Facile Synthesis of Functionalized Phenoxy Quinolines: Antibacterial Activities against ESBL Producing Escherichia coli and MRSA, Docking Studies, and Structural Features Determination through Computational Approach
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Antibacterial Activity of the Compounds against XDR Pathogens
Molecular Docking Results
2.3. Computational Studies
2.3.1. Optimized Geometries
2.3.2. NMR Spectra
2.3.3. Frontier Molecular Orbital (FMO) Analysis and Hyperpolarizability
2.3.4. Molecular Electrostatic Potential
2.3.5. Global Reactivity Parameters
3. Materials and Methods
3.1. General Information
3.2. General Method for the Coupling of 6-Bromoquinolin-4-ol with Aryl Boronic Acid
3.3. Characterization Data
3.4. Antibacterial Activity
3.4.1. Agar Well Diffusion Method
3.4.2. Identification of the Bacterial Strains
3.4.3. Antibiogram of the Isolates
3.4.4. Phenotypic Determination of MRSA
3.4.5. Phenotypic Detection ESBL Enzyme
3.4.6. Minimum Inhibitory Concertation of Different Compounds against XDR Pathogens
3.4.7. Minimum Bactericidal Concentration Determination
3.4.8. Molecular Docking Study
3.5. Computational Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Qamar, M.U.; Saleem, S.; Toleman, M.A.; Saqalein, M.; Waseem, M.; Nisar, M.A.; Khurshid, M.; Taj, Z.; Jahan, S. In vitro and in vivo activity of Manuka honey against NDM-1-producing Klebsiella pneumoniae ST11. Future Microbiol. 2018, 13, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Özyanik, M.; Demirci, S.; Bektaş, H.; Demirbaş, N.; Demirbaş, A.; Karaoğlu, Ş.A. Preparation and antimicrobial activity evaluation of some quinoline derivatives containing an azole nucleus. Turkish J. Chem. 2012, 36, 233–246. [Google Scholar]
- Nayyar, A.; Monga, V.; Malde, A.; Coutinho, E.; Jain, R. Synthesis, anti-tuberculosis activity, and 3D-QSAR study of 4-(adamantan-1-yl)-2-substituted quinolines. Biorg. Med. Chem. 2007, 15, 626–640. [Google Scholar] [CrossRef] [PubMed]
- Moadebi, S.; Harder, C.K.; Fitzgerald, M.J.; Elwood, K.R.; Marra, F. Fluoroquinolones for the treatment of pulmonary tuberculosis. Drugs 2007, 67, 2077–2099. [Google Scholar] [CrossRef] [PubMed]
- Drlica, K. Mechanism of fluoroquinolone action. Curr. Opin. Microbiol. 1999, 2, 504–508. [Google Scholar] [CrossRef]
- Guerrant, R.L.; Van Gilder, T.; Steiner, T.S.; Thielman, N.M.; Slutsker, L.; Tauxe, R.V.; Hennessy, T.; Griffin, P.M.; DuPont, H.; Bradley Sack, R. Practice guidelines for the management of infectious diarrhea. Clin. Infect. Dis. 2001, 32, 331–351. [Google Scholar] [CrossRef]
- Niederman, M.S.; Mandell, L.A.; Anzueto, A.; Bass, J.B.; Broughton, W.A.; Campbell, G.D.; Dean, N.; File, T.; Fine, M.J.; Gross, P.A. Guidelines for the management of adults with community-acquired pneumonia: Diagnosis, assessment of severity, antimicrobial therapy, and prevention. Am. J. Respir. Crit. Care Med. 2001, 163, 1730–1754. [Google Scholar] [CrossRef]
- Workowski, K.A.; Berman, S.M. CDC sexually transmitted diseases treatment guidelines. Clin. Infect. Dis. 2002, 35, S135–S137. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, L.; Crosby, R.; Rasco, J.; Vaughan, D. Antimalarial activities of various 4-quinolinemethanols with special attention to WR-142,490 (mefloquine). Antimicrob. Agents Chemother. 1978, 13, 1011–1030. [Google Scholar] [CrossRef] [Green Version]
