Microwave-Assisted and Conventional Extractions of Volatile Compounds from Rosa x damascena Mill. Fresh Petals for Cosmetic Applications
Abstract
:1. Introduction
- -
- Rose essential oil (from fresh and dried flowers) can be utilized as a cosmetic ingredient, flavoring agent for foods, and relaxant agent for aromatherapy [2].
- -
- Rosewater, obtained by hydrodistillation of petals, contains a small percentage of rose oil, and it is employed as a cosmetic ingredient and flavoring agent for foods [3].
- -
- Rose concrete, derived from the extraction of rose petals with organic solvents (e.g., hexane and petroleum ether), is a waxy semi-solid material mainly used to obtain the rose absolute [3,4], while rose absolute is produced by extraction of the concrete with ethanol. It is a red-orange liquid with a rose aroma [4,5].
- -
- Dried flowers: the dried buds and petals of the rose are sold in groceries, herbalist shops, and pharmacies. They are accumulated when there is no profitable production of fresh flowers to be used as an alternative in hydrodistillation [6]. They are used for the preparation of teas and herbal teas, yogurt with antioxidants, and for their relaxing properties.
- -
- Rosehips (dried hips) are employed in traditional medicine for the content of tannins, anthocyanin, phenolic compounds, fatty oil, and organic acids (e.g., ascorbic acid) [7].
2. Results
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Plant Materials
4.3. Extractive Procedures
4.3.1. MHG Apparatus and Procedure
4.3.2. SFME Apparatus and Procedure
4.3.3. SD Apparatus and Procedure
4.3.4. HD Apparatus and Procedure
4.4. GC-FID and GC-MS Analysis
Identification of the Components of the Extracts
4.5. Chemometrics and Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Baydar, H. Oil-bearing rose (Rosa damascena Mill.) cultivation and rose oil industry in Turkey. Euro Cosmet. 2006, 14, 13–17. [Google Scholar]
- Akram, M.; Riaz, M.; Munir, N.; Akhter, N.; Zafar, S.; Jabeen, F.; Ali Shariati, M.; Akhtar, N.; Riaz, Z.; Altaf, S.H.; et al. Chemical constituents, experimental and clinical pharmacology of Rosa damascena: A literature review. J. Pharm. Pharmacol. 2020, 72, 161–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahboubi, M. Rosa damascena as a holy ancient herb with novel applications. J. Tradit. Complement. Med. 2015, 30, 10–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meltem, A.; Mehmet, T. Production of rose absolute from rose concrete. Flavour. Frag. J. 2002, 18, 26–31. [Google Scholar] [CrossRef]
- Filiz, A.; Meltem, T.; Ozgur, B.; Mehmet, T. Gas chromatographic investigation of rose concrete, absolute and solid residue. Flavour Frag. J. 2005, 20, 481–486. [Google Scholar] [CrossRef]
- Choi, S.H. Essential oil components in herb teas (Rose and Rosehip). Life Sci. J. 2009, 19, 1333–1336. [Google Scholar] [CrossRef] [Green Version]
- Shameh, S.; Alirezalu, A.; Hosseini, B.; Maleki, R. Fruit phytochemical composition and color parameters of 21 accessions of five Rosaspecies grown in North West Iran. J. Sci. Food Agric. 2019, 99, 5740–5751. [Google Scholar] [CrossRef]
- Pellati, F.; Orlandini, G.; van Leeuwen, K.A.; Anesin, G.; Bertelli, D.; Paolini, M.; Benvenuti, S.; Camin, F. Gas chromatography combined with mass spectrometry, flame ionization detection and elemental analyzer/isotope ratio mass spectrometry for characterizing and detecting the authenticity of commercial essential oils of Rosa damascena Mill. Rapid Commun. Mass Spectrom. 2013, 27, 591–602. [Google Scholar] [CrossRef]
- Kumar Pal, P. Evaluation, genetic diversity, recent development of distillation method, challenges and opportunities of Rosa damascena: A review. J. Essent. Oil-Bear. Plants 2013, 16, 1–10. [Google Scholar]
- Agarwal, S.G.; Aruna Gupta, B.K.; Baleshwar Thappa, R.K.; Suri, O.P. Chemical composition of rose water volatiles. J. Essent. Oil Res. 2005, 17, 265–267. [Google Scholar] [CrossRef]
- Safety Assessment of Rosa damascena-Derived Ingredients as Used in Cosmetics. Available online: https://www.cir-safety.org/sites/default/files/rosdam092021TR.pdf (accessed on 8 April 2022).
