Characterization of Volatile Flavor Compounds in Supercritical Fluid Separated and Identified in Gurum (Citrulluslanatus Var. colocynthoide) Seed Oil Using HSME and GC–MS
Abstract
:1. Introduction
2. Results and Discussion
2.1. Acid Compounds
2.2. Alcohol Compounds
2.3. Aldehyde Compounds
2.4. Esters Compounds
2.5. Alkane and Alkene Compounds
2.6. Ketones and Furan Compounds
2.7. Other Compounds
3. Materials and Methods
3.1. Raw Materials and Chemicals
3.2. Oil Extraction
3.2.1. Supercritical CO2 Extraction (SFE)
3.2.2. Screw Press Process (SPP)
3.3. Headspace Solid-Phase Micro-Extraction Gas Chromatography–Mass Spectrometry (HS-SPME-GCMS)
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Karrar, E.; Sheth, S.; Navicha, W.B.; Wei, W.; Hassanin, H.; Abdalla, M.; Wang, X. A Potential New Source: Nutritional and Antioxidant Properties of Edible Oils from Cucurbit Seeds and Their Impact on Human Health. J. Food Biochem. 2018, 43, e12733. [Google Scholar] [CrossRef] [PubMed]
- Korish, M. Potential Utilization of Citrullus Lanatus Var. Colocynthoides Waste as a Novel Source of Pectin. J. Food Sci. Technol. 2015, 52, 2401–2407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mariod, A.A.; Ahmed, Y.M.; Matthäus, B.; Khaleel, G.; Siddig, A.; Gabra, A.M.; Abdelwahab, S.I. A Comparative Study of the Properties of Six Sudanese Cucurbit Seeds and Seed Oils. J. Am. Oil Chem. Soc. 2009, 86, 1181–1188. [Google Scholar] [CrossRef]
- Karrar, E.; Sheth, S.; Wei, W.; Wang, X. Gurum (Citrullus Lanatus Var. Colocynthoide) Seed: Lipid, Amino Acid, Mineral, Proximate, Volatile Compound, Sugar, Vitamin Composition and Functional Properties. J. Food Meas. Charact. 2019, 13, 2357–2366. [Google Scholar] [CrossRef]
- Karrar, E.; Sheth, S.; Wei, W.; Wang, X. Supercritical CO2 Extraction of Gurum (Citrulluslanatus Var. Colocynthoide) Seed Oil and Its Properties Comparison with Conventional Methods. J. Food Process Eng. 2019, 42, e13129. [Google Scholar] [CrossRef]
- Ziyada, A.; Elhussien, S. Physical and Chemical Characteristics of Citrullus Lanatus Var. Colocynthoide Seed Oil. J. Phys. Sci. 2008, 19, 69–75. [Google Scholar]
- Dun, Q.; Yao, L.; Deng, Z.; Li, H.; Li, J.; Fan, Y.; Zhang, B. Effects of Hot and Cold-Pressed Processes on Volatile Compounds of Peanut Oil and Corresponding Analysis of Characteristic Flavor Components. LWT-Food Sci. Technol. 2019, 112, 107648. [Google Scholar] [CrossRef]
- Yazan, L.S.; Foo, J.B.; Chan, K.W.; Tahir, P.M.; Ismail, M. Kenaf Seed Oil from Supercritical Carbon Dioxide Fluid Extraction Induced G1 Phase Cell Cycle Arrest and Apoptosis in Leukemia Cells. Afr. J. Biotechnol. 2011, 10, 5381–5388. [Google Scholar]
- Cheng, W.-Y.; Akanda, J.M.H.; Nyam, K.-L. Kenaf Seed Oil: A Potential New Source of Edible Oil. Trends Food Sci. Technol. 2016, 52, 57–65. [Google Scholar] [CrossRef]
- Suryawanshi, B.; Mohanty, B. Application of an Artificial Neural Network Model for the Supercritical Fluid Extraction of Seed Oil from Argemone Mexicana (L.) Seeds. Ind. Crop. Prod. 2018, 123, 64–74. [Google Scholar] [CrossRef]