- Hughes, G.; Bryce, M.R. Electron-transporting materials for organic electroluminescent and electrophosphorescent devices. J. Mater. Chem. 2005, 15, 94–107. [Google Scholar] [CrossRef]
- Yang, G.; Si, Y.; Su, Z. Chiroptical, linear, and second-order nonlinear optical properties of binaphthol derivatives. Org. Biomol. Chem. 2012, 10, 8418–8425. [Google Scholar] [CrossRef] [PubMed]
- Pan, F.; Shen, P.-X.; Zhang, L.-S.; Wang, X.; Shi, Z.-J. Direct arylation of primary and secondary sp3 C–H bonds with diarylhyperiodonium salts via Pd catalysis. Org. Lett. 2013, 15, 4758–4761. [Google Scholar] [CrossRef]
- Matsubara, T.; Asako, S.; Ilies, L.; Nakamura, E. Synthesis of anthranilic acid derivatives through iron-catalyzed ortho amination of aromatic carboxamides with N-chloroamines. J. Am. Chem. Soc. 2014, 136, 646–649. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhu, R.Y.; Xiao, K.J.; Yu, J.Q. Ligand-Enabled Arylation of γ-C−H Bonds. Angew. Chem. 2016, 128, 4389–4393. [Google Scholar] [CrossRef]
- Jiang, H.; He, J.; Liu, T.; Yu, J.-Q. Ligand-enabled γ-C (sp3)–H olefination of amines: En route to pyrrolidines. J. Am. Chem. Soc. 2016, 138, 2055–2059. [Google Scholar] [CrossRef] [Green Version]
- Rbaa, M.; Jabli, S.; Lakhrissi, Y.; Ouhssine, M.; Almalki, F.; Hadda, T.B.; Messgo-Moumene, S.; Zarrouk, A.; Lakhrissi, B. Synthesis, antibacterial properties and bioinformatics computational analyses of novel 8-hydroxyquinoline derivatives. Heliyon 2019, 5, e02689. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, E.; Manian, R.D.R.; Raghunathan, R.; Sainath, S.; Raghunathan, M. Synthesis and antibacterial property of quinolines with potent DNA gyrase activity. Biorg. Med. Chem. 2009, 17, 660–666. [Google Scholar] [CrossRef]
- Taylor, J.D.; Zhou, Y.; Salgado, P.S.; Patwardhan, A.; McGuffie, M.; Pape, T.; Grabe, G.; Ashman, E.; Constable, S.C.; Simpson, P.J. Atomic resolution insights into curli fiber biogenesis. Structure 2011, 19, 1307–1316. [Google Scholar] [CrossRef]
- Attique, S.A.; Hassan, M.; Usman, M.; Atif, R.M.; Mahboob, S.; Al-Ghanim, K.A.; Bilal, M.; Nawaz, M.Z. A molecular docking approach to evaluate the pharmacological properties of natural and synthetic treatment candidates for use against hypertension. Int. J. Environ. Res. Public Health 2019, 16, 923. [Google Scholar] [CrossRef] [Green Version]
- Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins Struct. Funct. Bioinform. 2006, 65, 712–725. [Google Scholar] [CrossRef] [Green Version]
- Reichhardt, C.; Jacobson, A.N.; Maher, M.C.; Uang, J.; McCrate, O.A.; Eckart, M.; Cegelski, L. Congo red interactions with curli-producing E. coli and native curli amyloid fibers. PLoS ONE 2015, 10, e0140388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malik, A.; Rasool, N.; Kanwal, I.; Hashmi, M.A.; Zahoor, A.F.; Ahmad, G.; Altaf, A.A.; Shah, S.A.A.; Sultan, S.; Zakaria, Z.A. Suzuki–miyaura reactions of (4-bromophenyl)-4, 6-dichloropyrimidine through commercially available palladium catalyst: Synthesis, optimization and their structural aspects identification through computational studies. Processes 2020, 8, 1342. [Google Scholar] [CrossRef]