- Krupčík, J.; Gorovenko, R.; Špánik, I.; Sandra, P.; Armstrong, D.W. Enantioselective comprehensive two-dimensional gas chromatography. A route to elucidate the authenticity and origin of Rosa damascena Miller essential oils. J. Sep. Sci. 2015, 38, 3397–3403. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.R.; Padalia, C.R.; Chauhan, A. Chemical investigation of the volatile components of shade-dried petals of damask rose (Rosa damascena Mill.). Arch. Biol. Sci. 2011, 63, 1111–1115. [Google Scholar] [CrossRef]
- Eikani, M.H.; Golmohammad, F.; Rowshanzamir, S.; Mirza, M. Recovery of water-soluble constituents of rose oil using simultaneous distillation–extraction. Flavour Frag. J. 2005, 20, 555–558. [Google Scholar] [CrossRef]
- Berechet, M.; Calinescu, I.; Stelescu, M.; Manaila, E.; Craciun, G.; Purcareanu, B.; Mihalesku, D.; Rosca, S.; Fudulu, A.; Niculescu-Aron, I.; et al. Composition of the essential oil of Rosa damascena Mill. cultivated in Romania. Rev. Chim. 2015, 12, 1986–1991. [Google Scholar]
- Gochev, V.; Wlcek, K.; Buchbauer, G.; Stoyanova, A.; Dobreva, A.; Schmidt, E.; Jirovetz, L. Comparative evaluation of antimicrobial activity and composition of rose oils from various geographic origins, in particular Bulgarian rose oil. Nat. Prod. Commun. 2008, 7, 1063–1068. [Google Scholar] [CrossRef] [Green Version]
- Jirovetz, L.; Buchbauer, G.; Shahabi, M. Comparative investigations of essential oils and their SPME headspace volatiles of Rosa damascena from Bulgaria and Rosa centifolia from Marocco using GC/FID, GC/MS and olfactometry. J. Essent. Oil Bear. Plants 2002, 5, 111–121. [Google Scholar]
- Mostafavi, A.; Afzali, D. Chemical composition of the essential oils of Rosa damascena from two different locations in Iran. Chem. Nat. Compd. 2009, 1, 110–113. [Google Scholar] [CrossRef]
- Babu, K.G.D.; Singh, B.; Joshi, V.P.; Singh, V. Essential oil composition of Damask rose (Rosa damascena Mill.) distilled under different pressures and temperatures. Flavour Fragr. J. 2002, 17, 136–140. [Google Scholar] [CrossRef]
- Lucchesi, M.E.; Chemat, F.; Smadja, J. Solvent-free microwave extraction of essential oil from aromatic herbs: Comparison with conventional hydro-distillation. J. Chromatogr. A 2004, 1043, 323–327. [Google Scholar] [CrossRef]
- Chemat, F.; Lucchesi, M. Microwaves in Organic Synthesis; Loupy, A., Ed.; Wiley-VCH: Weinheim, Germany, 2006. [Google Scholar]
- Chemat, F.; Giancarlo, C. (Eds.) Microwave-Assisted Extraction for Bioactive Compounds: Theory and Practice; Springer Science & Business Media: Berlin, Germany, 2012; Volume 4. [Google Scholar]
- Boukhatem, M.N.; Ferhat, M.A.; Rajabi, M.; Mousa, S.A. Solvent-free microwave extraction: An eco-friendly and rapid process for green isolation of essential oil from lemongrass. Nat. Prod. Res. 2022, 36, 664–667. [Google Scholar] [CrossRef]
- Araujo, A.R.T.S.; Périno, S.; Fernandez, X.; Cunha, C.; Rodrigues, M.; Ribeiro, M.P.; Jordao, L.; Silva, L.A.; Rodilla, J.; Coutinho, P.; et al. Solvent-Free Microwave Extraction of Thymus mastichina Essential Oil: Influence on Their Chemical Composition and on the Antioxidant and Antimicrobial Activities. Pharmaceuticals 2021, 14, 709. [Google Scholar] [CrossRef]
