [Google Scholar]
- Behnamfard, A.; Salarirad, M.M. Equilibrium and kinetic studies on free cyanide adsorption from aqueous solution by activated carbon. J. Hazard. Mater. 2009, 170, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Balomajumder, C.; Agarwal, V. Enzymatic mechanism and biochemistry for cyanide degradation: A review. J. Hazard. Mater. 2010, 176, 1–13. [Google Scholar] [CrossRef]
- Wu, C.-F.; Xu, X.M.; Zhu, Q.; Deng, M.C.; Feng, L.; Peng, J.; Yuan, J.P.; Wang, J.H. An effective method for the detoxification of cyanide-rich wastewater by Bacillus sp. CN-22. Appl. Microbiol. Biotechnol. 2014, 98, 3801–3807. [Google Scholar] [CrossRef] [PubMed]
- Luque-Almagro, V.M.; Blasco, R.; Martínez-Luque, M.; Moreno-Vivián, C.; Castillo, F.; Roldán, M.D. Bacterial cyanide degradation is under review: Pseudomonas pseudoalcaligenes CECT5344, a case of an alkaliphilic cyanotroph. Biochem. Soc. Trans. 2011, 39, 269–274. [Google Scholar] [CrossRef] [Green Version]
- Potivichayanon, S.; Kitleartpornpairoat, R. Biodegradation of cyanide by a novel cyanide-degrading bacterium. World Acad. Sci. Eng. Technol. 2010, 42, 362–1365. [Google Scholar]
- Van Zyl, A.W.; Harrison, S.T.; van Hille, R.P. Biodegradation of thiocyanate by a mixed microbial population. In Proceedings of the Mine Water–Managing the Challenges (IMWA 2011), Aachen, Germany, 4–11 September 2011. [Google Scholar]
- Naveen, D.; Majumder, C.B.; Mondal, P.; Shubha, D. Biological treatment of cyanide containing wastewater. Res. J. Chem. Sci. 2011, 1, 15–21. [Google Scholar]
- Martínková, L.; Veselá, A.B.; Rinágelová, A.; Chmátal, M. Cyanide hydratases and cyanide dihydratases: Emerging tools in the biodegradation and biodetection of cyanide. Appl. Microbiol. Biotechnol. 2015, 99, 8875–8882. [Google Scholar] [CrossRef]
- Rinágelová, A.; Kaplan, O.; Veselá, A.B.; Chmátal, M.; Křenková, A.; Plíhal, O.; Pasquarelli, F.; Cantarella, M.; Martínková, L. Cyanide hydratase from Aspergillus niger K10: Overproduction in Escherichia coli, purification, characterization and use in continuous cyanide degradation. Process Biochem. 2014, 49, 445–450. [Google Scholar] [CrossRef]
- Ezzi, M.I.; Lynch, J.M. Cyanide catabolizing enzymes in Trichoderma spp. Enzym. Microb. Technol. 2002, 31, 1042–1047. [Google Scholar] [CrossRef]
- Yanase, H.; Sakamoto, A.; Okamoto, K.; Kita, K.; Sato, Y. Degradation of the metal-cyano complex tetracyanonickelate (II) by Fusarium oxysporum N-10. Appl. Microbiol. Biotechnol. 2000, 53, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Malmir, N.; Fard, N.A.; Mgwatyu, Y.; Mekuto, L. Cyanide hydratase modification using computational design and docking analysis for improved binding affinity in cyanide detoxification. Molecules 2021, 26, 1799. [Google Scholar] [CrossRef] [PubMed]