- Ahmad, G.; Rasool, N.; Mubarik, A.; Zahoor, A.F.; Hashmi, M.A.; Zubair, M.; Bilal, M.; Hussien, M.; Akhtar, M.S.; Haider, S. Facile Synthesis of 5-Aryl-N-(pyrazin-2-yl) thiophene-2-carboxamides via Suzuki Cross-Coupling Reactions, Their Electronic and Nonlinear Optical Properties through DFT Calculations. Molecules 2021, 26, 7309. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizwan, K.; Rasool, N.; Rehman, R.; Mahmood, T.; Ayub, K.; Rasheed, T.; Ahmad, G.; Malik, A.; Khan, S.A.; Akhtar, M.N. Facile synthesis of N-(4-bromophenyl)-1-(3-bromothiophen-2-yl) methanimine derivatives via Suzuki cross-coupling reaction: Their characterization and DFT studies. Chem. Cent. J. 2018, 12, 84–92. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Cammi, R.; Mennucci, B.; Tomasi, J. Fast evaluation of geometries and properties of excited molecules in solution: A Tamm-Dancoff model with application to 4-dimethylaminobenzonitrile. J. Phys. Chem. A 2000, 104, 5631–5637. [Google Scholar] [CrossRef]
- Cossi, M.; Barone, V. Solvent effect on vertical electronic transitions by the polarizable continuum model. J. Chem. Phys. 2000, 112, 2427–2435. [Google Scholar] [CrossRef]
- Ahmad, G.; Rasool, N.; Ikram, H.M.; Gul Khan, S.; Mahmood, T.; Ayub, K.; Zubair, M.; Al-Zahrani, E.; Ali Rana, U.; Akhtar, M.N. Efficient synthesis of novel pyridine-based derivatives via Suzuki cross-coupling reaction of commercially available 5-bromo-2-methylpyridin-3-amine: Quantum mechanical investigations and biological activities. Molecules 2017, 22, 190. [Google Scholar] [CrossRef] [Green Version]
- Kanwal, I.; Rasool, N.; Zaidi, S.H.M.; Zakaria, Z.A.; Bilal, M.; Hashmi, M.A.; Mubarik, A.; Ahmad, G.; Shah, S.A.A. Synthesis of Functionalized Thiophene Based Pyrazole Amides via Various Catalytic Approaches: Structural Features through Computational Applications and Nonlinear Optical Properties. Molecules 2022, 27, 360. [Google Scholar] [CrossRef]
- Cossi, M.; Barone, V. Time-dependent density functional theory for molecules in liquid solutions. J. Chem. Phys. 2001, 115, 4708–4717. [Google Scholar] [CrossRef]
- Abbas, M.; Rizwan, K.; Rasool, N.; Hashmi, M.A.; Ahmad, G.; Rashid, U.; Shah, S.A.A. Palladium (0) catalyzed synthesis of thiophene based 1, 3, 4-oxadiazoles their reactivities and potential nonlinear optical properties. Chiang Mai J. Sci. 2020, 47, 1255–1264. [Google Scholar]
- Imran, H.M.; Rasool, N.; Kanwal, I.; Hashmi, M.A.; Altaf, A.A.; Ahmed, G.; Malik, A.; Kausar, S.; Khan, S.U.-D.; Ahmad, A. Synthesis of halogenated [1, 1′-biphenyl]-4-yl benzoate and [1, 1′: 3′, 1″-terphenyl]-4′-yl benzoate by palladium catalyzed cascade C–C coupling and structural analysis through computational approach. J. Mol. Struct. 2020, 1222, 128839. [Google Scholar] [CrossRef]
- Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Polarizable dielectric model of solvation with inclusion of charge penetration effects. J. Chem. Phys. 2001, 114, 5691–5701. [Google Scholar] [CrossRef]
- Cossi, M.; Scalmani, G.; Rega, N.; Barone, V. New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution. J. Chem. Phys. 2002, 117, 43–54. [Google Scholar] [CrossRef]
- Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 2003, 24, 669–681. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 2005, 105, 2999–3094. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Parr, R.G.; Szentpály, L.v.; Liu, S. Electrophilicity index. J. Am. Chem. Soc. 1999, 121, 1922–1924. [Google Scholar] [CrossRef]
- Ikram, H.M.; Rasool, N.; Hashmi, M.A.; Anjum, M.A.; Ali, K.G.; Zubair, M.; Ahmad, G.; Mahmood, T. Density functional theory-supported studies of structural and electronic properties of substituted-phenol derivatives synthesized by efficient O-or C-arylation via Chan--Lam or Suzuki cross-coupling reactions. Turkish J. Chem. 2019, 43, 1306–1321. [Google Scholar] [CrossRef]
- Yue, Y.; Zheng, Z.G.; Wu, B.; Xia, C.Q.; Yu, X.Q. Copper-Catalyzed Cross-Coupling Reactions of Nucleobases with Arylboronic Acids: An Efficient Access to N-Arylnucleobases. Eur. J. Org. Chem. 2005, 2005, 5154–5157. [Google Scholar] [CrossRef]
- Mumtaz, M.; Rasool, N.; Ahmad, G.; Kosar, N.; Rashid, U. N-Arylation of Protected and Unprotected 5-Bromo 2-Aminobenzimidazole as Organic Material: Non-Linear Optical (NLO) Properties and Structural Feature Determination through Computational Approach. Molecules 2021, 26, 6920. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, G.; Rasool, N.; Qamar, M.U.; Alam, M.M.; Kosar, N.; Mahmood, T.; Imran, M. Facile synthesis of 4-aryl-N-(5-methyl-1H-pyrazol-3-yl) benzamides via Suzuki Miyaura reaction: Antibacterial activity against clinically isolated NDM-1-positive bacteria and their Docking Studies. Arab. J. Chem. 2021, 14, 103270. [Google Scholar] [CrossRef]
- Loganathan, A.; Manohar, P.; Eniyan, K.; Jayaraj, R.; Nachimuthu, R. Evaluation of various phenotypic methods with genotypic screening for detection of methicillin-resistant. Asian Biomed. 2019, 13, 225–233. [Google Scholar] [CrossRef]
- Qamar, M.U.; Walsh, T.R.; Toleman, M.A.; Tyrrell, J.M.; Saleem, S.; Aboklaish, A.; Jahan, S. Dissemination of genetically diverse NDM-1, -5, -7 producing-Gram-negative pathogens isolated from pediatric patients in Pakistan. Future Microbiol. 2019, 14, 691–704. [Google Scholar] [CrossRef]
- Janovska, D.; Kubikova, K.; Kokoska, L. Screening for antimicrobial activity of some medicinal plants species of traditional Chinese medicine. Czech J. Food Sci. 2003, 21, 107–110. [Google Scholar] [CrossRef] [Green Version]
- Ejaz, S.; Zubair, M.; Rasool, N.; Ahmed, F.; Bilal, M.; Ahmad, G.; Altaf, A.A.; Shah, S.A.; Rizwan, K. N-([1, 1′-biaryl]-4-yl)-1-naphthamide-based scaffolds synthesis, their cheminformatics analyses, and screening as bacterial biofilm inhibitor. J. Basic Microbiol. 2021. [Google Scholar] [CrossRef]
- Lim, V.T.; Hahn, D.F.; Tresadern, G.; Bayly, C.I.; Mobley, D.L. Benchmark assessment of molecular geometries and energies from small molecule force fields. F1000Research 2020, 9, 1–22. [Google Scholar] [CrossRef]
- Mahmood, N.; Rasool, N.; Ikram, H.M.; Hashmi, M.A.; Mahmood, T.; Zubair, M.; Ahmad, G.; Rizwan, K.; Rashid, T.; Rashid, U. Synthesis of 3, 4-Biaryl-2, 5-Dichlorothiophene through Suzuki Cross-Coupling and Theoretical Exploration of Their Potential Applications as Nonlinear Optical Materials. Symmetry 2018, 10, 766. [Google Scholar] [CrossRef] [Green Version]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Legault, C.Y. CYLView, 1.0 b; Université de Sherbrooke: Sherbrooke, QC, Canada, 2009. [Google Scholar]
