New Advances in Short Peptides: Looking Forward
- -
- Synthesis of modified amino acids, short peptides, and their mimetics;
- -
- Supramolecular aspects of short peptide-derived structures;
- -
- Short peptide engineering and peptide-based nanotechnology;
- -
- Peptide conjugations and modifications, including peptide nucleic acids (PNAs), nucleopeptides, peptide interferons, peptide aptamers, macrocycles, glycopeptides, etc.;
- -
- Bioactive short peptides (nature-/food-derived) and antimicrobial peptides;
- -
- New natural and artificial sources of short peptides (e.g., integrated venomics, peptide-display libraries);
- -
- New computational tools, methods, approaches, databases, as well as technologies for studies on short peptides;
- -
- Peptide–protein interactions;
- -
- Imaging agents with short peptides;
- -
- Short peptides in stem cell research;
- -
- Short peptides for therapy: vaccinology, diagnosis, and treatment of diverse diseases;
- -
- Short peptides in drug design;
- -
- Short peptides in cosmetology and regenerative medicine.
Author Contributions
Funding
Conflicts of Interest
References
- Apostolopoulos, V.; Bojarska, J.; Chai, T.-T.; Elnagdy, S.; Kaczmarek, K.; Matsoukas, J.; New, R.; Parang, K.; Lopez, O.P.; Parhiz, H.; et al. A Global Review on Short Peptides: Frontiers and Perspectives. Molecules 2021, 26, 430. [Google Scholar] [CrossRef] [PubMed]
- Bojarska, J.; Mieczkowski, A.; Ziora, Z.M.; Skwarczynski, M.; Toth, I.; Shalash, A.O.; Parang, K.; El-Mowafi, S.A.; Mohammed, E.H.M.; Elnagdy, S.; et al. Cyclic Dipeptides: The Biological and Structural Landscape with Special Focus on the Anti-Cancer Proline-Based Scaffold. Biomolecules 2021, 11, 1515. [Google Scholar] [CrossRef] [PubMed]
- Apostolopoulos, V.; Bojarska, J.; Feehan, J.; Matsoukas, J.; Wolf, W.M. Smart therapies for pandemics: A potential of short peptides. Front. Pharmacol. 2022, submitted.
- Skwarczynski, M.; Bashiri, S.; Yuan, Y.; Ziora, Z.M.; Nabil, O.; Masuda, K.; Khongkow, M.; Rimsueb, N.; Cabral, H.; Ruktanonchai, U.; et al. Antimicrobial Activity Enhancers: Towards Smart Delivery of Antimicrobial Agents. Antibiotics 2022, 11, 412. [Google Scholar] [CrossRef] [PubMed]
- Ridgway, H.; Moore, G.J.; Mavromoustakos, T.; Tsiodras, S.; Ligielli, I.; Kelaidonis, K.; Chasapis, C.C.; Gadanec, L.K.; Zulli, A.; Apostolopoulos, V.; et al. Discovery of a new generation of angiotensin receptor blocking drugs: Receptor mechanisms and in silico binding to enzymes relevant to SARS-CoV-2. Comput. Struct. Biotechnol. J. 2022, 20, 2091. [Google Scholar] [CrossRef]
- Ridgway, H.; Chasapis, C.C.; Kelaidonis, K.; Ligielli, I.; Moore, G.J.; Gadanec, L.K.; Zulli, A.; Apostolopoulos, V.; Mavromoustakos, T.; Matsoukas, J.M. Understanding the Driving Forces That Trigger Mutations in SARS-CoV-2: Mutational Energetics and the Role of Arginine Blockers in COVID-19 Therapy. Viruses 2022, 14, 1029. [Google Scholar] [CrossRef] [PubMed]
- Bojarska, J. Advances in Research of Short Peptides. Molecules 2022, 27, 2446. [Google Scholar] [CrossRef]
- Matsoukas, J.; Apostolopoulos, V.; Zulli, A.; Moore, G.; Kelaidonis, K.; Moschovou, K.; Mavromoustakos, T. From Angiotensin II to Cyclic Peptides and Angiotensin Receptor Blockers (ARBs): Perspectives of ARBs in COVID-19 Therapy. Molecules 2021, 26, 618. [Google Scholar] [CrossRef]