- Filly, A.; Fernandez, X.; Minuti, M.; Visinoni, F.; Cravotto, G.; Chemat, F. Solvent-free microwave extraction of essential oil from aromatic herbs: From laboratory to pilot and industrial scale. Food Chem. 2014, 150, 193–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Hortas, L.; Falqué, E.; Domínguez, H.; Torres, M.D. Microwave hydrodiffusion and gravity (MHG) extraction from different raw materials with cosmetic applications. Molecules 2019, 25, 92. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.F.; Robustelli della Cuna, F.S.; Villa, C.; Corti, M.; Amin, H.I.M.; Faris, P.; Grisoli, P.; Brusotti, G. A chemometric assessment and profiling of the essential oils from Hibiscus sabdariffa L. from Kurdistan, Iraq. Nat. Prod. Res. 2020, 16, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Adams, R. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Joulain, D.; Konig, W.A. The Atlas of Spectral Data of Sesquiterpene Hydrocarbons; E. B. Verlag: Hamburg, Germany, 1998. [Google Scholar]
- Jolliffe, I.T. Principle Component Analysis, 2nd ed.; Springer Series in Statistics; Springer: New York, NY, USA, 2002. [Google Scholar]
- Chemat, F.; Lucchesi, M.E.; Smadja, J. Solvent Free Microwave Extraction of Volatile Natural Substances. US Patent 20040187340, 30 September 2004. [Google Scholar]
- Ozel, M.Z.; Gogus, F.; Lewis, A.C. Comparison of direct thermal desorption with water distillation and superheated water extraction for the analysis of volatile components of Rosa damascena Mill. using GCxGC-TOF/MS. Anal. Chim. Acta 2006, 566, 172–177. [Google Scholar] [CrossRef]
- Sarkic, A.; Stappen, I. Essential oils and their single compounds in cosmetics: A critical review. Cosmetics 2018, 5, 11. [Google Scholar] [CrossRef] [Green Version]
- European Directorate for the Quality of Medicines & HealthCare of the Council of Europe. Guidance on Essential Oils in Cosmetic Products. Available online: https://www.edqm.eu/en/guidance-essential-oils-cosmetic-products (accessed on 14 March 2022).
- Zhu, Y.J.; Zhou, H.T.; Hu, Y.; Tang, J.Y.; Su, M.X.; Guo, Y.J.; Chen, Q.X.; Liu, B. Antityrosinase and antimicrobial activities of 2-phenylethanol, 2-phenylacetaldehyde and 2-phenylacetic acid. Food Chem. 2011, 124, 298–302. [Google Scholar] [CrossRef]
- Kleinwächter, I.S.; Pannwitt, S.; Centi, A.; Hellmann, N.; Thines, E.; Bereau, T.; Schneider, D. The Bacteriostatic activity of 2-phenylethanol derivatives correlates with membrane binding affinity. Membranes 2021, 11, 254. [Google Scholar] [CrossRef]
- Vian, M.A.; Fernandez, X.; Visinoni, F.; Chemat, F. Microwave hydrodiffusion and gravity, a new technique for extraction of essential oils. J. Chromatogr. A 2008, 9, 14–17. [Google Scholar] [CrossRef]
- Norme di Buona Preparazione, Farmacopea Ufficiale Italiana, 12th ed.; Istituto Poligrafico e Zecca dello Stato: Roma, Italy, 2018.