Entry | Base | Methanol | Ethanol | DMF |
---|---|---|---|---|
3a | Et3N | 89% | 61% | 73% |
TMEDA | 71% | 57% | 41% | |
Pyridine | No product | No product | No product | |
3b | Et3N | 92% | 56% | 69% |
TMEDA | 69% | 51% | 49% | |
Pyridine | No product | No product | No product | |
3c | Et3N | 86% | 53% | 63% |
TMEDA | 73% | 42% | 39% | |
Pyridine | No product | No product | No product | |
3d | Et3N | 76% | 45% | 59% |
TMEDA | 59% | 39% | 31% | |
Pyridine | No product | No product | No product | |
3e | Et3N | 69% | 35% | 54% |
TMEDA | 67% | 31% | 37% | |
Pyridine | No product | No product | No product | |
3f | Et3N | 83% | 41% | 53% |
TMEDA | 76% | 38% | 39% | |
Pyridine | No product | No product | No product | |
3g | Et3N | 57% | 31% | 51% |
TMEDA | 59% | 43% | 36% | |
Pyridine | No product | No product | No product | |
3h | Et3N | 71% | 59% | 61% |
TMEDA | 63% | 51% | 31% | |
Pyridine | No product | No product | No product |
Entry | Base | CH3OH/H2O (8:1) | CH3OH/H2O (6:1) | CH3OH/H2O (4:1) |
---|---|---|---|---|
3a | Et3N | 97% | 63% | 59% |
TMEDA | 89% | 55% | 49% | |
3b | Et3N | 92% | 65% | 54% |
TMEDA | 85% | 59% | 35% | |
3c | Et3N | 89% | 63% | 51% |
TMEDA | 73% | 51% | 39% | |
3d | Et3N | 85% | 51% | 48% |
TMEDA | 79% | 31% | 27% | |
3e | Et3N | 78% | 65% | 59% |
TMEDA | 53% | 39% | 21% | |
3f | Et3N | 87% | 53% | 49% |
TMEDA | 61% | 47% | Traces | |
3g | Et3N | 74% | 52% | 37% |
TMEDA | 59% | 48% | 19% | |
3h | Et3N | 79% | 46% | 43% |
TMEDA | 51% | 29 | Traces |
(a) | |||||||
---|---|---|---|---|---|---|---|
Comp. No. | Zone (mm) (50 mg) | Zone (mm) (40 mg) | Zone (mm) (30 mg) | Zone (mm) (20 mg) | Zone (mm) (10 mg) | Zone (mm) DMSO | Zone (mm) Ceftriaxone Disc |
3b | 11 | 9 | 8 | 7 | 5 | 0 | 4 |
3c | 14 | 12 | 10 | 9 | 8 | 0 | 4 |
3d | 12 | 10 | 8 | 7 | 5 | 0 | 4 |
3e | 21 | 19 | 18 | 15 | 10 | 0 | 4 |
3h | 15 | 13 | 10 | 8 | 6 | 0 | 4 |
(b) | |||||||
Comp. No. | Zone (mm) (50 mg) | Zone (mm) (40 mg) | Zone (mm) (30 mg) | Zone (mm) (20 mg) | Zone (mm) (10 mg) | Zone (mm) DMSO | Zone (mm) Cefoxitin Disc |
3b | 13 | 10 | 8 | 6 | 5 | 0 | 4 |
3c | 15 | 13 | 11 | 9 | 7 | 0 | 4 |
3d | 13 | 11 | 9 | 7 | 6 | 0 | 4 |
3e | 20 | 18 | 15 | 12 | 9 | 0 | 4 |
3h | 17 | 15 | 14 | 12 | 10 | 0 | 4 |
(a) | ||
---|---|---|
Compound No. | MIC (mg/mL) | MBC (mg/mL) |
3b | 12.5 | 25 |
3c | 6.25 | 12.5 |
3d | 25 | 50 |
3e | 6.25 | 12.5 |
3h | 12.5 | 25 |
(b) | ||
Compound No. | MIC (mg/mL) | MBC (mg/mL) |
3b | 6.25 | 12.5 |
3c | 6.25 | 12.5 |
3d | 12.5 | 25 |
3e | 3.125 | 6.5 |
3h | 6.25 | 12.5 |
Compound | Binding Energy/Affinity | rmsd/ub | rmsd/Ib | RMSD |
---|---|---|---|---|
3e | −5.4 | 10.457 | 8.849 | 1.608 |
3c | −5.4 | 29.633 | 31.866 | 2.233 |
3h | −5.2 | 35.503 | 33.676 | 1.827 |
3b | −4.6 | 18.213 | 14.629 | 3.584 |
3d | −4.9 | 25.866 | 24.067 | 1.494 |
Carbon No. | Carbon Type | Experimental 1H-NMR (δ, ppm) | Calculated 1H-NMR (δ, ppm) | Δδ, ppm |
---|---|---|---|---|
1 | N | − | − | − |
2 | CH | 9.38 | 10.59 | −1.21 |
3 | CH | − | − | − |
4 | C | − | − | − |
5 | CH | 8.42 | 8.42 | 0.00 |
6 | C | − | − | − |
7 | CH | 8.25 | 7.22 | 1.03 |
8 | CH | 8.03 | 6.77 | 1.26 |
