Pathway Dependence of the Formation and Development of Prefibrillar Aggregates in Insulin B Chain
Abstract
:1. Introduction
2. Results
2.1. Amyloid Formation at Various pH Values
2.2. Structure of Nonfibrillar Aggregates Formed under Quiescent Conditions
2.3. Formation Process of Prefibrillar Aggregates at pH 5.2
2.4. Size and Shape of the pH 5.2 Aggregates
3. Discussion
4. Materials and Methods
4.1. Purification of Insulin B Chain
4.2. Formation of B Chain Amyloid Fibrils
4.3. ThT Assay
4.4. AFM
4.5. ATR-FTIR Spectroscopy
4.6. CD Spectroscopy
4.7. 1H-NMR Spectroscopy
4.8. SAXS
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Benson, M.D.; Buxbaum, J.N.; Eisenberg, D.S.; Merlini, G.; Saraiva, M.J.M.; Sekijima, Y.; Sipe, J.D.; Westermark, P. Amyloid nomenclature 2020: Update and recommendations by the international society of amyloidosis (ISA) nomenclature committee. Amyloid 2020, 27, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Dobson, C.M. Protein folding and misfolding. Nature 2003, 426, 884–890. [Google Scholar] [CrossRef]
- Riek, R.; Eisenberg, D.S. The activities of amyloids from a structural perspective. Nature 2016, 539, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Chiti, F.; Dobson, C.M. Protein misfolding, amyloid formation, and human disease: A summary of progress over the last decade. Annu. Rev. Biochem. 2017, 86, 27–68. [Google Scholar] [CrossRef]
- Tycko, R. Amyloid polymorphism: Structural basis and neurobiological relevance. Neuron 2015, 86, 632–645. [Google Scholar] [CrossRef] [Green Version]
- Fitzpatrick, A.W.P.; Falcon, B.; He, S.; Murzin, A.G.; Murshudov, G.; Garringer, H.J.; Crowther, R.A.; Ghetti, B.; Goedert, M.; Scheres, S.H.W. Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature 2017, 547, 185–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iadanza, M.G.; Jackson, M.P.; Hewitt, E.W.; Ranson, N.A.; Radford, S.E. A new era for understanding amyloid structures and disease. Nat. Rev. Mol. Cell Biol. 2018, 19, 755–773. [Google Scholar] [CrossRef] [PubMed]
- So, M.; Hall, D.; Goto, Y. Revisiting supersaturation as a factor determining amyloid fibrillation. Curr. Opin. Struct. Biol. 2016, 36, 32–39. [Google Scholar] [CrossRef]
- Chatani, E.; Yamamoto, N. Recent progress on understanding the mechanisms of amyloid nucleation. Biophys. Rev. 2018, 10, 527–534. [Google Scholar] [CrossRef] [Green Version]
- Arosio, P.; Knowles, T.P.; Linse, S. On the lag phase in amyloid fibril formation. Phys. Chem. Chem. Phys. 2015, 17, 7606–7618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tornquist, M.; Michaels, T.C.T.; Sanagavarapu, K.; Yang, X.; Meisl, G.; Cohen, S.I.A.; Knowles, T.P.J.; Linse, S. Secondary nucleation in amyloid formation. Chem. Commun. 2018, 54, 8667–8684. [Google Scholar] [CrossRef] [Green Version]
- Michaels, T.C.T.; Saric, A.; Habchi, J.; Chia, S.; Meisl, G.; Vendruscolo, M.; Dobson, C.M.; Knowles, T.P.J. Chemical kinetics for bridging molecular mechanisms and macroscopic measurements of amyloid fibril formation. Annu. Rev. Phys. Chem. 2018, 69, 273–298. [Google Scholar] [CrossRef]
- Ferrone, F. Analysis of protein aggregation kinetics. Methods Enzymol. 1999, 309, 256–274. [Google Scholar]
- Serio, T.R.; Cashikar, A.G.; Kowal, A.S.; Sawicki, G.J.; Moslehi, J.J.; Serpell, L.; Arnsdorf, M.F.; Lindquist, S.L. Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 2000, 289, 1317–1321. [Google Scholar] [CrossRef] [Green Version]