- Luque-Almagro, V.M.; Moreno-Vivián, C.; Roldán, M.D. Biodegradation of cyanide wastes from mining and jewellery industries. Curr. Opin. Biotechnol. 2016, 38, 9–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sexton, A.; Howlett, B. Characterisation of a cyanide hydratase gene in the phytopathogenic fungus Leptosphaeria maculans. Mol. Gen. Genet. MGG 2000, 263, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Akinpelu, E.A.; Ntwampe, S.K.; Mpongwana, N.; Nchu, F.; Ojumu, T.V. Biodegradation kinetics of free cyanide in Fusarium oxysporum-Beta vulgaris waste-metal (As, Cu, Fe, Pb, Zn) cultures under alkaline conditions. BioResources 2016, 11, 2470–2482. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Liu, Z.-Q.; Baker, P.J.; Cheng, F.; Xue, Y.P.; Zheng, Y.G.; Shen, Y.C. Screening and improving the recombinant nitrilases and application in biotransformation of iminodiacetonitrile to iminodiacetic acid. PLoS ONE 2013, 8, e67197. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.S.; Haas, F.H.; Allboje Samami, A.; Moghaddas Gholami, A.; Bauer, A.; Fellenberg, K.; Reichelt, M.; Hänsch, R.; Mendel, R.R.; Meyer, A.J.; et al. Sulfite reductase defines a newly discovered bottleneck for assimilatory sulfate reduction and is essential for growth and development in Arabidopsis thaliana. Plant Cell 2010, 22, 1216–1231. [Google Scholar] [CrossRef] [Green Version]
- Campos, M.G.; Pereira, P.; Roseiro, J.C. Packed-bed reactor for the integrated biodegradation of cyanide and formamide by immobilised Fusarium oxysporum CCMI 876 and Methylobacterium sp. RXM CCMI 908. Enzym. Microb. Technol. 2006, 38, 848–854. [Google Scholar] [CrossRef]
- Barclay, M.; Hart, A.; Knowles, C.J.; Meeussen, J.C.; Tett, V.A. Biodegradation of metal cyanides by mixed and pure cultures of fungi. Enzym. Microb. Technol. 1998, 22, 223–231. [Google Scholar] [CrossRef]
- Gurbuz, F.; Ciftci, H.; Akcil, A. Biodegradation of cyanide containing effluents by Scenedesmus obliquus. J. Hazard. Mater. 2009, 162, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Maniyam, M.N.; Sjahrir, F.; Ibrahim, A.L.; Cass, A.E. Cyanide degradation by immobilized cells of Rhodococcus UKMP-5M. Biologia 2012, 67, 837–844. [Google Scholar] [CrossRef] [Green Version]
- Özel, Y.K.; Gedikli, S.; Aytar, P.; Ünal, A.; Yamaç, M.; Çabuk, A.; Kolankaya, N. New fungal biomasses for cyanide biodegradation. J. Biosci. Bioeng. 2010, 110, 431–435. [Google Scholar] [CrossRef] [PubMed]
- Cluness, M.J.; Turner, P.D.; Clements, E.; Brown, D.T.; O’Reilly, C. Purification and properties of cyanide hydratase from Fusarium lateritium and analysis of the corresponding chy1 gene. Microbiology 1993, 139, 1807–1815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Xu, S.; Liu, L.; Chen, J. Degradation of cyanide by Trichoderma mutants constructed by restriction enzyme mediated integration (REMI). Bioresour. Technol. 2007, 98, 2958–2962. [Google Scholar] [CrossRef] [PubMed]
- Fisher, F.; Brown, J. Colorimetric determination of cyanide in stack gas and waste water. Anal. Chem. 1952, 24, 1440–1444. [Google Scholar] [CrossRef]
- Safa, Z.J.; Aminzadeh, S.; Zamani, M.; Motallebi, M. Significant increase in cyanide degradation by Bacillus sp. M01 PTCC 1908 with response surface methodology optimization. AMB Express 2017, 7, 200. [Google Scholar] [CrossRef] [Green Version]