1′ | C | − | − | − |
2′ | CH | − | − | − |
3′ | CH | 7.74 | 7.58 | 0.16 |
4′ | C | − | − | − |
5′ | CH | − | − | − |
6′ | CH | 7.69 | 7.55 | 0.14 |
Compound | EHOMO (eV) | ELUMO (eV) | HOMO–LUMO Gap (eV) | Hyperpolarizability (β) (Hartrees) |
---|---|---|---|---|
3a | −6.59 | −1.52 | 5.07 | 1036.088 |
3b | −6.47 | −1.52 | 4.95 | 1358.423 |
3c | −6.56 | −1.59 | 4.97 | 2083.903 |
3d | −6.56 | −1.57 | 4.99 | 2083.901 |
3e | −6.66 | −1.58 | 5.07 | 829.577 |
3f | −6.64 | −1.56 | 5.07 | 1408.173 |
3g | −6.48 | −1.55 | 4.93 | 1408.169 |
3h | −6.64 | −1.56 | 5.07 | 1603.567 |
Comp. No. | IP (eV) | EA (eV) | X (eV) | η (eV) | µ (eV) | σ (eV) | ω (eV) |
---|---|---|---|---|---|---|---|
3a | 6.59 | 1.52 | 8.12 | 2.53 | −4.06 | 0.19 | 3.25 |
3b | 6.47 | 1.52 | 8.00 | 2.47 | −4.00 | 0.20 | 3.23 |
3c | 6.56 | 1.59 | 8.15 | 2.48 | −4.07 | 0.20 | 3.34 |
3d | 6.56 | 1.57 | 8.14 | 2.49 | −4.07 | 0.20 | 3.32 |
3e | 6.66 | 1.58 | 8.2 | 2.53 | −4.12 | 0.19 | 3.34 |
3f | 6.64 | 1.56 | 8.2 | 2.53 | −4.10 | 0.19 | 3.31 |
3g | 6.48 | 1.55 | 8.03 | 2.46 | −4.01 | 0.20 | 3.27 |
3h | 6.64 | 1.56 | 8.20 | 2.53 | −4.10 | 0.19 | 3.31 |
Antibiotics | MIC Break Points (ug/mL) | E. coli | MRSA |
---|---|---|---|
P | ≤0.12–≥0.25 | − | ≥16 |
E | ≤0.5–≥8 | − | ≥32 |
DA | ≤0.5–≥4 | − | ≥16 |
SAM | ≤8/4–≥32/16 | ≥64/32 | − |
PIP | ≤16–≥128 | ≥256 | − |
FOX | ≤4–≥8 | − | ≥32 |
CRO | ≤8–≥64 | ≥256 | ≥128 |
FEP | ≤8–≥32 | ≥128 | ≥64 |
ATM | ≤4–≥16 | ≥64 | ≥64 |
MEM | ≤2–≥8 | ≥32 | ≥8 |
LEV | ≤1–≥4 | ≥16 | 0.5 |
MXF | ≤0.5–≥2 | ≥16 | − |
MNO | ≤4–≥16 | ≥64 | − |
TE | ≤4–≥16 | ≥32 | − |
C | ≤8–≥32 | ≥128 | − |
SXT | ≤2/38–≥4/76 | ≥8/304 | ≥8/152 |
VA | ≤2–≥16 | − | 1 |
LZD | ≤4–≥8 | − | 2 |
CS | ≥4 | 0.5 | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arshad, M.; Rasool, N.; Qamar, M.U.; Shah, S.A.A.; Zakaria, Z.A. Facile Synthesis of Functionalized Phenoxy Quinolines: Antibacterial Activities against ESBL Producing Escherichia coli and MRSA, Docking Studies, and Structural Features Determination through Computational Approach. Molecules 2022, 27, 3732. https://doi.org/10.3390/molecules27123732
Arshad M, Rasool N, Qamar MU, Shah SAA, Zakaria ZA. Facile Synthesis of Functionalized Phenoxy Quinolines: Antibacterial Activities against ESBL Producing Escherichia coli and MRSA, Docking Studies, and Structural Features Determination through Computational Approach. Molecules. 2022; 27(12):3732. https://doi.org/10.3390/molecules27123732
Chicago/Turabian StyleArshad, Mahwish, Nasir Rasool, Muhammad Usman Qamar, Syed Adnan Ali Shah, and Zainul Amiruddin Zakaria. 2022. "Facile Synthesis of Functionalized Phenoxy Quinolines: Antibacterial Activities against ESBL Producing Escherichia coli and MRSA, Docking Studies, and Structural Features Determination through Computational Approach" Molecules 27, no. 12: 3732. https://doi.org/10.3390/molecules27123732
APA StyleArshad, M., Rasool, N., Qamar, M. U., Shah, S. A. A., & Zakaria, Z. A. (2022). Facile Synthesis of Functionalized Phenoxy Quinolines: Antibacterial Activities against ESBL Producing Escherichia coli and MRSA, Docking Studies, and Structural Features Determination through Computational Approach. Molecules, 27(12), 3732. https://doi.org/10.3390/molecules27123732