- Bleiholder, C.; Dupuis, N.F.; Wyttenbach, T.; Bowers, M.T. Ion mobility-mass spectrometry reveals a conformational conversion from random assembly to β-sheet in amyloid fibril formation. Nat. Chem. 2011, 3, 172–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatani, E.; Imamura, H.; Yamamoto, N.; Kato, M. Stepwise organization of the β-structure identifies key regions essential for the propagation and cytotoxicity of insulin amyloid fibrils. J. Biol. Chem. 2014, 289, 10399–10410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavlova, A.; Cheng, C.Y.; Kinnebrew, M.; Lew, J.; Dahlquist, F.W.; Han, S. Protein structural and surface water rearrangement constitute major events in the earliest aggregation stages of tau. Proc. Natl. Acad. Sci. USA 2016, 113, E127–E136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miti, T.; Mulaj, M.; Schmit, J.D.; Muschol, M. Stable, metastable, and kinetically trapped amyloid aggregate phases. Biomacromolecules 2015, 16, 326–335. [Google Scholar] [CrossRef]
- Cao, Y.; Adamcik, J.; Diener, M.; Kumita, J.R.; Mezzenga, R. Different folding states from the same protein sequence determine reversible vs irreversible amyloid fate. J. Am. Chem. Soc. 2021, 143, 11473–11481. [Google Scholar] [CrossRef]
- Hong, D.P.; Ahmad, A.; Fink, A.L. Fibrillation of human insulin a and B chains. Biochemistry 2006, 45, 9342–9353. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, N.; Tsuhara, S.; Tamura, A.; Chatani, E. A specific form of prefibrillar aggregates that functions as a precursor of amyloid nucleation. Sci. Rep. 2018, 8, 62. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, N.; Akai, T.; Inoue, R.; Sugiyama, M.; Tamura, A.; Chatani, E. Structural insights into the inhibition of amyloid fibril formation by fibrinogen via interaction with prefibrillar intermediates. Biochemistry 2019, 58, 2769–2781. [Google Scholar] [CrossRef] [PubMed]
- Krimm, S.; Bandekar, J. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv. Protein Chem. 1986, 38, 181–364. [Google Scholar] [PubMed]
- Yamamoto, N.; Inoue, R.; Makino, Y.; Shibayama, N.; Naito, A.; Sugiyama, M.; Chatani, E. Structural development of amyloid precursors in insulin B chain and the inhibition effect by fibrinogen. BioRxiv 2021. [Google Scholar] [CrossRef]
- Erdemir, D.; Lee, A.Y.; Myerson, A.S. Nucleation of crystals from solution: Classical and two-step models. Acc. Chem. Res. 2009, 42, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Karthika, S.; Radhakrishnan, T.K.; Kalaichelvi, P. A review of classical and nonclassical nucleation theories. Cryst. Growth Des. 2016, 16, 6663–6681. [Google Scholar] [CrossRef]
- Langkilde, A.E.; Vestergaard, B. Methods for structural characterization of prefibrillar intermediates and amyloid fibrils. FEBS Lett. 2009, 583, 2600–2609. [Google Scholar] [CrossRef] [Green Version]
- Liang, C.; Ni, R.; Smith, J.E.; Childers, W.S.; Mehta, A.K.; Lynn, D.G. Kinetic intermediates in amyloid assembly. J. Am. Chem. Soc. 2014, 136, 15146–15149. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.; Tsai, M.Y.; Chen, M.; Wolynes, P.G. Exploring the aggregation free energy landscape of the amyloid-β protein (1-40). Proc. Natl. Acad. Sci. USA 2016, 113, 11835–11840. [Google Scholar] [CrossRef] [Green Version]