- Sodeifian, G.; Ardestani, N.S.; Sajadian, S.A.; Moghadamian, K. Properties of Portulaca Oleracea Seed Oil via Supercritical Fluid Extraction: Experimental and Optimization. J. Supercrit. Fluids 2018, 135, 34–44. [Google Scholar] [CrossRef]
- Janghel, A.; Deo, S.; Raut, P.; Bhosle, D.; Verma, C.; Kumar, S.S.; Agrawal, M.; Amit, N.; Sharma, M.; Giri, T. Supercritical Fluid Extraction (Sfe) Techniques as an Innovative Green Technologies for the Effective Extraction of the Active Phytopharmaceuticals. Res. J. Pharm. Technol. 2015, 8, 775–786. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, L.; Li, P.; Wang, X.; Zhang, Q.; Xu, B.; Sun, X.; Ma, F.; Ding, X. Characterization of Volatile Components in Four Vegetable Oils by Headspace Two-Dimensional Comprehensive Chromatog-Raphy Time-Of-Flight Mass Spectrometry. Talanta 2014, 129, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Cert, A.; Moreda, W.; Pérez-Camino, M.C. Chromatographic Analysis of Minor Constituents in Vegetable Oils. J. Chromatogr. A 2000, 881, 131–148. [Google Scholar] [CrossRef]
- Angerosa, F.; Servili, M.; Selvaggini, R.; Taticchi, A.; Esposto, S.; GianFrancesco, M. Volatile Compounds in Virgin Olive Oil: Occurrence and Their Relationship with the Quality. J. Chromatogr. A 2004, 1054, 17–31. [Google Scholar] [CrossRef]
- Kandylis, P.; Vekiari, A.; Kanellaki, M.; Kamoun, N.G.; Msallem, M.; Kourkoutas, Y. Comparative Study of Extra Virgin Olive Oil Flavor Profile of Koroneiki Variety (Olea Europaea Var. Microcarpa Alba) Cultivated in Greece and Tunisia during One Period of Harvesting. LWT-Food Sci. Technol. 2011, 44, 1333–1341. [Google Scholar] [CrossRef]
- Wei, C.; Xi, W.; Nie, X.; Liu, W.; Wang, Q.; Yang, B.; Cao, D. Aroma Characterization of Flaxseed Oils Using Headspace Solid-Phase Microextraction and Gas Chromatography-Olfactometry. Eur. J. Lipid Sci. Technol. 2013, 115, 1032–1042. [Google Scholar] [CrossRef]
- Tian, H.; Wang, Z.; XU, S. Separation and Identification of Volatile Flavors of Jinhua Ham by Gas Chromatography-Mass Spectrometry Coupled with Head Space Solid Phase Microextraction. Se Pu= Chin. J. Chromatogr. 2006, 24, 177–180. [Google Scholar]
- Xu, Y.X.; Zhang, M.; Fang, Z.X.; Sun, J.C.; Wang, Y.Q. How to Improve Bayberry (Myrica Rubra Sieb. ET Zucc.) Juice Flavour Quality: Effect of Juice Processing and Storage on Volatile Compounds. Food Chem. 2014, 151, 40–46. [Google Scholar] [CrossRef]
- Khairy, H.L.; Saadoon, A.F.; Zzaman, W.; Yang, T.A.; Easa, A.M. Identification of Flavor Compounds in Rambutan Seed Fat and Its Mixture with Cocoa Butter Determined by SPME-GCMS. J. King Saud. Univ. Sci. 2018, 30, 316–323. [Google Scholar] [CrossRef]
- Santos, J.E.R.; Villarino, B.J.; Zosa, A.R.; Dayrit, F.M. Analysis of Volatile Organic Compounds in Virgin Coconut Oil and Their Sensory Attibutes. Philipp. J. Sci. 2011, 140, 161–171. [Google Scholar]