- Möller, E.; Bahnweg, G.; Sandermann, H.; Geiger, H.H. A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Res. 1992, 20, 6115. [Google Scholar] [CrossRef] [Green Version]
- Rychlik, W. OLIGO 7 primer analysis software. In PCR Primer Design; Springer: Berlin/Heidelberg, Germany, 2007; pp. 35–59. [Google Scholar]
- McWilliam, H.; Li, W.; Uludag, M.; Squizzato, S.; Park, Y.M.; Buso, N.; Cowley, A.P.; Lopez, R. Analysis tool web services from the EMBL-EBI. Nucleic Acids Res. 2013, 41, W597–W600. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No. | Fungus | Average Dry Weight of Fungal Mycelium (mg) Grown in PDB with Different Cyanide Concentrations, Including 0, 2, 5, 10, and 15 mM | ||||
---|---|---|---|---|---|---|
0 mM | 2 mM | 5 mM | 10 mM | 15 mM | ||
1 | Fusarium oxysporum (FO1) | 8 | 41 | 39 | 40 | 40 |
2 | Fusarium oxysporum (FO2) | 8 | 24 | 29 | 29.5 | 32 |
3 | Fusarium graminearum (FG1) | 19 | 25 | 21 | 19 | 19 |
4 | Fusarium graminearum (FG2) | 46 | 45 | 39 | 38 | 43 |
5 | Trichoderma virens | 45 | 45 | 30 | 29 | 23 |
6 | Fusarium solani | 17 | 18 | 26 | 25 | 25 |
7 | Trichoderma harzianum (TH1) | 4 | 16 | 24.5 | 44 | 45 |
8 | Trichoderma harzianum (TH2) | 31 | 33 | 32.5 | 31 | 37 |
9 | Rhizoctonia solani (RS1) | 34 | 74 | 64 | 33 | 33 |
10 | Rhizoctonia solani (RS2) | 58 | 53 | 38 | 36 | 18 |
11 | Rhizoctonia solani (RS3) | 44 | 47 | 33 | 24 | 24 |
12 | Rhizoctonia solani (RS4) | 73 | 60 | 42 | 40 | 35 |
13 | Rhizoctonia solani (RS5) | 53 | 51 | 45 | 38 | 34 |
14 | Aureobasidium pullulans | 47 | 35 | 27 | 26 | 28 |
15 | Sclerotinia sclerotiorum (SS1) | 31 | 38 | 33 | 32 | 30 |
16 | Sclerotinia sclerotiorum (SS2) | 33 | 37 | 36 | 32 | 20 |
17 | Verticillium | 39 | 33 | 27 | 28 | 27 |
18 | Alternaria sp. (A1) | 47 | 48 | 48 | 45.5 | 43 |
19 | Alternaria sp. (A2) | 12 | 14 | 19 | 46.5 | 42 |
20 | Chaetomium. globosum | 22 | 34 | 33 | 33 | 38 |
21 | Penicillium funiculosum | 23 | 25 | 28 | 35 | 37 |
22 | Botrytis cinerea (BC1) | 12 | 18 | 28 | 47 | 48 |
23 | Botrytis cinerea (BC2) | 39 | 43 | 35 | 38 | 38 |
24 | Alternaria raphani | 18 | 25 | 25 | 28 | 36 |
Cyanide Concentration | 3-Day Culture | 5-Day Culture | 7-Day Culture |
---|---|---|---|
15 mM | 37% | 40% | 75% |
20 mM | 30% | 38% | 40% |
25 mM | 10% | 10% | 13% |
30 mM | 10% | 9% | 8% |
Organism | Accession Number of Cht Gene | Identity | Query Cover | Accession Number of Cht Protein | Identity | Query Cover |
---|---|---|---|---|---|---|
Trichderma simmonsii | CP075866.1 | 94.01% | 99% | QYS99975.1 | 96.97% | 100% |
Trichderma harzianum CBS 226.95 | XM_024916132.1 | 99.28% | 81% | XP_024773123.1 | 98.62% | 100% |
Trichderma virens Gv29-8 | XM_0140973141.1 | 91.37% | 56% | XP_013952789.1 | 95.82% | 98% |
Trichoderma reesei QM6a | XM_006966895.1 | 89.46% | 48% | XP_006966957.1 | 92.22% | 98% |
Trichoderma citrinoviride | XM_024891496.1 | 88.15% | 38% | XP_024746524.1 | 91.94% | 98% |
Isaria fumosorosea ARSEF 2679 | XM_018851715.1 | 79.01% | 25% | XP_018701201.1 | 79.89% | 98% |
Microorganism | Cyanide Degradation | Description | References |
---|---|---|---|