- Odolczyk, N.; Marzec, E.; Winiewska-Szajewska, M.; Poznanski, J.; Zielenkiewicz, P. Native Structure-Based Peptides as Potential Protein–Protein Interaction Inhibitors of SARS-CoV-2 Spike Protein and Human ACE2 Receptor. Molecules 2021, 26, 2157. [Google Scholar] [CrossRef]
- Liscano, Y.; Onate-Garzón, J.; Ocampo-Ibanez, I.D. In silico discovery of antimicrobial peptides as an alternative to control SARS-CoV-2. Molecules 2020, 25, 5535. [Google Scholar] [CrossRef]
- Rivera-Sanchez, S.P.; Agudelo-Góngora, H.A.; Onate-Garzon, J.; Florez-Elvira, L.J.; Correa, A.; Londono, P.A.; Londono-Mosquera, J.D.; Aragon-Muriel, A.; Polo-Ceron, D.; Ocampo-Ibanez, I.D. Antibacterial activity of a cationic antimicrobial peptide against multidrug-resistant gram-negative clinical isolates and their potential molecular targets. Molecules 2020, 25, 5035. [Google Scholar] [CrossRef] [PubMed]
- McMillan, K.A.M.; Power Coombs, M.R. Examining the natural role of amphibian antimicrobial peptide magainin. Molecules 2020, 25, 5436. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Yong, X.; Zhao, T.; Li, Y.; Liu, J. Research progres of the biosynthesis of natural bio-antibacterial agent pulcherriminic acid in Bacillus. Molecules 2020, 25, 5611. [Google Scholar] [CrossRef] [PubMed]
- Liscano, Y.; Onate-Garzon, J.; Delgado, J.P. Peptides with dual antimicrobial-anticancer activity: Strategies to overcome peptide limitations and rational design of anticancer peptides. Molecules 2020, 25, 4245. [Google Scholar] [CrossRef] [PubMed]
- Prakash, M.D.; Fraser, S.; Boer, J.C.; Plebanski, M.; de Courten, B.; Apostolopoulos, V. Anti-Cancer Effects of Carnosine—A Dipeptide Molecule. Molecules 2021, 26, 1644. [Google Scholar] [CrossRef]
- Dyniewicz, J.; Lipinski, P.F.J.; Kosson, P.; Bochynska-Czyż, M.; Matalinska, J.; Misicka, A. Antinociceptive and cytotoxic activity of opioid peptides with hydrazone and hydrazide moieties at the C-terminus. Molecules 2020, 25, 3429. [Google Scholar] [CrossRef] [PubMed]
- Hawryłkiewicz, A.; Ptaszynska, N. Gemcitabine Peptide-Based Conjugates and Their Application in Targeted Tumor Therapy. Molecules 2021, 26, 364. [Google Scholar] [CrossRef]
- Mieczkowski, A.; Speina, E.; Trzybinski, D.; Winiewska-Szajewska, M.; Wińska, P.; Borsuk, E.M.; Podsiadła-Białoskórska, M.; Przygodzki, T.; Drabikowski, K.; Stanczyk, L.; et al. Diketopiperazine-Based, Flexible Tadalafil Analogues: Synthesis, Crystal Structures and Biological Activity Profile. Molecules 2021, 26, 794. [Google Scholar] [CrossRef]
- Ellert-Miklaszewska, A.; Szymczyk, A.; Poleszak, K.; Kaminska, B. Delivery of the VIVIT Peptide to Human Glioma Cells to Interfere with Calcineurin-NFAT Signaling. Molecules 2021, 26, 4785. [Google Scholar] [CrossRef]
- Kim, M.S.; Song, J.; Park, S.; Kim, T.S.; Park, H.J.; Cho, D. The Wound Healing Peptide, AES16-2M, Ameliorates Atopic Dermatitis In Vivo. Molecules 2021, 26, 1168. [Google Scholar] [CrossRef]
- Witkiewicz-Kucharczyk, A.; Goch, W.; Oledzki, J.; Hartwig, A.; Bal, W. The reactions of H2O2 and GSNO with the zinc finger motif of XPA. Not a regulatory mechanism, but no synergy with cadmium toxicity. Molecules 2020, 25, 4177. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Lin, S.; Xue, B.; Wang, C.; Yan, N.; Guan, Y.; Hu, Y.; Wen, X. Bruch’s-Mimetic Nanofibrous Membranes Functionalized with the Integrin-Binding Peptides as a Promising Approach for Human Retinal Pigment Epithelium Cell Transplantation. Molecules 2022, 27, 1429. [Google Scholar] [CrossRef] [PubMed]