- Ivanova-Petropulos, V.; Mitrev, S.; Stafilov, T.; Markova, N.; Leitner, E.; Lankmayr, E.; Siegmund, B. Characterisation of Traditional Macedonian Edible Oils by Their Fatty Acid Composition and Their Volatile Compounds. Int. Food Res. J. 2015, 77, 506–514. [Google Scholar] [CrossRef]
- Curioni, P.M.G.; Bosset, J.O. Key Odorants in Various Cheese Types as Determined by Gas Chromatography-Olfactometry. Int. Dairy J. 2002, 12, 959–984. [Google Scholar] [CrossRef]
- Methven, L.; Tsoukka, M.; Oruna-Concha, M.J.; Parker, J.K.; Mottram, D.S. Influence of Sulfur Amino Acids on the Volatile and Nonvolatile Components of Cooked Salmon (Salmo Salar). J. Agric. Food Chem. 2007, 55, 1427–1436. [Google Scholar] [CrossRef] [PubMed]
- Vargas, R.I.; Shelly, T.E.; Leblanc, L.; Pinero, J.C. Chapter Twenty-Three-Recent Advances in Methyl Eugenol and Cue-Lure Technologies for Fruit Fly Detection, Monitoring, and Control in Hawaii. Vitam. Horm. 2010, 83, 575–595. [Google Scholar]
- Horváthová, E.; Slameňová, D.; Maršálková, L.; Šramková, M.; Wsólová, L. Effects of Borneol on the Level of Dna Damage Induced in Primary Rat Hepatocytes and Testicular Cells by Hydrogen Peroxide. Food Chem. Toxicol. 2009, 47, 1318–1323. [Google Scholar] [CrossRef]
- Reineccius, G. Flavor Chemistry and Technology; CRC Press: Boca Raton, FL, USA, 2005; p. 520. [Google Scholar]
- Mateos, R.; Sarria, B.; Bravo, L. Nutrition, Nutritional and Other Health Properties of Olive Pomace Oil. Crit. Rev. Food Sci. Nutr. 2020, 60, 3506–3521. [Google Scholar] [CrossRef]
- Bailey, A.E.; Shahidi, F. Bailey’s Industrial Oil and Fat Products; John Wiley & Sons: Hoboken, NJ, USA, 2005; Volume 1. [Google Scholar]
- Yu, A.-N.; Sun, B.-G.; Tian, D.-T.; Qu, W.-Y. Analysis of Volatile Compounds in Traditional Smoke-Cured Bacon (Cscb) With Different Fiber Coatings Using SPME. Food Chem. 2008, 110, 233–238. [Google Scholar] [CrossRef]
- Siegmund, B.; Murkovic, M. Changes in Chemical Composition of Pumpkin Seeds during the Roasting Process for Production of Pumpkin Seed Oil (Part 2: Volatile Compounds). Food Chem. 2004, 84, 367–374. [Google Scholar] [CrossRef]
RT a | Compounds b | Molecular Formula | CAS, No c | Relative Peak Area (%) | |
---|---|---|---|---|---|
SFE d | SPP e | ||||
Acids | |||||
12.35 | Acetic acid | C2H4O2 | 64-19-7 | 24.81 | ND |
14.22 | Propanoic acid | C3H6O2 | 79-09-4 | 0.59 | ND |
18.05 | Pentanoic acid | C5H10O2 | 109-52-4 | 0.44 | ND |
18.06 | Pentanoic acid | C5H10O2 | 109-52-4 | ND | 0.58 |
19.99 | Hexanoic acid | C6H12O2 | 142-62-1 | 5.12 | 7.55 |
21.05 | 8-Phenyloctanoic acid | C14H20O2 | 26547-51-3 | 0.10 | ND |
21.84 | Heptanoic acid | C7H14O2 | 111-14-8 | 0.55 | 0.55 |
23.60 | Octanoic acid | C8H16O2 | 124-07-2 | 0.80 | 0.74 |
25.25 | Nonanoic acid | C9H18O2 | 112-05-0 | ND | 1.88 |
25.49 | 2-Octenoic acid, (E)- | C8H14O2 | 1871-67-6 | 0.13 | ND |
26.05 | 17-Octadecynoic acid | C18H32O2 | 34450-18-5 | 0.13 | ND |
26.63 | n-Decanoic acid | C10H20O2 | 334-48-5 | 0.70 | 0.41 |
31.09 | Tetradecanoic acid | C14H28O2 | 544-63-8 | 0.55 | 1.18 |