- Sahraoui, N.; Vian, M.A.; Bornard, I.; Boutekedjiret, C.; Chemat, F. Improved microwave steam distillation apparatus for isolation of essential oils. Comparison with conventional steam distillation. J. Chromatogr. A 2008, 14, 229–233. [Google Scholar] [CrossRef]
- Robustelli della Cuna, F.S.; Calevo, J.; Bazzicalupo, M.; Sottani, C.; Grignani, E.; Preda, S. Chemical Composition of Essential Oil from Flowers of Five Fragrant Dendrobium (Orchidaceae). Plants 2021, 10, 1718. [Google Scholar] [CrossRef] [PubMed]
# | Compound a | RI b | RI c | MHG | SFME | SD | HD | Identification e |
---|---|---|---|---|---|---|---|---|
% d | % | % | % | |||||
1 | Octane | 800 | 800 | - | - | 0.40 ± 0.8 | 4.45 ± 0.6 | STD, RI |
2 | 2-Hexenal | 854 | 852 | - | - | 0.28 ± 0.4 | 0.25 ± 0.8 | RI, MS |
3 | Heptanal | 902 | 902 | - | - | 0.56 ± 0.9 | 0.24 ± 0.7 | RI, MS |
4 | α-pinene | 939 | 931 | - | - | 0.28 ± 0.7 | 0.51 ± 0.4 | RI, MS |
5 | Benzaldehyde | 960 | 958 | 0.26 ± 0.2 | 0.02 ± 0.4 | 0.50 + 0.7 | 0.61 ± 0.2 | RI, MS |
6 | β-myrcene | 991 | 991 | 0.03 ± 0.2 | 0.51 + 0.2 | 0.24 + 0.5 | 0.30 ± 0.1 | RI, MS |
7 | Benzyl alcohol | 1032 | 1033 | 1.68 ± 0.4 | 1.39 + 0.2 | 0.14 + 0.6 | 0.10 ± 0.5 | RI, MS |
8 | Phenylacetaldehyde | 1042 | 1042 | 0.23 ± 0.3 | 0.12 ± 0.5 | 0.47 ± 0.8 | 0.46 ± 0.7 | RI, MS |
9 | trans-sabinene hydrate | 1070 | 1066 | 0.28 ± 0.5 | - | - | - | RI, MS |
10 | Linalool | 1094 | 1099 | 0.45 ± 0.4 | - | 4.62 ± 0.4 | 1.32 ± 0.2 | RI, MS |
11 | 2-phenyl ethanol | 1139 | 1139 | 59.61 ± 0.5 | 45.50 ± 0.6 | 25.58 ± 0.7 | 26.90 ± 0.9 | RI, MS |
12 | Isomenthone | 1162 | 1169 | 0.26 ± 0.4 | 0.19 ± 0.3 | 1.49 ± 0.3 | 0.93 ± 0.3 | RI, MS |
13 | Unidentified | - | 1201 | 0.14 ± 0.1 | - | - | - | - |
14 | α-terpineol | 1189 | 1215 | 0.25 ± 0.2 | 0.12 ± 0.5 | 1.23 ± 0.5 | 1.31 ± 0.3 | RI, MS |
15 | Verbenone | 1204 | 1208 | 0.19 ± 0.2 | - | - | - | - |
16 | Citronellol | 1230 | 1229 | 14.41 ± 0.3 | 2.53 ± 0.3 | 40.58 ± 0.9 | 30.18 ± 0.4 | RI, MS |
17 | Geranial | 1249 | 1241 | 0.40 ± 0.2 | - | 0.62 ± 0.4 | 0.47 ± 0.9 | RI, MS |
18 | Geraniol | 1253 | 1256 | 16.70 ± 0.4 | 2.54 ± 0.4 | 8.48 ± 0.5 | 13.36 ± 0.5 | RI, MS |
19 | Neral | 1270 | 1271 | 0.67 ± 0.5 | 0.11 ± 0.3 | 0.87 ± 0.7 | 0.56 ± 0.1 | RI, MS |
20 | Eugenol | 1359 | 1355 | 0.38 ± 0.4 | - | 0.12 ± 0.4 | 0.28 ± 0.6 | RI, MS |
21 | Ethyl nerolate | 1359 | 1360 | - | 0.64 ± 0.2 | - | - | RI, MS |
22 | Hexyl hexanoate | 1387 | 1387 | - | 0.25 ± 0.3 | - | - | RI, MS |
23 | Isocariophyllene | 1435 | 1408 | - | 0.26 ± 0.3 | - | - | RI, MS |
24 | cis-α-bergamotene | 1411 | 1417 | - | 0.23 ± 0.2 | - | - | RI, MS |