A. niger N10 | 80% | Cyanide hydratase expression in prokaryotic host and its purification and biodegradation in 25 mM cyanide concentration. | [20] |
F. oxysporum | 96% | Immobilized fungal strain in reactor and biodegradation of 1 to 7 mM cyanide concentration. | [30] |
F. solani | 90% | Decomposition of 1 mM cyanide using cyanide hydratase and amidase in ammonia and its usage for greater growth. | [31] |
Scenedesmus obliquus | 92% | Biodegradation of 3 mM cyanide concentration. | [32] |
Agrobacterium tumefaciens SUTS 1 | 87.5% | Biodegradation of 1, 2, and 6 mM cyanide concentration, | [16] |
Rhodococcus UKMP-5M | 94% | Biodegradation of 12 mM cyanide concentration using immobilized cells. | [33] |
Basidiomycota | 100% | Biodegradation of 4 mM cyanide concentration using 3 g fungal biomass. | [34] |
Fusarium sp. | 100% | Cyanide hydratase enzyme production and its usage for biodegradation of 15 mM cyanide concentration. | [35] |
T. koningii | 100% | Making mutations in cyanide hydratase gene to improve its activity. | [36] |
T. harzianum | 75% | 15 mM cyanide concentration in a 7-day culture. | This study |
No. | Fungus | No. | Fungus |
---|---|---|---|
1 | Fusarium oxysporum (FO1) | 13 | Rhizoctonia solani (RS5) |
2 | Fusarium oxysporum (FO2) | 14 | Arebasidia pullulans |
3 | Fusarium graminearum (FG1) | 15 | Schlerotinia sclerotiorum (SS1) |
4 | Fusarium graminearum (FG2) | 16 | Schlerotinia sclerotiorum (SS2) |
5 | Trichoderma virens | 17 | Verticillium |
6 | Fusarium solani | 18 | Alternaria sp. (A1) |
7 | Trichoderma harzianum (TH1) | 19 | Alternaria sp. (A2) |
8 | Trichoderma harzianum (TH2) | 20 | Cheatominum globosum |
9 | Rhizoctonia solani (RS1) | 21 | Penicillium funiculosum |
10 | Rhizoctonia solani (RS2) | 22 | Botrytis cinerea (BC1) |
11 | Rhizoctonia solani (RS3) | 23 | Botrytis cinerea (BC2) |
12 | Rhizoctonia solani (RS4) | 24 | Aphanomyces raphani |
Primers | Sequence 5′ to 3′ | Length of Primers |
---|---|---|
TCynF | 5′-ATGGTTGCCACTATTCGTC-3′ | 19 |
TCynR1 | 5′-TTATTCCTTCTTCTTCTCCTC-3′ | 21 |
TCynR2 | 5′-CTACTCCTCAGGTGCAGG-3′ | 18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malmir, N.; Zamani, M.; Motallebi, M.; Fard, N.A.; Mekuto, L. Cyanide Biodegradation by Trichoderma harzianum and Cyanide Hydratase Network Analysis. Molecules 2022, 27, 3336. https://doi.org/10.3390/molecules27103336
Malmir N, Zamani M, Motallebi M, Fard NA, Mekuto L. Cyanide Biodegradation by Trichoderma harzianum and Cyanide Hydratase Network Analysis. Molecules. 2022; 27(10):3336. https://doi.org/10.3390/molecules27103336
Chicago/Turabian StyleMalmir, Narges, Mohammadreza Zamani, Mostafa Motallebi, Najaf Allahyari Fard, and Lukhanyo Mekuto. 2022. "Cyanide Biodegradation by Trichoderma harzianum and Cyanide Hydratase Network Analysis" Molecules 27, no. 10: 3336. https://doi.org/10.3390/molecules27103336
APA StyleMalmir, N., Zamani, M., Motallebi, M., Fard, N. A., & Mekuto, L. (2022). Cyanide Biodegradation by Trichoderma harzianum and Cyanide Hydratase Network Analysis. Molecules, 27(10), 3336. https://doi.org/10.3390/molecules27103336