32.64 | Octadecanoic acid | C18H36O2 | 57-11-4 | 0.21 | ND |
Alcohols | |||||
7.91 | 3-Decyn-2-ol | C10H18O | 69668-93-5 | 0.07 | ND |
8.04 | 1-Pentanol | C5H12O | 71-41-0 | ND | 1.19 |
9.57 | 2-Hexanol, 5-methyl- | C7H16O | 627-59-8 | ND | 0.47 |
14.36 | Linalool | C10H18O | 78-70-6 | 0.14 | ND |
10.27 | 1-Hexanol | C6H14O | 111-27-3 | ND | 7.02 |
12.36 | 1-Octen-3-ol | C8H16O | 3391-86-4 | ND | 0.93 |
12.63 | 6-Hepten-1-ol, 2-methyl- | C8H16O | - | ND | 0.17 |
13.60 | 2-Heptenol | C7H14O | - | ND | 1.29 |
15.64 | 2-Octen-1-ol, (E)- | C8H16O | 18409-17-1 | ND | 0.26 |
15.74 | Ethanol, 2-(2-ethoxyethoxy)- | C6H14O3 | 111-90-0 | 0.19 | ND |
16.56 | 1-Nonanol | C9H20O | 143-08-8 | 0.49 | 1.89 |
16.69 | 2-Butyl-2,7-octadien-1-ol | C12H22O | - | ND | 0.19 |
17.28 | endo-Borneol | C10H18O | 507-70-0 | 2.71 | ND |
17.58 | 2-Nonen-1-ol | C9H18O | 22104-79-6 | ND | 0.20 |
18.49 | 1-Undecanol | C11H24O | 112-42-5 | ND | 0.17 |
19.47 | 2-Decen-1-ol | C10H20O | 22104-80-9 | ND | 0.06 |
20.46 | Benzyl alcohol | C7H8O | 100-51-6 | ND | 0.57 |
21.06 | Phenylethyl Alcohol | C8H10O | 60-12-8 | ND | 0.28 |
22.09 | 1-Undecanol | C11H24O | 112-42-5 | ND | 0.20 |
22.51 | 2,4-Decadien-1-ol | C10H18O | 14507-02-9 | ND | 0.05 |
22.67 | Phenol | C6H6O | 108-95-2 | 0.47 | 0.18 |
22.80 | Methyleugenol | C11H14O2 | 93-15-2 | 1.95 | ND |
26.27 | Ethanol, 2-(dodecyloxy)- | C14H30O2 | 4536-30-5 | ND | 0.66 |
Aldehydes | |||||
4.66 | Hexanal | C6H12O | 66-25-1 | 0.51 | ND |
8.99 | Octanal | C8H16O | 124-13-0 | 0.70 | ND |
9.60 | 2-Heptenal, (Z)- | C7H12O | 57266-86-1 | 0.65 | ND |
11.14 | Nonanal | C9H18O | 124-19-6 | 2.28 | 0.44 |
11.86 | 2-Octenal, (E)- | C8H14O | 2548-87-0 | 0.57 | 0.09 |
13.20 | 2,4-Heptadienal, (E,E)- | C7H10O | 4313-03-5 | 3.44 | ND |
13.35 | Decanal | C10H20O | 112-31-2 | 0.13 | 0.12 |
13.77 | Benzaldehyde | C7H6O | 100-52-7 | 0.53 | 0.80 |
14.06 | trans-2-Nonenal | C9H16O | - | ND | 0.16 |
14.07 | 2-Nonenal, (Z)- | C9H16O | 60784-31-8 | 0.38 | ND |
18.25 | 2-Undecenal | C11H20O | 2463-77-6 | 1.73 | ND |
19.30 | 2,4-Decadienal | C10H16O | 2363-88-4 | 0.87 | ND |
30.00 | cis,cis,cis-7,10,13-Hexadecatrienal | C16H26O | 56797-43-4 | 0.38 | ND |
Esters | |||||
25.95 | Pentadecanoic acid, 14-methyl-, methyl ester | C17H34O2 | 5129-60-2 | 0.24 | ND |
26.44 | Hexadecanoic acid, ethyl ester | C18H36O2 | 628-97-7 | 2.22 | ND |
28.55 | 6-Octadecenoic acid, methyl ester, (Z)- | C19H36O2 | 2777-58-4 | 0.56 | ND |
28.71 | Pentadecanoic acid, ethyl ester | C17H34O2 | 41114-00-5 | 0.43 | ND |
28.90 | (E)-9-Octadecenoic acid ethyl ester | C20H38O2 | 6114-18-7 | 1.95 | ND |
29.02 | 11,14-Eicosadienoic acid, methyl ester | C21H38O2 | 2463-02-7 | 0.23 | ND |
29.35 | 9(E),11(E)-Conjugated linoleic acid, ethyl ester | C20H36O2 | - | 3.07 | 0.06 |
29.45 | Phthalic acid, hex-3-yl isobutyl ester | C18H26O4 | - | 0.46 | ND |
Alkanes | |||||
7.02 | Dodecane | C12H26 | 112-40-3 | 0.79 | ND |
7.04 | Undecane, 2,6-dimethyl- | C13H28 | 17301-23-4 | ND | 0.68 |
7.71 | Hexane, 1,1-diethoxy- | C10H22O2 | 3658-93-3 | 0.58 | ND |