25 | trans-caryophyllene | 1419 | 1421 | 0.11 ± 0.2 | 10.15 ± 0.4 | - | - | RI, MS |
26 | trans-α-bergamotene | 1432 | 1437 | - | 2.05 ± 0.6 | - | - | RI, MS |
27 | trans-β-farnesene | 1457 | 1458 | - | 1.89 ± 0.3 | - | - | RI, MS |
28 | aromadendrene | 1463 | 1463 | - | 0.81 ± 0.2 | - | - | RI, MS |
29 | γ-cadinene | 1477 | 1478 | - | 0.17 ± 0.3 | - | - | RI, MS |
30 | Germacrene D | 1482 | 1482 | 0.06 ± 0.4 | - | 0.03 ± 0.8 | - | RI, MS |
31 | α-curcumene | 1483 | 1484 | - | 0.40 ± 0.1 | - | - | RI, MS |
32 | β-selinene | 1490 | 1488 | - | 1.53 ± 0.2 | - | - | RI, MS |
33 | α-selinene | 1498 | 1496 | - | 1.20 ± 0.3 | - | - | RI, MS |
34 | β-bisabolene | 1506 | 1510 | - | 0.53 ± 0.2 | - | - | RI, MS |
35 | trans-β-guaiene | 1503 | 1522 | - | 0.15 ± 0.2 | - | - | RI, MS |
36 | δ-cadinene | 1523 | 1525 | - | 0.22 ± 0.3 | - | - | RI, MS |
37 | α-cadinene | 1539 | 1537 | - | 0.62 ± 0.4 | - | - | RI, MS |
38 | Unidentified | - | 1540 | - | 0.35 ± 0.2 | - | - | RI, MS |
39 | Selina-3,7(11)-diene | 1547 | 1544 | 0.88 ± 0.3 | - | - | RI, MS | |
40 | Elemol | 1548 | 1551 | 0.24 ± 0.3 | - | - | - | RI, MS |
41 | Germacrene B | 1561 | 1559 | - | 0.19 ± 0.5 | - | - | RI, MS |
42 | Nerolidol | 1563 | 1565 | - | 0.53 ± 0.2 | - | - | RI, MS |
43 | Cariophyllene oxide | 1583 | 1587 | - | 11.66 ± 0.7 | - | - | RI, MS |
44 | Ledol | 1590 | 1606 | - | 0.23 ± 0.8 | - | - | RI, MS |
45 | Unidentified | - | 1612 | - | 3.26 ± 0.4 | - | - | - |
46 | 10-epi-γ-eudesmol | 1619 | 1621 | - | 0.79 ± 0.2 | - | - | RI, MS |
47 | γ-eudesmol | 1630 | 1635 | 0.12 ± 0.2 | 0.38 ± 0.5 | 0.40 ± 0.7 | 0.39 ± 0.2 | RI, MS |
48 | Caryophylladienol II | 1641 | 1639 | - | 0.54 ± 0.3 | - | - | RI, MS |
49 | β-eudesmol | 1651 | 1653 | 0.30 ± 0.2 | - | 1.8 ± 0.6 | 1.42 ± 0.5 | RI, MS |
50 | α-eudesmol | 1664 | 1656 | 0.41 ± 0.2 | 0.34 ± 0.2 | 1.14 ± 0.5 | 1. 16± 0.5 | RI, MS |
51 | β-bisabolol | 1675 | 1675 | - | 0.71 ± 0.5 | - | - | RI, MS |
52 | α-bisabolol | 1680 | 1685 | - | 1.96 ± 0.3 | - | - | RI, MS |
53 | Eudesm-7(11)-en-4-ol | 1700 | 1699 | - | 0.13 ± 0.3 | - | - | RI, MS |
54 | Cryptomeridiol | 1814 | 1815 | 0.44 ± 0.6 | - | - | - | RI, MS |
55 | Phytone | 1845 | 1846 | - | 0.28 ± 0.1 | - | - | RI, MS |
56 | Nonadecane | 1900 | 1900 | 1.67 ± 0.2 | 2.23 ± 0.5 | 5.26 ± 0.6 | 6.42 ± 0.6 | STD, RI |
57 | Totarene | 1923 | 1921 | - | 0.11 ± 0.5 | - | - | STD, RI |
58 | Unidentified | 2195 | 1999 | - | - | 0.14 ± 0.5 | 0.27 ± 0.1 | - |
59 | Heneicosane | 2100 | 2099 | 0.49 ± 0.3 | 1.04 ± 0.3 | 4.94 ± 0.6 | 7.69 ± 0.4 | STD, RI |
60 | Tricosane | 2300 | 2299 | 0.22 ± 0.2 | 0.25 ± 0.2 | 0.43 ± 0.5 | 0.43 ± 0.2 | STD, RI |