- Chiricotto, M.; Melchionna, S.; Derreumaux, P.; Sterpone, F. Hydrodynamic effects on β-amyloid (16–22) peptide aggregation. J. Chem. Phys. 2016, 145, 035102. [Google Scholar] [CrossRef]
- Hasecke, F.; Niyangoda, C.; Borjas, G.; Pan, J.; Matthews, G.; Muschol, M.; Hoyer, W. Protofibril-fibril interactions inhibit amyloid fibril assembly by obstructing secondary nucleation. Angew. Chem. Int. Ed. Engl. 2021, 60, 3016–3021. [Google Scholar] [CrossRef] [PubMed]
- Laganowsky, A.; Liu, C.; Sawaya, M.R.; Whitelegge, J.P.; Park, J.; Zhao, M.; Pensalfini, A.; Soriaga, A.B.; Landau, M.; Teng, P.K.; et al. Atomic view of a toxic amyloid small oligomer. Science 2012, 335, 1228–1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, Y.; Li, Y.; Hao, W.; Hu, X.; Ma, G. Parallel β-sheet fibril and antiparallel β-sheet oligomer: New insights into amyloid formation of hen egg white lysozyme under heat and acidic condition from ftir spectroscopy. J. Phys. Chem. B 2013, 117, 4003–4013. [Google Scholar] [CrossRef] [PubMed]
- Samdin, T.D.; Kreutzer, A.G.; Nowick, J.S. Exploring amyloid oligomers with peptide model systems. Curr. Opin. Chem. Biol. 2021, 64, 106–115. [Google Scholar] [CrossRef]
- Chatani, E.; Yuzu, K.; Ohhashi, Y.; Goto, Y. Current understanding of the structure, stability and dynamic properties of amyloid fibrils. Int. J. Mol. Sci. 2021, 22, 4349. [Google Scholar] [CrossRef]
- Glatter, O.; Kratky, O. Small Angle X-ray Scattering; Academic Press: London, UK; New York, NY, USA, 1982. [Google Scholar]
- Holasek, A.; Wawra, H.; Kratky, O.; Mittelbach, P. Small-angle scattering of Bence-Jones protein. Biochim. Biophys. Acta 1964, 79, 76–87. [Google Scholar] [CrossRef]
- Broersma, S. Viscous force constant for a closed cylinder. J. Chem. Phys. 1960, 32, 1632–1635. [Google Scholar] [CrossRef]
- Nagano, T.; Iwasaki, T.; Onishi, K.; Awai, Y.; Terachi, A.; Kuwaba, S.; Asano, S.; Katasho, R.; Nagai, K.; Nakashima, A.; et al. Ly6d-induced macropinocytosis as a survival mechanism of senescent cells. J. Biol. Chem. 2021, 296, 100049. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshikawa, Y.; Yuzu, K.; Yamamoto, N.; Morishima, K.; Inoue, R.; Sugiyama, M.; Iwasaki, T.; So, M.; Goto, Y.; Tamura, A.; et al. Pathway Dependence of the Formation and Development of Prefibrillar Aggregates in Insulin B Chain. Molecules 2022, 27, 3964. https://doi.org/10.3390/molecules27133964
Yoshikawa Y, Yuzu K, Yamamoto N, Morishima K, Inoue R, Sugiyama M, Iwasaki T, So M, Goto Y, Tamura A, et al. Pathway Dependence of the Formation and Development of Prefibrillar Aggregates in Insulin B Chain. Molecules. 2022; 27(13):3964. https://doi.org/10.3390/molecules27133964
Chicago/Turabian StyleYoshikawa, Yuki, Keisuke Yuzu, Naoki Yamamoto, Ken Morishima, Rintaro Inoue, Masaaki Sugiyama, Tetsushi Iwasaki, Masatomo So, Yuji Goto, Atsuo Tamura, and et al. 2022. "Pathway Dependence of the Formation and Development of Prefibrillar Aggregates in Insulin B Chain" Molecules 27, no. 13: 3964. https://doi.org/10.3390/molecules27133964
APA StyleYoshikawa, Y., Yuzu, K., Yamamoto, N., Morishima, K., Inoue, R., Sugiyama, M., Iwasaki, T., So, M., Goto, Y., Tamura, A., & Chatani, E. (2022). Pathway Dependence of the Formation and Development of Prefibrillar Aggregates in Insulin B Chain. Molecules, 27(13), 3964. https://doi.org/10.3390/molecules27133964