10.26 | Cyclopropane, propyl- | C6H12 | 2415-72-7 | 0.40 | ND |
12.29 | Undecane, 4,7-dimethyl- | C13H28 | 17301-32-5 | ND | 0.04 |
13.43 | Dodecane, 2,7,10-trimethyl- | C15H32 | 74645-98-0 | 0.09 | 0.10 |
14.55 | Cyclopropane, pentyl- | C8H16 | 2511-91-3 | 0.52 | 0.84 |
15.45 | Hexadecane | C16H34 | 544-76-3 | 0.24 | ND |
29.12 | Dodecane, 2,6,11-trimethyl- | C15H32 | 31295-56-4 | 0.14 | ND |
Alkenes | |||||
12.62 | 3,5-Dimethylcyclopentene | C7H12 | 7459-71-4 | 1.34 | ND |
13.14 | α-Cubebene | C15H24 | 17699-14-8 | ND | 2.61 |
16.64 | Humulene | C15H24 | 6753-98-6 | 0.27 | ND |
30.95 | Squalene | C30H50 | 111-02-4 | 0.60 | ND |
Terpenes | |||||
6.89 | D-Limonene | C10H16 | 5989-27-5 | ND | 0.15 |
Ketones and hydroxyketones | |||||
15.84 | Butyrolactone | C4H6O2 | 96-48-0 | 0.21 | ND |
21.11 | δ -Dodecalactone | C12H22O2 | 2305-05-7 | 0.08 | ND |
22.03 | 2-Methyl-6-methyleneoct-7-en-4-one | C10H16O | 19860-68-5 | 0.50 | ND |
Furans | |||||
7.65 | Furan, 2-pentyl- | C9H14O | 3777-69-3 | ND | 0.40 |
17.26 | 2(3H)-Furanone, 5-ethyldihydro- | C6H10O2 | 695-06-7 | ND | 0.20 |
22.99 | 2(3H)-Furanone, dihydro-5-pentyl- | C9H16O2 | 104-61-0 | 0.54 | 0.18 |
32.97 | 2(3H)-Furanone, 5-dodecyldihydro- | C16H30O2 | 730-46-1 | 0.31 | ND |
Other compounds | |||||
29.63 | Vanillin lactoside | C20H28O13 | - | 0.28 | ND |
30.25 | l-Gala-l-ido-octose | C8H16O8 | - | 0.13 | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karrar, E.; Ahmed, I.A.M.; Wei, W.; Sarpong, F.; Proestos, C.; Amarowicz, R.; Oz, E.; Sheikha, A.F.E.; Allam, A.Y.; Oz, F.; et al. Characterization of Volatile Flavor Compounds in Supercritical Fluid Separated and Identified in Gurum (Citrulluslanatus Var. colocynthoide) Seed Oil Using HSME and GC–MS. Molecules 2022, 27, 3905. https://doi.org/10.3390/molecules27123905
Karrar E, Ahmed IAM, Wei W, Sarpong F, Proestos C, Amarowicz R, Oz E, Sheikha AFE, Allam AY, Oz F, et al. Characterization of Volatile Flavor Compounds in Supercritical Fluid Separated and Identified in Gurum (Citrulluslanatus Var. colocynthoide) Seed Oil Using HSME and GC–MS. Molecules. 2022; 27(12):3905. https://doi.org/10.3390/molecules27123905
Chicago/Turabian StyleKarrar, Emad, Isam A. Mohamed Ahmed, Wei Wei, Frederick Sarpong, Charalampos Proestos, Ryszard Amarowicz, Emel Oz, Aly Farag El Sheikha, Ayman Y. Allam, Fatih Oz, and et al. 2022. "Characterization of Volatile Flavor Compounds in Supercritical Fluid Separated and Identified in Gurum (Citrulluslanatus Var. colocynthoide) Seed Oil Using HSME and GC–MS" Molecules 27, no. 12: 3905. https://doi.org/10.3390/molecules27123905
APA StyleKarrar, E., Ahmed, I. A. M., Wei, W., Sarpong, F., Proestos, C., Amarowicz, R., Oz, E., Sheikha, A. F. E., Allam, A. Y., Oz, F., & Wang, X. (2022). Characterization of Volatile Flavor Compounds in Supercritical Fluid Separated and Identified in Gurum (Citrulluslanatus Var. colocynthoide) Seed Oil Using HSME and GC–MS. Molecules, 27(12), 3905. https://doi.org/10.3390/molecules27123905