61 | Pentacosane | 2500 | 2500 | - | - | 0.14 ± 0.2 | - | STD, RI |
Analytical Compounds | MHG % | SFME % | SD % | HD % | |||
---|---|---|---|---|---|---|---|
NOT TERPENIC COMPOUNDS | Saturated hydrocarbons | 2.38 | 3.52 | 11.17 | 18.99 | ||
Primary Alcohols | 61.29 | 46.89 | 25.72 | 27.00 | |||
Aldehydes | 0.49 | 0.14 | 1.81 | 1.56 | |||
Ketones | - | 0.28 | - | - | |||
Esters | - | 0.25 | - | - | |||
Total | 64.16 | 51.08 | 38.7 | 47.55 | |||
TERPENIC COMPOUNDS | MONOTERPENES | Oxygenated | Alcohols | 32.47 | 5.19 | 55.03 | 46.45 |
Aldehydes | 1.07 | 0.11 | 1.49 | 1.03 | |||
Ketones | 0.45 | 0.19 | 1.49 | 0.93 | |||
Esters | 0.64 | ||||||
Total oxygenated mono | 33.99 | 6.13 | 58.01 | 48.41 | |||
Non-oxygenated | 0.03 | 0.51 | 0.52 | 0.81 | |||
Total mono | 34.02 | 6.64 | 58.53 | 49.22 | |||
SESQUITERPENES | Oxygenated | Alcohols | 1.51 | 5.61 | 3.34 | 2.97 | |
Epoxydes | 11.66 | ||||||
Total oxygenated sesqui | 1.51 | 17.27 | 3.34 | 2.97 | |||
Non-oxygenated | 0.17 | 21.28 | 0.03 | - | |||
Total sesqui | 1.68 | 38.55 | 3.37 | 2.97 | |||
DITERPENES | Non-oxygenated | - | 0.11 | - | - | ||
Total oxygenated terpens | 35.5 | 23.4 | 61.35 | 51.38 | |||
Total Terpenes | 35.7 | 45.3 | 61.9 | 52.19 | |||
UNIDENTIFIED | 0.14 | 3.61 | 0.14 | 0.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villa, C.; Robustelli Della Cuna, F.S.; Russo, E.; Ibrahim, M.F.; Grignani, E.; Preda, S. Microwave-Assisted and Conventional Extractions of Volatile Compounds from Rosa x damascena Mill. Fresh Petals for Cosmetic Applications. Molecules 2022, 27, 3963. https://doi.org/10.3390/molecules27123963
Villa C, Robustelli Della Cuna FS, Russo E, Ibrahim MF, Grignani E, Preda S. Microwave-Assisted and Conventional Extractions of Volatile Compounds from Rosa x damascena Mill. Fresh Petals for Cosmetic Applications. Molecules. 2022; 27(12):3963. https://doi.org/10.3390/molecules27123963
Chicago/Turabian StyleVilla, Carla, Francesco Saverio Robustelli Della Cuna, Eleonora Russo, Mohammed Farhad Ibrahim, Elena Grignani, and Stefania Preda. 2022. "Microwave-Assisted and Conventional Extractions of Volatile Compounds from Rosa x damascena Mill. Fresh Petals for Cosmetic Applications" Molecules 27, no. 12: 3963. https://doi.org/10.3390/molecules27123963
APA StyleVilla, C., Robustelli Della Cuna, F. S., Russo, E., Ibrahim, M. F., Grignani, E., & Preda, S. (2022). Microwave-Assisted and Conventional Extractions of Volatile Compounds from Rosa x damascena Mill. Fresh Petals for Cosmetic Applications. Molecules, 27(12), 3963. https://doi.org/10.3390/molecules27123963