- Zimecki, M.; Kaczmarek, K. Effects of Modifications on the Immunosuppressive Properties of Cyclolinopeptide A and Its Analogs in Animal Experimental Models. Molecules 2021, 26, 2538. [Google Scholar] [CrossRef] [PubMed]
- Sobocińska, M.; Salaga, M.; Fichna, J.; Kamysz, E. Anti-inflammatory effect of homo- and heterodimers of natural enkephalinase inhibitors in experimental colitis in mice. Molecules 2020, 25, 5820. [Google Scholar] [CrossRef]
- New, R.R.C.; Bui, T.T.T.; Bogus, M. Binding interactions of peptide aptamers. Molecules 2021, 25, 6055. [Google Scholar] [CrossRef]
- Boback, K.; Bacchi, K.; O’Neill, S.; Brown, S.; Dorsainvil, J.; Smith-Carpenter, J.E. Impact of C-terminal chemistry on self-assembled morphology of guanosine containing nucleopeptides. Molecules 2020, 25, 5493. [Google Scholar] [CrossRef]
- Caporale, A.; Adorinni, S.; Lamba, D.; Saviano, M. Peptide–Protein Interactions: From Drug Design to Supramolecular Biomaterials. Molecules 2021, 26, 1219. [Google Scholar] [CrossRef]
- Merski, M.; Skrzeczkowski, J.; Roth, J.K.; Górna, M.W. A geometric definitione of short to medium range hydrogen-mediated interactions in proteins. Molecules 2020, 25, 5326. [Google Scholar] [CrossRef]
- Minkiewicz, P.; Darewicz, M.; Iwaniak, A.; Turło, M. Proposal of the Annotation of Phosphorylated Amino Acids and Peptides Using Biological and Chemical Codes. Molecules 2021, 26, 712. [Google Scholar] [CrossRef]
- Kaczmarek, K.; Pacholczyk-Sienicka, B.; Albrecht, L.; Zabrocki, J.; Nachman, R.J. Solid-Phase Synthesis of an Insect Pyrokinin Analog Incorporating an Imidazoline Ring as Isosteric Replacement of a trans Peptide Bond. Molecules 2021, 26, 3271. [Google Scholar] [CrossRef]
- Ueda, A.; Higuchi, M.; Sato, K.; Umeno, T.; Tanaka, M. Design and synthesis of helical N-terminal L-prolyl oligopeptides possessing hydrocarbon stapling. Molecules 2020, 25, 4667. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apostolopoulos, V.; Bojarska, J.; Chai, T.-T.; Feehan, J.; Kaczmarek, K.; Matsoukas, J.M.; Paredes Lopez, O.; Saviano, M.; Skwarczynski, M.; Smith-Carpenter, J.; et al. New Advances in Short Peptides: Looking Forward. Molecules 2022, 27, 3635. https://doi.org/10.3390/molecules27113635
Apostolopoulos V, Bojarska J, Chai T-T, Feehan J, Kaczmarek K, Matsoukas JM, Paredes Lopez O, Saviano M, Skwarczynski M, Smith-Carpenter J, et al. New Advances in Short Peptides: Looking Forward. Molecules. 2022; 27(11):3635. https://doi.org/10.3390/molecules27113635
Chicago/Turabian StyleApostolopoulos, Vasso, Joanna Bojarska, Tsun-Thai Chai, Jack Feehan, Krzysztof Kaczmarek, John M. Matsoukas, Octavio Paredes Lopez, Michele Saviano, Mariusz Skwarczynski, Jillian Smith-Carpenter, and et al. 2022. "New Advances in Short Peptides: Looking Forward" Molecules 27, no. 11: 3635. https://doi.org/10.3390/molecules27113635
APA StyleApostolopoulos, V., Bojarska, J., Chai, T. -T., Feehan, J., Kaczmarek, K., Matsoukas, J. M., Paredes Lopez, O., Saviano, M., Skwarczynski, M., Smith-Carpenter, J., Venanzi, M., Wolf, W. M., Zielenkiewicz, P., & Ziora, Z. M. (2022). New Advances in Short Peptides: Looking Forward. Molecules, 27(11), 3635. https://doi.org/10.3390/molecules27113635